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ABSTRACT

© The time-domain transmission-Tline equations for uniform multiconductor
“transmission lines in a conductive, homogeneous medium excited by a transient,
—x, nonuniform electromagnetic field, are derived from Maxwell's equations.
iDepending on how the Tine voltage is defined, two formulations are possible,
“One of these formulations is considerably more convenient to apply than the
~other. The assumptions made in the derivation of the transmission-line
. equations and the boundary conditions at the terminations are discussed.
S92, For numerical célcu]ations, the transmission-Tine equations are represented
by finite-difference techniques, and numerical examples are included. v f:Q
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SECTION 1 9

INTRODUCTION

Electronic subsystems on aircrafts, missiles, and ground electronic
systems are commoniy connected by closely-coupled multiconductor cables.
It is possible that these conductors can be illuminated by extraneous elec-
tromagnetic fields; i.e., high-power radars, nuclear electromagnetic pulse
(EMP), etc. (ref. 1). The excitation can often be nonuniform along the cable.
Furthermore, if the cable is close enough to a nuclear detonation, the time-
varying conductivity of the medium surrounding the conductors can signifi-
cantly effect their behavior.

The response of multiconductor transmission lines illuminated by an
electromagnetic field has been rveported by several investigators (refs. 2
through 9). The frequency-domain solution for the special case of a two
conductor Tine illuminated by a nonuniform electromagnetic field was ob-
tained by Taylor, et al, (ref. 2} and later in a more convenient form by
Smith (ref. 3). The case of a uniform plane wave incident on a three-
conductor 1line in the transverse direction (perpendicular to the system's
Tongitudinal axis)}, with the electric field intensity vector polarized
parailel to the Tine axis, was considered in reference 4. Procedures for
extending this result to multiconductor lines were suggested. Transmission
line mode response of multiconductor lines in a transient electromagnetic
field was obtained in reference 5. Characteristic impedances of each set
of isolated conductor pairs were employed in reference 5, and propagation
modes between each pair of conductors were defined. Clearly this is an
approximation since scalar characteristic impedances do not exist for multi-

conductor lines; and there are only n fundamental propagation modes in an
n+l conductor line.

The frequency response of multiconductor 1ines illuminated by a non-
uniform electromagnetic field was obtained in reference 6, by extending the
results of reference 2 to multiconductor lines. The formulation in refer-
ence 6 neglects the conductivity of the medium surrounding the conductors.
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The solution of general multiconductor transmission line networks has been
considered in references 8 and 9.

In this paper, we derive the transmission line equations for multicon-
ductor lines in a homogeneous medium excited by a transient, nonuniform
electromagnetic field. The time-domain formulation is appropriate because
of the time-varying conductivity. The time-varying air conductivity pre-
cludes the use of Fourier transforms. In the derivation of the first
transmission-line equation, we parallel references 2 and 6 to some extent;
wherein the equations are derived in the frequency domain. The second
transmission line equation in reference 6, however, is not applicable for
~a medium of finite conductivity. The assumptions made in the derivation
of the transmission line equations are discussed in section III.

The transmission-line equations in references 2 and 6 contain both
electric and magnetic induced sources; specifically, the time-derivative
of the magnetic field appears. In this paper, it is pointed out that two
formulations are possible, depending on how the Tine voltages are defined.

One of these formulations requires considerably less computation in the
time domain than the other.



SECTION II

DERIVATION OF THE TRANSMISSION LINE EQUATIONS
FROM MAXWELL'S EQUATIONS

The arrangement considered is indicated in figure 1, which shows a trans-
mission 1ine consisting of n+1 conductors. The conductor labelled zero is
the "reference" conductor (usually the ground or shield), so named because
it is the reference for all voitages. The line is assumed to be uniform
along its length (z direction), but with arbitrary cross section. The j
conductor has a radius aj, and is located a distance hj from the reference
conductor. The medium surrounding the conductors has conductivity, permit-
tivity, and permeability of o, €, and u, respectively.

th

No assumptions are made about the exciting field, i.e., the excitation
can be any nonuniform field which satisfies Maxwell's equations. The prob-
lem of interest is the calculation of the voltages and currents on the line
and in the terminations. Each end of the line can be terminated with arbi-
trary impedances between any two conductors, and between any conductor and
the reference. In the derivation of the first transmission 1line equation,
we parallel references 2 and 6 to some extent; however, in these references
the equations are derived in the frequency domain.

Refer to figure 1 and consider the area enclosed by the dotted lines
between conductor i and conductor O (reference) and between z and z + Az
in the &-z plane. The starting point in the derivation is the Maxwell

equation
5t (M

Integrate equation 1 over the area enclosed by the dotted lines as
shown in figure la to obtain
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‘/f VxE - dh ~/f 7 3
xE-dh= [ E-4 =-_t/ . . @
1

Here Si is a rectangular surface in the £-z plane and enclosed by the
dotted lines as shown in figure la. The unit normal i is n=R, where fj is the
unit vector in the n-direction (perpendicular to the plane formed by the z-
axis and the line joining centers of the ith and the reference conductors),

= d&dz and Ci is a contour encircling Si in the counter clockwise direc-
tion. In equation 2, electric and magnetic fields are functions of &, n,

z, and t, and represent total fields; that is, they consist of the incident
fields plus the scattered fields. Here, the scattered fields are the fields
due to the induced currents in the conductors. Performing the integration
in equation 2 over the area as shown in figure 1, we obtain

h, hi

i
5/ﬁ Egi(ii, z+Az)dE_ - Ez-(hi)Az _“/F Egi(gi’z)dg. + EZO(o)Az
O

1 1 1

z2+Az 5 ‘
=-ai f f ,zdgdz . (3)

In this equation Eg is the &-component of the total electric field in the

i
direction of the straight line joining the ith

EZ is the z-component of the total electric field (Tine axis) on the i
i
conductor, and Bn is the n-component of the total magnetic field density
i
perpendicular to the plane formed by the z-axis and the Tine joining the
centers of the ith and the reference conductors. h. is the distance between

i
the centers of the ith and the reference conductors. We have suppressed

and the reference conductors,
.th

the time dependence of the fields for convenience.




Now divide equation 3 by Az and take the 1imit as Az - 0; the result is

h.

h
3 =2

0 0

It is convenient to separate these fields; i.e.,

i S
E, =E' +E
By &y &y
E =E + Ei
;% i
B =gl +58S (5)
ni ni i

The superscripts i and s refer to incident and scattered, respectively.

In terms of the scattered fields, then, equation 4 can be written as

h, h.
d s 3 [T - - 0
5E'U/f Egi( .,z)dg t5r M/P Bni(gi’z)dai {Ezi(hi) EZO( )}
0 0 '

h,
3

8 hi . a .
i i
37 /Egi(x,z)dgi - 3% / Bni(gi’z)dgi (6)
0 0 '

Equation 6 is exact, in that there are no approximations made in its
derivation. In order to obtain the transmission 1line equations, the quanti-
ties on the left-hand side must be directly related, point-wise, to voltages
and currents on the line. In general, the relationship of electric and
magnetic fields to charges and currents is an integral relationship, so

that the fields at particular points are related to charges and currents
along the entire 1line. That is, in a plane z = constant, the electric and
magnetic fields depend on the charges and currents not only at that point,
but also at all other points z.



If the scattered currents flow parallel to the line, the scattered
fields will be transverse magnetic. In reference 10 it is shown that for
any transverse magnetic wave:

a. The line integral of electric field between any two points in a
transverse plane is independent of the pathf Therefore, the
transverse electric field can be expressed as the gradient of a
scalar potential.

b. The magnetic flux through any strip of a cylindrical surface passing
through two points in any plane z = constant is independent of the
contour of the strip.

These properties indicate that the transverse fields have a static
character.

Property a. shows that transverse voltage is single valued. Therefore,
anticipating transverse magnetic propagation, the scattered line voltage

V? on the 1th conductor with respect to the reference conductor is defined
as’

h,
i
0

Property b indicates that a constant inductance matrix can be defined. The
scattered magnetic flux passing between the two conductors per unit length
of Tline can be directly related to the per-unit-length inductance matrix,
and the currents in the conductor at that point. In particular,

h.

1

s = - !

[ (e = - Dgpe Lige oo Ly 1 02)
0

1.(2) (8)
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‘ where 11, In are the currents at z in the conductors, and Lij's are the
elements of per-unit-length inductance matrix of the line. Of course, if
there is a significant internal inductance in the conductors, the relation-
ship is not this simple. |

There are n equations 1ike equations 6, 7, and 8; substituting equations

7 and 8 into 6 and writing these in a matrix form, we obtain

sl Fug o+ [, wa -5, o]

h h,
- __a_ L i 3 1 i
'[Bz /Egi(gi’Z)dgi s / Bni(gi’z)dgi]‘(%
0

0

It should be pointed out, that the voltage, V?, in equation 9 is the
scattered (induced) voltage on the ith conductor and not the total voltage.
To obtain the total voltage it is necessary to add to V? the voltage of the

. incident field between the reference and the ith conductor. The right-hand
side of equation 9, which is the "source” term, can be expressed in terms
of the z components of the electric field along the conductors and the

reference conductor; that is, for any incident field

h.

h.
o i 5 i - i
A O R CUSELRCRI)
0 0

Equation 10 is obtained by integrating equation 1 over the area enclosed

by the dotted Tines as shown in figure 1 for the incident field. If there
are no components of incident field parallel to the conductors, or if the
z components of the incident fields at the conductors and at the reference

conductor (ground) are equal, the source term disappears.2

2We point this out to show that if there is no component of the 1néident
field parallel to the transmission line, the line is not excited.

() 1



The total fields

E. (z,h,) - E_ (z,0)
must be related to currents along the line. This is most easily accomplished
in the frequency domain, where it is possible to define the conductor and

the reference conductor impedances.

Ezi(z’hi) - EZD(Z,O) = Ziii(z,hi) + ZgI](z,h]) + ZgIZ(Z’hZ)

+ ZgI3(z,h3) + .. Zin(z’hi) +oeee Zgln(z,O) (1)

Here Ez and Ti denote Fourier transforms, Zi is the intefnal impedance per

i
unit length of the 1th

Tength of the reference conductor, respectively. In equation 11, it is

conductor, and Zg is the internal impedance per unit

assumed that the sum of the current in all conductors (including the reference

conductor) for any position z is zero; that is,
~ n ~
i=]

There are n equations 1ike equation 11 (i =1, 2, ... n); writing equation 11
in matrix form, we obtain,

[E, (zh) - E20<z,o>] = [2,,] [1;(2)] (13)

i

where the matrices [Z] and the [I] are defined as

+ 2z YA oo L
] g g g

. +72 ... 1
Zg 2 g g

[2;,] =

12




and

I (z) | (14)

respectively.

There is no difficulty in Fourier transforming equatién 6 so that eduation
13 makes sense. As will be seen, in the derivation of the second transmission-
Tine equation, the appearance of a product term involving two time functions
negates the use of the Fourier transform. Thus, iiﬁié necessary to convert
equation 13 to the fime domain, and techniques to do this will be discussed.
With this in mind, equation 9 is one of the transmission-]ine equations.
Substituting, equation 10 in equation 9, we obtain;_

g%_[vi(z)] + g% [Ly;] [15(2)] + {[EZ_(z,hi)] - [EZO(Z,O)] }

i

= [E;i(,z,hi) - E;O(Z,O)] : (15)
Note that there are two forms of the source term inrthe first transmission-
Tine equation, as seen from equation 9 and equation 15, respectively. If it
is assumed that the internal impedances of all conductors (including the
reference conductor) are constant, so that

= ‘: R2 + R “ e {




where RP R2 Rn and Rg are the per-unit-length internal resistances of 9
the conductors and the reference conductor, respectively.

Then, equation 15 becomes
2 @] * 1,0 & 11,1 + [R,1 [1,(2)]
9z L'i ij- at =%i i] i

=E1(,h.-Ei(,0] 17
[21_21) Zo2) (17)

Since the inductance matrix [Lij} is constant, it has been taken out of the
differentation.

Equation 17 is one of the transmission-line equations. This form of the
equation, as compared to equation 9, is more convenient to use for numerical
computation, which will be discussed later.

The second transmission-line equation is derived from the Maxwell equa-

(18) @

conductor and of

tion

ped

- >
VxH=J+

Consider a closed cylindrical surface just outside the ith

length Az between z and z + Az. Then integrating equation 18 over this sur-
face, we obtain

f -> —)'_f-} -* a f—> -
VxHdA = 0 dA + oy D - dA; =0 (19)

From the ends of the ith wire at z and z + Az

/'3 c dAy = Iz + a2) - I(2) (20)
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From the cylindrical portion of the surface,
2n

- vl S :
J/‘J « dA = Az d/f c(ai,e) Eri(ai’e) aide (21)

cyl 0
where c(ai,e) is the conductivity of the medium just external to the 1th
conductor, Ei (ai,e) is the radial component of the scattered field just ex-

i th

ternal to the 1th conductor, and as is the radius of the i* conductor. Sub-
stituting equations 20 and 21 into equation 19 and dividing by Az we obtain,
2

ali(z) s aQi )
53 + C’(ai’e) Eri(ai’e) aide + i 0 (22)
0

where Qi is the total net charge per unit length on the 1th conductor. Gen-
erally speaking, the air conductivity is a function of time and position,

and is cross-sectionally inhomogeneous. Therefore, the product of o and Ei
i
in this equation undermines the use of Fourier transforms. In addition, air

conductivity is a strong function of the total electric field, so that equa-~
tion 22 is nonlinear.

The charge and integral terms in equation 22 must be related to the voltages
on the Tine. To do this, consider the divergence of the scattered electric
field vector:

3E
.+S_ ._).s -—%—:8.
VeE =V s Eptgret (23)
Equation 23 indicates that only if
s
ok
—Z:z0=> !-:; = Ei(x,y), (24)

3z

will the transverse electric field in any plane z = constant be directly -
related to the charge at that point. If equation 24 is true, again assuming

15



transverse magnetic propagation, the line voltage and charge are related
by the capacitances per unit length; that is,

- S S v S
Qi = Cilv] + cizv2 + + Ci Vn ] (25)

In matrix form

where tcij] is the capacitance per unit length matrix of the multiconductor
Tine (ref. 11).

Finally, to complete equation 22, it is desirable to relate the integral
term to the scattered voltage. If the conductivity is uniform around the
conductor, that is, if it does not vary with 8, then

em 2w
S ~ 3
u/f c(ai,e) Er(ai’e) aide =g v/r Er(ai’e) aide
0 0
2n
.0 s
=2 J/r~ Di(ai’e)aide (27)

0

Thus, if a; is small or equation 24 is valid, then

Vil
s =9
J/ﬁ c(ai,e) Er(ai’e) aide =2 Qi
0
_ g [ 5 S s
==1\1C., Vi + C, VZ + - +C, V } (28)
e L1 1 1y 2 i,n
Equation 22 then becomes
31.(2)
——;—z——+9[c. v']S +C Vb e G vz]
et T2 n
3 s S 4., S|
Y [ i, Cig * e Cinvn} 0 (29)
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There are n equations like equation 29 for i =1, 2, ... n. Combining
these équations in matrix form we obtain

21+ 210y, (@] + & e ] = o (30)

Here, o is the conductivity of the medium surrounding the conductors, which

is assumed to be homogeneous around any cross section.

Define a conductance per unit length matrix as

6,1 = z [c;;1 - (31)

The per-unit-length capacitance matrix [Cij] is constant (independent of
time) in equation 30. Substituting equation 31 in equation 30 we obtain,

211+ [e,,1 [3@)] + 10 & [M@)] = o (32)

Equation 32 is the second transmission-line equation. Recall that the
first transmission 1ine equation is equation 17:

= [v':?(z)] +IR1 L (2)] + [y 1 5 [1,(2)]
- [E;(z,hi) - E) (z,O)} (33)

i 0

In equations 32 and 33, the voltage on the 1ine is the scattered voltage.
The total voltage VZ on the 1th conductor is given by

. i
Vi(2) = Vi(2) + Vi(2) = V3(2) - fﬁ‘ (g;.2)de, (34)
0

where E; (gi,z) is the transverse (Ei-direction) component ‘of the incident
i

electric field at (gi,z).

17



Figure 2 shows the equivalent circuit of a small section of length of Az of @
the multiconductor transmission Tine. The sources appear only as voltage
sources in series with the conductors.

Note that the source term appears only in one transmission-line equation.
The transmission-line equations in reference 2 and 6 contain sources in
both equations. The solution of equations 32 and 33 gives the scattered
voltages and the induced currents on the Tine. The total voltages on the
Tine are obtained from equation 34. Indeed, the transmission-line equations
32 and 33 are equivalent to those obtained in reference 6, where they are
derived in the frequency domain. This can be shown easily by writing equa-
tions 32 and 33 in terms of the total voltages. Substituting equation 34
into equations 32 and 33, and equation 10 in equation 33 we obtain,

h,
1

3 [1(2)] + [, ] [vkz)] + [0 ;EN(z)] = -[8;,] fEé'i(@w?—)dﬁi
0

h.,
3 T
Sl | et (35)
0
%[v{(z)] # IR 1 [1;(2)] + [Ly,] 57 [1;(2)]
&
3 S

Equations 35 and 36 are the transmission-line equations in terms of total
line voltage, and are equivalent to the equations obtained in reference 6.
In reference 6, the equations were derived in the frequency domain and the
conductivity of the medium was neglected.

18
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Figure 2. Equivalent Circuit of a Section of n+1 Conductor Line

>



In equations 32 and 33 (or equivalently equations 35 and 36), the time
dependence of voltages, currents, conductivity, and the incident fields has
been suppressed for convenience. Since these equations are formulated in
the time domain, the time-varying conductivity of the medium poses no problem
in the solution. Furthermore, this time-domain formulation is more convenient,
if at some future time nonlinear effects are included.

The numerical solution of equations 32 and 33 is numerically more efficient
than the solution of equations 35 and 36, since the source term appears in
only one equation as the difference of incident tangential electric fields.
In equations 35 and 36, the incident fields appear differentiated with re-
spect to time, and in the case of fast-rising waveforms, the differentiated
terms will have a faster risetime than the original waveform. Therefore,
in the time-domain solution, a finer resolution of the differentiated terms
is required, and hence more computation. Thus, equations 32 and 33 are
more convenient to apply than equations 35 and 36.

In the following sections, we will consider the validity of approxima-
tions used in the derivation of the transmission-line equations, boundary
conditions for the two formulations, and the numerical solution of the equa-
tions.

20




SECTION IIL

VALIDITY OF APPROXIMATIONS USED IN
TRANSMISSION LINE ANALYSIS

From section II, the major assumptions made in the time-domain trans-
mission 1ine model are,

a. The transmission line response is transverse magnetic.

b. aEz/az is small compared to Vt . Et'
¢c. The sum of the induced currents in the conductors and the corre-
sponding z component of current in the reference conductor are

equal in magnitude and opposite in sign.
d. The conductivity of the medium surrounding any conductor is uniform.
The validity of these assumptions is considered in this section.
a. Transverse Magnetic Response

If the current in any system of conductors is confined to flow in a
single direction, then there can be no component of magnetic field in this
direction. This is easily seen from the relation

- ->
H=VxA

.+
where A is the vector magnet1c potential. The direction of A coincides with
the direction of J and thus I If all conductors, including reference, are
small, then thls is the case.

In the case of a transmission-line system (with all conductors) over a
perfectly-conducting ground plane, the current in the conductors is also con-
fined to flow in the direction of the conductors. Therefore, the component
of vector potential due to this current will always generate a transverse
magnetic wave.

In between these extremes; that is, between zero and infinite conductivity
of the ground plane, the vector potential must have a vertical component
(ref. 13). It follows that finite conductivity of the ground plane prohibits
complete transverse magnetic propagation.

21



It is difficult to determine, without much further analysis, the quanti-
tative effects of the impure transverse magnetic propagation, and- the re-
sultant description of wires above a ground plane by transmission-line-type
equations. Vance (ref. 14) attempted to handle this question by comparing
a transmission-line analysis with the exact solution for a particular case.
Unfortunately, he considered a perfectly conducting ground, and as was
previously stated, this assumption forces transverse magnetic behavior.

Olsen and Chang (ref. 15), Wait (ref. 16), and Schlessinger (ref. 17)
derive analytic expressions for the current induced in an infinite wire above
a finitely conducting ground; however, these authors do not consider any com-
parison to determine relative validity of the transverse magnetic assumption.
Indeed, all of these derivations must, of necessity, assume impure transverse
magnetic behavior.

One could assume that any transverse electric waves will not propagate
well; i.e., that their attenuation will be comparatively high. This indeed
may be the case; however, the transverse electric fields will extract energy
{particulariy over long distances and at the higher frequencies) which could
significantly alter the frequency content of the induced current.

It should be pointed out that seemingly minor perturbations in the model
can affect significant variations in the frequency domain. For example,
Schlessinger {(ref. 17) points out that neglect of the multiple reflections,
between the wire and ground, of the incident signal can alter the high
frequency content of the induced current by an order of magnitude.

b. Neglect of BES/az

oES /az is very strongly dependent on the incident f1e1d In fact, if
the conductors are perfect, E is equal in magnitude to E along the con-
ductors. Thus, it is seen that even for an "ideal" transm1ssion line, the
normal transmission line model may not be adequate for a distributed source;
that is, it may not be adequate, if aEZ/az is high compared to Vi ot Es

As pointed out in the previous section, Vance (ref. 14) attempted to
establish the validity of the transmission-line equations by comparing
analytic solutions with transmission-line solutions for a particular case.

22




In his example, not only were perfect conductors assumed, but also the im-
pinging electromagnetic field was vertically incident, with the electric
field paraliel to the wire. Therefore, along the conductors

F3Y:

S
z _ _ 2
3z

57 - 0

It is not surprising, then, that a good comparison was obtained.

In reference 18, the analytic solutions for isolated, long wires with
transmission-line-like solutions have been compared. The incident electro-
magnetic wave was homogeneous, planar with the electric field parallel to
the wire, and the ang]é of incidence was varied. Only for grazing angles
of incidence, where E; is small, were the solutions comparable.

Like the transversé magnetic approximation, this is a complex problem
and a numerical comparison between analytic solutions and transmission Tine
solutions is warranted.

c¢. Currents in Conductors

If the appropriate impedances of the conductors and the reference can
be defined, the tangential electric fields on the conductors can be related
to the Tine currents. The impedances must be converted to the time domain.
That is, we must obtain a relationship between currents and tangential elec-
tric fields which can be used in the time-domain solution of the transmis-
sion 1ine equations. A procedure to dn this is outlined here.

Consider any impedance. In general, the series impedance of transmis-
sion lines will be irrational; however, this does not alter the procedure.
Since interest centers on the time domain, it is desirable to approximate
the impulse response of this impedance in the time domain rather than in
the frequency domain. The impulse response will be approximated by a finite
sum of exponentials, which in turn will allow a Tumped, passive network
approximation.
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The impulse response can be obtained numerically. If more convenient,*
the impulse response of the corresponding admittance can be obtained, since
the final results will be equivalent. This impulse response will-be approxi-
mated by the sum

N Sit
h(t) = E Ae (37)
0

where h(t) is the impulse response,
s; are complex exponential coefficients.

Prony's method (ref. 19) 1is particularly convenient for evaluating the
coefficients Ai and exponential factors S5 in equation 37. A small exten-
sion of Prony's method permits the approimxation of equation 37 to be done
in .a minimum-mean-square sense. The Ai and S5 allow the lumped-parameter
network to be immediately synthesized, so that a set of differential equa-
tions relating the electric field and current can be obtained. A running
solution of these equations must be accounted at each longitudinal increment
along the transmission 1ine, so that the relationship in differential form
is most convenient (ref. 20).

d. The Conductivity of the Medium

It was assumed that the conductivity of the medium surrounding any con-
ductor was uniform; that is, it does not vary with 6. The source of conduc-
tivity is often nuclear radiation from a weapon. Over distances comparable
to a wire spacing, these emissions will essentially be uniform.

The resulting conductivity of the medium is, however, quite nonlinear,
due to the strong dependence of electron mobility on the total electric field.
Thus the spatia1 variation of conductivity is related to the spatial varia-
tion of total electric field.

*The impedance, for example, may increase indefinitely with frequency.
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If the diamter of the conductors is assumed to be small compared to the
transverse interspatial wire distances, or if the scattered fields have
negligible effect on conductivity, then the medium conductivity will not
vary around the wire. Therefore, the assumption of uniform air conductivity
made in equation 27 is valid.

If these assumptions are not appropriate, then account should be taken
of the conductivity variation with electric field strength. The nonlinear
behavior is reasonably easy to incorporate in the numerical solution of
the time-domain transmission-Tine equations. It will be necessary, however,
to estimate the scattered electric field in the vicinity of the conductors,
so that the net electric field (scattered plus incident) can be used to alter
the air conductivity created by the nuclear radiation in the absence of the
wire.
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SECTION 1V
BOUNDARY CONDITIONS AND NUMERICAL SOLUTIONS

The coupled set of transmission line equations for multiconductor lines
(equations 32 and 33), as derived in section II, are:

S HOI RIS RENCI RS IR E- 3 SHOREY RO BED

& @1+ [651 [Vi@)] + 1e1 & [vi@)] = o (39)

i

In equation 38, VS'(z) , is the source voltage (per-unit-length) vector
1

defined as

[Vsi(z)] = [Ezi(h,z) - EZO(,O,z)] . ‘

In equation 38 and 39, the time dependence of the scattered voltage,

current, source voltage, and conductance have been suppressed. The total
voltage at any point on the line is the sum of the scattered voltage and the
incident voltage as defined in equation 34.

Equations 38 and 39 are solved using finite-difference technigues. The
finite-difference scheme of figure 3 is used in the solution, and follows .
the development of reference 21. Each conductor is broken up into alter-
nating voltage and current nodes, with the ends of each conductor defined
as voitage nodes.

The point-centered finite-difference representations of equations 38
and 39 are:
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where subscript k denotes the incremental position and superscript n denotes
the incremental time with the following definitions:

z$ = (k-=1)Aazs z? = (k=1/2)Az

tc = nats t? = (n+1/2)At

noo_ K oony, g0 2 k .n
I = Lilzp ) Vg o= Valzys )
n _ kK .n

In equations 40 and 41, the superscript s on the scattered voltage has been
suppressed for convenience.
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Solution of equations 40 and 41 yields:

+] n
{I?t;] : C%l . R_;_j_:l" Vzi’k ; Vsi’k ) V?tlﬂ A'Z V?+l
L., R..
13- &
For k = 1, 2, R kmax
SO (B R O YRR RN [
For k = 1, 2, . kmax-l and n =0, 1, ..., Nmax'1

Note that the scattered voltages at times (n+1}At can be evaluated from their
own value at the earlier time nAt and from the currents at the earlier time
nat. Similarly, the currents at times (n+1)At are evaluated from the scat-
tered voltages at times (n+1)At and their own values at earlier times nAt.

The difference equations are applied at successive discrete time steps
to all the spatial points. That is, the equations are assumed to hold for
all the points of the one-dimensional space. The size of the spatial incre-
ment Az determines the time step At. For stability, At must satisfy the
Courant stability condition, which may be expressed as

At<€3-
p

where vp is the velocity of propagation in the medium

The boundary conditions must be applied at the terminal ends of the
transmission line. This is most easily done in the frequency domain, where
it is easier to define a relation between voltages and currents. At the
input terminal of the transmission line (z = 0), the boundary condition is

[V?(z=0) + V:(z=0)] = - [Z}j] [fi(z=0)] (44)
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and at the load of the transmission line the boundary condition is

~

[V3(z=1) + iz - [£] (1, (z=n)] (45)
lj] and[?ij] are the impedance matrices of the terming?ing negworks
at the input and the load ends of the transmission line; V?, V;, and Ii
denote Fourier transforms. Equations 44 and 45 must be transformed to the
time domain in order to be applicable to equations 42 and 43. For a lumped-
parameter, RLC network, a relation between the voltage and the current can

be easily obtained in the time domain.

where {Z

Note that the currents are calculated Az/2 distance away from the ter-
minal ends as shown in figure 3. The currents at the input terminals ends
are obtained by extrapolating the currents at z = Az/Z and z = 3Az/2; and
the current at the load terminal is obtained by extrapolating the currents
at z = (kmax-1)Az - Az/2 and z - (kmax-Z)Az - Az/2.

Finally, the calculation of per-unit-length inductance and capacitance
matrices remains. These matrices can be calculated by using either the
numerical techniques described in references 22 and 23 or can be determined
experimentally (refs. 24 and 25).

29



SECTION V
NUMERICAL RESULTS

To illustrate the numerical solution and the transient response of trans-
mission lines, two examples will be considered in this section. These
examples present results for a lossless two-conductor line over a perfectly
conducting ground. These results illustrate the propagation of transient
voltages and currents for comparison with analytic solutions.

In examples 1 and 2, the transmission Tine consists of two conductors
of 0.2 cm diameter each, 10 meters in length, separated by a distance of
0.5 cm. Both conductors are located 10 cm above a perfectly conducting
ground. The per-unit-length inductance and capacitance matrices of the
line are:

1.0596 0.7378 [ 20.3588 -14.1731
[L.‘ ] = uH/m; [C’! ] = PF/m
J 0.7378  1.0596 J -14.1731  20.3548

Each conductor is terminated to ground with 100 Q resistors at both
ends.

In example 1, conductor one is excited at one end with a voltage
source (as shown in figure 4) in series with the 100 & termination. The
voltage source is a half-sine wave of width 20 ns and peak amplitude of
1 volt. The voltage and current response of the line at both ends is shown
in figures 5 and 6, which show both incident and refiected waves at both
ends of the line.

In example 2, the transmission line is excited by a parallel, spatially
short, pulsed field located at the line center, t.e., z = 5 meters from
each end. The time variation of electric field is the same as that shown in
figure 4, and has an amplitude of 1 volt/m. The voltage and current response
of the Tine at both ends is shown in figures 7 and 8.
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Figure 4. The Driving Pulse Used in Examples 1 and 2.

The results of examples 1 -and 2 agree with the analytical solutions of

the transmission 1ine equations,
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Figure 5. Transient Voltage Response of the Two Conductor Line
(Over a Ground Plane) Excited at One End.
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SECTION VI
CONCLUSIONS

The equations for determining the time-domain response of multiconductor
transmission lines excited by a transient, nonuniform electromagnetic field
have been prasented. Some of the assumptions made in the derivation have
been discussed. The validity of the transmission-line equations rests on
the assumptions of both transverse magnetic propagation and a small longi-
tudinal derivative of the longitudinal electric field. Two formulations
are presented in this paper: scattered voltage formulation and total voltage
formulation. The scattered voltage formulation contains sources only in
one equation. Since these sources turn out to be the net incident electric
field parallel to the conductors, the numerical solution of the transmission-
line equations is more efficient. The driving sources for the total voltage
formulation contain time derivatives and spatial integrals of the incident
fields. When using the scattered voltage formulation, it must be remembered
that the vertical component of the incident electric field appears as a
voltage source in the line terminations.
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