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ABSTRACT
The problem of determining the singularity expansion method .
(SEM) parameters from transient thin-wire data is examined. A y
computer code is used to generate response data.' The SEM param-
eters are computed from these data. For noisy data, it is shown

that the parameter values can be improved by signal averaging.
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CHAPTER I
INTRODUCTION

The singularity expansion method (SEM) [1] has proven to
be a useful tool for the analysis of electromagnetic scattering
problems. The SEM gives a relation between the incident field
and the induced currents and charges on a body. In this rela-
tion, the natural response is expressed as a sum of complex ex-
ponentials. The SEM parameters in the sum (natural frequencies,
natural modes, and coupling coefficients) together with the in-
cident waveform describe the scattering problem in a useful and

compact way.

A number of investigators have analyzed simple bodies using
SEM. In the original SEM paper, Baum [2] treated a perfectly con-
ducting sphere in free space. He obtained analytical expressions
for surface current density and surface charge density. The SEM
parameters were found numerically from these expressions. Tesche
[3] applied the method of moments to Pocklington's equation and
computed the SEM parameters for a thin wire in free space. Wilton
and Umashankar [4] analyzed an L-shaped wire. Marin [5] derived
approximate expressions for the natural frequencies and natural
modes of several thin-wire structures. Marin and Liu [6] used
some of these results to suggest a simple way of solving tran-

sient thin-wire problems.



A1l the work mentioned so far is theoretical in the sense
that the SEM parameters were found by solving equations relating
the incident field and the corresponding body response. For peo-
ple involved in electromagnetic pulse (EMP) testing, it is of in-
terest to know whether the SEM parameters can be computed from

measured test data.

Van Blaricum and Mittra [7] began work in this area. They
used Prony's method [8] to compute the natural frequencies of
computer-generated transient data. Their results gave impetus to
a number of other studies. Lager, Hudson, and Poggio [9] applied
Prony's method to several test cases and provided some guidelines
for applying the method [10]. There are some problems involved
in using Prony's method on noisy data [11]. The performance of
the method can be improved by using an iterative technique. Such
a scheme has been applied successfully to actual EMP test data
[12]. At this point the problem of how to compute the natural fre-
quencies of a body from transient data appears to be fairly well

understood.

The next 1ine of work involves developing techniques for
computing the other two parameters (natural modes and coupling
coefficients) from real data. Pearson and Robertson [13] showed
that the natural modes for a thin wire can be computed from tran-
sient data. They generated current responses using a thin-wire
computer code. The exciting function was a Gaussian voltage

pulse applied across a gap in the wire. They were able to compute




natural frequencies and natural modes that agree well with those
found by Tesche [3].

The work reported here is a continuation of the efforts
mentioned above. The aim is to develop techniques for estimating
the SEM parameters from real test data. A general approach for
estimating the parameters consists of measuring current waveforms
at a number of different locations on a test body for various an-
gles of incidence and polarization. The parameters are estimated
from these current waveforms. At present, there are not enough
appropriate test data to use in the calculations. As an alterna-
tive, the same thin-wire computer code adopted in several of the
references was used to generate transient current data. The thin
wire‘is a simple scatterer whose SEM parameters are well known.
It provides a convenient example for testing the general methods

outlined in this report.

Our study produced two major results: The first is that
the SEM parameters, including the natural frequencies, natural
modes, coupling coefficients, éﬁd normalization factors can be
calculated numerically from transient data generated with broad
and narrow excitations. The second result is that by using sig-
) nal averaging techniques, the SEM parameters can be calculated

from simulated, noisy EMP test data.



CHAPTER I
FORMULATION

2.1 SEM FOR A THIN-WIRE SCATTERER

Consider a thin-wire scatterer with radius a and length L,
assumed to 1ie along the z axis. The wire is struck by a plane
electromagnetic wave. The direction of propagation k of the in-
cident field makes an angle 6 with the normal to the center of the
scatterer as shown in Figure 1. The time origin is taken at the
point where the incident wavefront peak is D, meters from the mid-
point of the scatterer. The incident field E is assumed to lie
in the plane of the figure. The induced current on the scatterer

for any 6 and 0 < z < L is represented in [1] as

I{t,6,2) = IR (0,2) exp(s thu(t-t ) + g(t,0,2) (1)

where to is the turn-on time, the s, are the natural frequencies
or poles of the scatterer, the Ra are the corresponding residues
at Sy and g(t,6,z) is the forced response. The summation o&er
o represents the natural response of the scatterer. According

to SEM the residues can be factored as

R (6,2) = a™%n)(a)i_(2)F(s ) (2)

10
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Geometry of the thin-wire scatterer
and incident field
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where

zax - the normalization factor

nl - normalized coupling coefficient

1@ - normalized natural mode

%(s ) - Laplace transform of the exciting function

As a result, the natural response can be expressed in terms

of SEM parameters as

ZRu(e,z) exp(sat)u(t—to) = anaxni(e)ia(z)%(sa) exp(sat)u(t-to)
o 61

(3)
Since the values of the induced current are always real, the
poles S, shown in Equation 1 occur in conjugate pairs or 1ie on the
real axis of the complex s-plane. The poles have negative real
parts and are generally assumed to be simple for a thin-wire scat-
terer. The pole values are uniquely determined by the wire radius

and length.

The natural modes describe the spatial amplitude variation
in the current. They are normalized so that at the maximum magni-
tude points they are real and equal to one. The modes are inde-
pendent of the angle of incidence & but are a function of the
spatial coordinate z and the scatterer radius and length. In [6],
the authors developed an approximate expression for the natural

modes of a thin wire as

ia(z) = sin{amz/L), 0 <z <L, o=1,2,3..... C(4)

12




The coupling coefficients describe how the incident field
couples to a scatterer. They depend on the angle of incidence
6 and are independent of z. In [6], the coupling coefficients

were approximated as

. L .
f(sa)nzaxnl(e) = é sin(uwz/L)E;nc(z,su)dz (5)
E;nc(z,sa) is the Laplace transform of the incident tan-

gential electric field along the scatterer and is given in [3] as

E;nc(z,s) = %(s)cqs(e) exp(-sz sin(e)/c) (6)

where ¢ is the velocity of Tight. Hence, Equation 5 becomes

L

0l (e) = [ sin(arz/L)cos(e) exp(-s_z sin(e)/c)dz  (7)
0

For convenience, the coupling coefficients are normailized
so that at the maximum magnitude points they are real and equal
to one. The normalization factor nzax determines the proper mag-

nitude and phase in Equations 2, 5, and 7.

2.2 THE PROPERTIES OF THE EXCITING WAVEFORMS

In general, the induced currents on the scatterer can be
viewed as the transient response to an incident EMP. Two incident
waveforms with different properties were employed to generate the
data used in this report. They are the Gaussian pulse and the

double exponential pulse.

13



(1) The Gaussian Pulse
The Gaussian pulse can be used to obtain a wide bandwidth

-exciting function. It is given by
fi(t) = exp(-t%/6%) (8)

where ¢ is a constant. The Laplace transform of fl(t) is given by

?1(5) = o1 exp(0252/4) (9)
The Gaussian pulse has a broad frequency spectrum which
resembles that of the delta function, except that the width of
the latter is boundless, whereas that of the Gaussian pulse de-
pends on the spread parameter o. The bandwidth of the pulse in-

creases with decreasing o.

Since the Gaussian pulse cannot be represented by a Tow
order sum of complex exponentials, care must be taken when ana-
lyzing the wire response with Prony's method [10]. One can wait
until the exciting Gaussian waveform has effectively crossed the
scatterer. Alternately, one can choose ¢ small enough that the
pulse bandwidth is greater than the response bandwidth. In this
case, to a good approximation the natural response of Equation 3

is the scaled impulse response and g(t,e,z) is zero.

(2) The Double Exponential Pulse

The double exponential pulse is given by

14




fo(t) = v(e - et
(10)

0, otherwise

where g and o are the constants which determine the rising and de-
caying rates of the pulse. The field intensity y is assumed to be

unity. The Laplace transform of Equation 10 is

1 1
S+a s +8 (11)

fp(s) =

Since fz(t) is a sum of compiex exponentials, Prony's meth-
od can be used for extracting response poles from the source driven
region where the exciting waveform is still present. The poles due
to the exciting pulse simply show up in the list of poles describ-

ing the response.

2.3 METHODS FOR CALCULATING THE SEM PARAMETERS

Two techniques were used to calculate the natural frequen-
cies: Prony's method [7], [91, [13] and the iterative prefilter
method [14]. Prony's method was used to analyze the "noiseless"
response data generated by the thin-wire code. The method fits
a sum of complex exponentials to a given current response. When
the current actually is a sum of complex exponentials, the poles
and residues computed are just those of the given response. Our
experience has been that this method works very well with com-
puter generated signals where the noise is small. With this kind
of data it is easy to recognize the natural frequencies of the

scatterer by simply increasing the number of exponentials fitted.
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As the order increases, some pole values become approximately con-
stant to several decimal places while others do not. Numerical er-
rors in the computed response data cause some of the fitted pole

values to continue changing. The poles that stabilize as the fit-

ted order increases are the natural frequencies of the thin-wire.

In actual EMP test situations, errors occur in measuring
the response of an object. Any practical scheme for calculating
the SEM parameters must be able to tolerate some error in the data.
There are a number of error sources [15]. One important error
arises when an analog waveform is digitized. For simplicity, we
will neglect other errors and model the digitizing error as a se-
quence of uncorrelated, zero mean, random variables added to sam-

ples of the current. Let the measured samples be given by
y(n) = I(nat,6,z) + e(n) n=0,1,250000.. (12)

where I(nat,0,z) is the wire current at sample nat and e(n) is the
corresponding error. Prony's method can be used to estimate the
poles of I(nAt,e,z) given y(n). But it is necessary to use a num-
ber of extra poles to account for the noise. We have had better
results using the iterative prefilter method [14]. Briefly, this
technique initializes with Prony's method and then iteratively
filters the data and improves the difference equation coefficient
(and hence the pole) estimates. Our experience is that the pre-
filter technique gives better results than Prony's method when the

data are noisy.

16




The calculation of the nétura] modes, coupling coefficients,
and their normalization factors depends on the residues Ru(e,z)
of Equation 2. These residues were calculated in the standard way
[7] after the poles were calculated by either method above. It is
worth mentioning that for noisy data case the residue estimates
are unbiased if the poles are known exactly [16]. So the poles
should be estimated as well as possib1e before the residues are

calculated.

The data records I{t,0,z) for all 6 and z have the same
poles. So there is a redundancy in the data that can be used to
advantage. Also, since Ra(e,z) factors as a product of the nat-
ural mode and coupling coefficient, there is a redundancy in these
parameters as well. Section 3.2 in Chapter III contains a dis-
cussion of how these two types of redundancy can be used to im-
prove SEM parameter estimates. The averaging schemes described
Tater depend on the assumption that error in the original data
has zero mean. In a real test situation, systematic errors can

often be noticed and corrected, so this assumption is reasonable.

17



CHAPTER III
NUMERICAL RESULTS

3.1 EVALUATION OF SEM PARAMETERS FROM NOISELESS DATA
3.1.1 The Transient Response

Since sufficient experimental data were not available we
simulated data by running the time-domain thin-wire computer code
WT-MBA/LLL1B [17]. The thin-wire scatterer was modeled using six-
ty equally-spaced segments. Two different exciting fields were
used: the Gaussian pulse and the double exponential pulse. The
geometry of the model is depicted in Figure 1. For both cases,
plane wave excitation was assumed; D0 is the distance at t = 0
between the peak of the exciting pulse and the midpoint of the
scatterer, and at is the width of each time step. These param-
eters appear in the thin-wire code. The numerical values for the
parameters of the models are:

(1) The Gaussian Pulse Excitation

£(t) = exp(-t%/o?)
L =1 meter
& =2 x 10710 sec.
a/L = 0.005
At = 5.556 x 107 sec.
D0 = 0.6 meter

These parameter values were used in an example in [7].

18




(2) The Double Exponential Pulse Excitation

f,(t) = (7% - e F)u(t)
L = 10 meters
o« =4 x 10°
g =2.2 x 10°
a/L = 0.005
At = 5.556 x 10710 s
D0 = 6 meters

The transient response referred to was the induced current
at the center of each of the sixty segments and was computed at
500 time-steps of width at. The SEM expression for the current
is given by
I(t,8,2) Z max, ] 6)1 (z)f(s ) exp(sat)u(t-to) + g(t,e,z) (13)

[o3

Some of these currents have been plotted in Figures 2 through
5, showing the 6 dependence. In Figure 6 through 9 the effect of
the variation of z is demonstrated. The time origin for these
graphs was taken when_the exciting pulse was D0 meters away from

the wire center.

The damped oscillatory behavior of the response can be ob-
served from all of the previously mentioned figures. The responses
to the Gaussian pulse have more high frequency content than the
responses to the double exponential pulse. This is expected from
the properties of the exciting functions. The response to the

Gaussian pulse in each case is roughly the impulse response scaled
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by a constant. This is because the Gaussian pulse has a Fourier

transform that is more or less flat up to the frequency of the

seventh wire pole.

The responses at both ends of the scatterer are very in-
significant. Theoretically, the responses are identically zero
since the responses must satisfy the boundary conditions for the

E-field integral equation of the thin-wire problem [6].
I(t,6,0) = I(t,6,L) = 0 (14)

With broadside incidence (6 = 0°), the electric field is
parallel to the wire and only symmetric modes are excited. In
this case, the response starts exactly at the same time (=D0/c

sec.) for all sixty segments.

Also, as the incident field angle approaches 90 degrees,
the response tends to be weakened. This is because the exciting
wave travels in the direction of z, parallel to the scatterer.

Thus, no resonance will be excited on the scatterer as expected.

3.1.2 The Natural Frequencies and the Corresponding Residues

When the thin-wire code was run on the CDC 7600 computer,
thirteen decimal precision was requested. Hence, the output data
records can be considered practically noise free. The Prony pro-
gram was used for extracting poles and calculating the residues

successively from the output data.
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Table 1 shows the natural frequencies obtained by running

the Prony program on the response data with the Gaussian pulse

excitation.
Table 1
First Ten Layer One Poles
N 5GB! Tesche? Prony's Method
1 -0.0828 + j0.9251 -0.082 + j0.926 -0.0819 + j0.919
2 -0.1212 + j1.9117 -0.120 + j1.897 -0.1210 + j1.896
3 —0.1491 + j2.8835 -0.147 + j2.874 -0.1490 + j2.879
4 -0.1713 + j3.8741 -0.169 + j3.854 -0.1717 + j3.866
5 -0.71909 + 34.8536 -0.188 + j4.835 -0.1916 + j4.852
6 -0.2080 + 35.8453 -0.205 + j5.817 -0.2093 + j5.839
7 -0.2240 + j6.é286 -0.220 + j6.800 -0.2256 + j6.821
8 -0.2383 + j7.8212 -0.234 + j7.783 -0.2386 + j7.794
9 -0.2522 + j8.8068 -0.247 + j8.767 -0.2575 + j8.775
10 -0.2648 + j9.8001 -0.260 + j9.752 -0.2951 + j9.735
1181 by Singaraju, Giri, and Baum
2[3] by Tesche
3with the Gaussian pulse at 6 = 60° and z/L = 0.5

The results reported by [3] and [18] were also tabulated.

When the

first ten poles were compared, our results agreed very well with

the others.

These pole values are essentially independent of the

starting time for the analysis and also of the segment number and
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angle of incidence provided the corresponding modes are excited.
The same kind of results are obtained when the double exponential
pulse is used except of course that two extra poles are present.
It is interesting that Tesche's analysis [3] found two layers of

poles but our approach found poles from only the first layer.

The poles and residues found can be used to approximate the
original waveform. Figure 10 shows the reconstructed responses to
both excitations at 0 degrees incident angle. Nine wire pole
pairs were used. The corresponding transforms are shown sepa-
rately in Figures 11 and 12. In the case of this response to the
double exponential pulse, only two wire pole pairs are actually
needed to provide an accurate reconstruction of the original re-
sponse. Of course, the number of pole pairs needed in the recon-
struction is a function of the frequency content of the original
response. This frequency content depends on the values of the

patural modes, coupling coefficients, and incident field spectrum.

3.1.3 The Natural Modes

For a fixed 6 = &', Equation 2 can be rewritten as

R(6%,2) = 0l (a1 (2)F(s ), Ozl (18)
The coupling coefficient term in Equation 15 is merely a
constant now. As z 1is varied from O to L, Ra(e‘,z) is simply
proportional to the natural mode current iu(z). This proportion-

ality may be removed by normalizing the maximum value of each

mode to unity.
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The norha]ized natural modes for the first three resonances
are plotted in Figures 13 through 18. It is observed that the nat-
ural modes are either symmetric or anti-symmetric about the center
of the scatterer. When the field is normally incident on the scat-

terer, only even modes are excited as expected.

These results are virtually identical with those obtained

by Tesche [3] and by Pearson and Robertson [13].

3.1.4 The Coupling Coefficients

As can be seen from Equation 2, the coupling coefficients
contain the ¢ variation of the residues. For a fixed z we calcu-
tated the residues for several different 6. The value of z can
be chosen from the normalized natural mode plot so that the peak
of each mode corresponds to the chosen position of z on the scat-

terer. The normalized variation in these residues gives the ”l(e)'

The normalized coupling coefficients for the first three
resonances are presented in Figures 19 and 21 for both excitations
with both real and imaginary parts shown. In Figure 20, the imag-

inary part (Gaussian excitation) is shown alone.

It should be noted that we normalized the coupling coef-
ficients so that the maximum magnitude points are real and equal
to one. This is convenient when handling experimental data since
the underlying integral equation is unknown. Tesche normalized
the coupling coefficients differently since he knew the integral

equation. Thus different versions of the plots were obtained.
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As can be observed from the graphs, the imaginary parts of the
coupling coefficients are relatively small and this implies that
the coupling coefficients are almost real functions of the inci-
dent angle.e. The graphs would be smoother if more values of
nl(e) had been computed. Only nineteen vaiues of 6 were used for

each graph in Figures 19, 20 and 21.

3.1.5 The Normalization Factors

Now all the SEM parameters, except the normalization fac-
tors, in Equation 2 are known. This final parameter may be deter-
mined directly from Equation 2 by means of simple complex arith-
metic, i.e.,

( ) Sott]
R (6,z)e
X o T . for 0<z<L (16)

* ()i (2)F(s)

The normalization constant contains an arbitrary factor t}
that depends on the choice of the time origin. In all the pre-
ceding graphs, the time origin was chosen so that at t = 0 the in-

cident field peak was D0 meters from the wire center. D0 is

arbitrary and is chosen for convenience in running the thin-wire

ma
o

code. However, it is better to eliminate D0 from n X and have

it depend on the shape of the scatterer. For this reason, we
multiplied the residues Ru(e,z) by a time shift factor to move

the time origin to the time when the incident pulse peak crosses

S@t-t

the wire center. The required factor is e , where

b4




t1 = Do/c -t (17)

and where tS is the time at which we started to analyze the tran-
sient response. In our calculations, ts was chosen at the Zloth
time step to ensure all the observed responses had started. So

ty = 210 (at).

The normalization factors for the first three modes of

both excitations are:

1. The Gaussian Excitation

A% = _0.7072779x10° - 30.1938136x10%  (8=0°,2/L=0.5)
= 0.1431957x10° - j0.4662369x10° (8=60°,2/L=0.25)
ngax = 0.3933103x10° + 50.1275519x100  (6=0°,2/L=0.17)

2. The Double Exponential Excitation

aTeX = -0.7075146x10° - 50.1935308x10°  (6=0°,2/L=0.5)
e = 0.1421189x10° - §0.4650009x10°  (6=60°,2/L=0.25)
ngax - 0.3911535x10° + j0.1245812x10°  (8=0°,2/L=0.17)

Since the normalization factor is merely a scaling complex
constant for each pole, it is independent of either 8 or z. The

results obtained are very close for both excitations.

Tesche [3] normalized the coupling coefficients differently,
therefore his normalization factors are different from what we

computed.
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3.2 THE EFFECTS OF NOISE ON SEM PARAMETER DETERMINATION

3.2.1 The Effect of Noise on the Transient Responses

The simulated EMP data were obtained by adding sequences
from the CDC 6600 random number generatér to the data computed by
the thin-wire code. The noise sequence was assumed to be uniformly
distributed with (statistical) mean zero and standard deviation
scaled to one and one half percent of the peak value of each data
record. This is about the level of digitizing noise encountered

in actual testing.

Sample noise corrupted responses (8=0°,z/L=0.5) are pre-
sented in Figure 22 for both excitations. The corresponding Fourier

transform magnitudes are shown in Figures 23 and 24.

Both signals contain the 1.5 percent standard deviation
noise. More signal peaks are visible in the Gaussian response spec-
trum. This is because the wide bandwidth Gaussian pulse puts more
energy into the higher frequency modes than does the doubie exponen-

tial pulse.

3.2.2 The Effect of Noise on the Natural Freguencies and the

Residues

The direct computation of the poles from noisy transient
data can lead to inaccurate results. Besides, only a Timited num-
ber of system poles can be extracted, since the rest have been

severely corrupted by noise. In principle, each response record
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contains the same poles. It is possible to use extra data to en-

hance a particular natural frequency.

The iterative prefilter method rather than Prony's method
was used for all the pole estimates in this section. Suppose data
y{t,8,z) is available at several 6 and z values. Poles can be com-
puted from each of the records resulting in estimates §a(6,z). The
arguments 6 and z are included to show that the pole estimates de-
pend on location and angle of incidence. Of course the actual wire
poles are independent of & and z. Usually some of the pole esti-
mates cluster, that is, the values 1ie close together in the s-
plane. An estimate of s, can be computed as the average over a

cluster.
A_l,\
S, =W ggsu(e,z) (18)

where N is the total number of poles in the cluster. We initially
planned on using §a as a final estimate of Sy For low order, say
o = 1,2, the results are adequate. But the higher order poles had
enough error that we looked for a way to improve the estimate.

The problem with using §a as an estimate is that the §a(é,z) are
biased estimates of Sy Averaging tends to remove the random com-
ponent of error but can do nothing about the bias. It would be
better if some of the noise could be averaged out of the original
data records before calculation of the pole estimates. This sug-

gests averaging the data records instead of the §a(e,z). The data
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records used in the averaging ought to be those where the a-natural
mode is near a peak. That is, the average should be weighted ap-

proximately in proportion to the natural mode.

As a next step we used the §a as pq]es and éomputed résidue
estimates ﬁa(e,z) from the data. For the value of 5 = % that Ap-
peared to give the largest range of variation in the magnitude of
ﬁa(e,z) we computed an estimate of the normalized natural mode
§a(eo,z). This natural mode is an estimate of which data records
have the best signal to noise ratio for the g-natural freguency
component. The data y(t,eo,z) corresponding to z values where

%a(eo,z) is approximately +1 should be the best data for esti-

mating S, Let
o (t) = ; W (2)y(t,e,,2) (19)

be a weighted average of the data. (;a(t) depends on 8¢ but we
will not explicitly show this.) The sum is taken over the avail-
able z values. One choice for the weight function Na(z) is to
make it proportional to the estimated natura]lmode %a(eo,z).

This proved to be an acceptable choice for low values of « since
the corresponding fa(eo,z) is fairly smooth. But with o« = 5, for
~ example, the natural mode estimate is more erratic. _As a result
we Qsed a coarse weight function that was proportional to +1 for
z values that make %a(eo,z) = 1, equal to -1 for z values that
make %a(eo,z) = -] and equal to zero otherwise. Figﬁres 25, 26,

and 27 show graphs of the &a(t) obtained fora= 1, 3, and 5. The
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weight functions Wy(z) were chosen to average six, nine, and fif-
teen data records, respectively. The graphs indicate that the

noise level increases as o goes from 1 to 5.

The pole estimate §u computed from ém(t) should be better
than from an estimate computed from any one of the y(t,8,z). This
is because the noise variance is reduced by the average over z.
Moreover, the pole estimate computed from %u(t) should be better
than an estimate computed from averaging the ga(e,z). This is be-
cause the ga(e,z) contains a bias error while the original data
records y(t,e,z) do not (according to our assumption about the

noise having zero mean).

As an example of the results from using the %a(t) technique

with 8 = 0°, we have

s; = -0.0824553 + Jj0.9183957
s, = -0.1581486 + j2.879185
s. = -0.1893679 + j4.834777

These poie estimates still have some error, of course, but

they are better results than we were able to get by averaging the

ga(e,z) values computed from the same data.

Figures 25, 26, and 27 show an interesting fact. The &u(t)
contain mostly the o natural frequency. To see why this is the

case, consider neglecting g(t,s,z) and rewriting Equation 3 as

I(t,8,z) = E@u(t) sin(arz/L), 0
o

n oA
]
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where

0,(t) = 2Re[n1®%n] (8)F(s ) exp(s t)]ult-t,) (21)

[+ o o

and where the approximation of Equation 4 is used for the natural

mode. Equation 20 has the form of a Fourier series in z.
The Fourier series coefficients @a(t) are given by

L
@a(t) = %—f I(t,6,2) sin(arz/L)dz (22)
0

The function @a(t) contains time behavior corresponding to
S, alone. If the integral in Equation 22 is approximated by a

sum over M values of z spaced az apart, then we can write
I(t,0,2;) sin(anzy/L) (23)

where the z; are the z values. This equation compares with Equa-
tion 19. The functions @a(t) establish a bound on how well the

various natural frequencies can be separated.

The @a(t) were computed from noisy data and the results are
plotted in Figures 28, 29, and 30 for o = 1, 3, and 5. In these
calculations M = 60 and az = 10/60 meter. The pole values ga

estimated from applying the iterative prefilter algorithm to@a(t)

are
s, = -0.08219866 + j0.9187515
S5 = -0.1480808 + j2.877230
sg = -0.1933258 + j4.847712
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As would be expected, these results ara better than those
obtained from the %a(t). Unfortunately, the procedure is not
practical since we usually do not know the natural modes. And of
course the modes are not exactly orthogonal. The thin wire is a
special case in that the.modes are approximately orthogonal. But
thé principie is that the data should be weighed proportionally

to the natural modes.

The technique for calculation of @a(t) could be extended by
averaging several 5u(t) functions computed with different & val-
ues--perhaps weighed by an estimate of the coupling coefficient.

This was not tried.

From the form of Equation 2, it is clear that for some
values of ¢ and z not all the modes are present in I{t,8,z).
This is simply because of zercs in nl(e) and ia(z). When the
data are noisy, there is a "dead zone" around the zeros of these
functions where the signal to noise ratio is Tow, and the natural
frequencies cannot be estimated accurately. For experimental data
we expect that it may be neceésary t0 use a two step measurement
approach. At the first step one places sensors of the test ob-
ject guided by some pretest calculations. After analyzing the
resulting data and estimating the SEM parameters, the second step
is to modify the sensor placement and field orientation to better

identify some modes or to find missing modes.
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3.2.3 The Effect of Noise on the Natural Modes

In order to prevent the occurrence of bias error resulting
from the pole estimation process, the best pole values obtained
should be used to compute the residues for the determination of
the natural modes. If the pole values are accurately known, then

approximately unbjased solutions for residues will be obtained.

The real and imaginary parts of the natural modes calcu-
lated by using the pole values obtained from both %a(t) and
@u(t) are presented in Figures 31 through 34 foroe= 1, 3, and 5.
The graphs indicate that noise is more of a problem with the

higher frequency modes than with the fundamental.

The results obtained can be improved by averaging the nat-
ural modes for the same o, computed from several values of .
That is, one can compute estimates %a(e,z) of iu(z) by using res-
idues calculated from data obtained at different angles of inci-

dence. Then an estimate of the natural mode is obtained as

64

i (z) = ﬁt—[?a(e,z) (24)
6

where Ne is the number of different & values used. This estimate
is unbiased if the residue estimates are unbiased. And of course
averaging reduces the error variance. The average could include
a weight factor proportional to the coupling coefficient bﬁt this

was not done.
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The averaged natural mode for o« = 3 1is shown in Figures 35
and 36 for real and imaginary parts, respectively. Three uncor-

related noisy third modes were averaged to produce this result.

3.2.4 The Effect of Noise on the Coupling Coefficients

The coupling coefficients were computed by using the poles
obtained from %a(t) for the reason given in the previous section.
The real and imaginary parts of the coupling coefficients for
a =1, 2, and 3 are plotted in Figures 37 and 38, respectively.
The coupling coefficient for o« = 3 was improved by averaging

three noisy third modes. The average has the form

A] 1
= o ez 25

z

where ﬁl(e,z) is the normalized coupling coefficient at location

z, and NZ is the number of z values used.

These results are presented in Figure 39, the real part;

and Figure 40, the imaginary part.

3.2.5 The Effect of Noise on the Normalization Factors

The normalization factors can still be determined by Equa-
tion 16 since both the natural modes and coupling coefficients
are now known. However, experience shows that because of resi-
due error, a more accurate value will be achieved by averaging

max

several Ny for the same o, which have been calculated from dif-

ferent values of & and z. Averaging three noisy factors for each

A,
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case, we obtained the normaiization factors for the first three

resonant frequencies as

X -0.7148283x10°% - j0.1935363x10°

6

X 0.1383078x10° - 30.4762430%10

W% = 0.4027178x10° + j0.1609751x10°

Implicit in the nzax calculation is the assumption that
%(sa) is known exactly. This assumption is unrealistic for the
higher frequency poles. In EMP testing, information on f(t) is
obtained from field map data. From this data we can expect to
estimate the low frequency behavior of %(s) fairly well but not
the high frequency behavior. So how accurately %(s&) is known

depends on S, For the low frequency poles of a large object,

we expect only minor problems with the %(sa) values.
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CHAPTER IV
CONCLUSIONS

The SEM parameters for a thin wire can be evaluated di-
rectly from noiseless transient data using Prony's method. Our
results agree well with Tesche's [3]. With noisy data, the iter-
ative prefilter method gives better resuits. Averaging tech-
niques can be used to enhance the values of the parameters. We
tested two ways to improve the pole values. The first approach
works simply by averaging several pole values for the same o
which have been computed from the currents at different loca-
tions on the wire and different field orientations. This algo-
rithm gave reasonably good results for the lower frequency poles.
The second approach involves averaging several data records which
have been weighed approximately in proportion to the natural
modes. The poles can be extracted directly from these averages.
This second technique gives more accurate pole values than the

first.

It is interesting to note that only layer one poles {3]
were found. The number of these poles needed to reconstruct the
natural response of a thin-wire scatterer depends on the values
of the natural modes, coupling coefficients, and incident field
spectrum. For some responses, a two pole-pair reconstruction

is adequate; other responses require ten or more pole pairs.
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The best pole values should be used in the determination
of the natural modes and coupling coefficients to minimize the
effect of bias error. Then these parameter estimates can be
improved by signal averaging. The values of the corresponding
normalization factors can be improved by the same process. When
these techniques are applied to an arbitrary test object, it may
be necessary to use a two (or more) step process. At the first
step sensor placement and incident field orientation are chosen
based on pretest calculations and scale model results. After
estimating the SEM parameters from the resulting data, the second
step is to modify the sensor placement and field orientation to

better identify some modes or to find missing modes.

The next phase of our research will be to treat more com-
plicated structures which provide a better approximation to air-
craft configurations. Our ultimate goal will be to see how the
calculations are affected when coping with actual aircraft test

data.

75



1]

[2]

3]

(4]

[5]

[6]

[7]

re]

[9]

[1o]

(1]

REFERENCES

C. E. Baum, “The Singularity Expansion Method," Transient
Electromagnetic Fields, edited by L. B. Felson. Springer-

VYerlag, 1976.

C. E. Baum, "On the Singularity Expansion Method for the
Sotution of Electromagnetic Interaction Problems," Inter-
action Note 88. Air Force Weapons Laboratory, Kirtland
Air Force Base, NM, December 1971.

F. M. Tesche, "On the Singularity Expansion Method as Ap-
plied to Electromagnetic Scattering from Thin-Wires,"
Interaction Note 102. Air Force Weapons Laboratory,

Kirtland Air Force Base, NM, April 1972.

D. R. Wilton and K. R. Umashankar, "Parametric Study of
an L-Shaped Wire Using the Singularity Expansion Method,"
Interaction Note 152. Air Force Weapons Laboratory,
Kirtliand Air Force Base, NM, November 1973.

L. Marin, "Natural Modes of Certain Thin-Wire Structures,"
Interaction Note 186. Air Force Weapons Laboratory, Kirt-

land Air Force Base, NM, August 1974.

L. Marin and T. K. Liu, "A Simple Way of Solving Tran-
sient Thin-Wire Problems,” Interaction Note 253. Air
Force Weapons Laboratory, Kirtland Air Force Base, NM,
October 1975.

M. L. Van Blaricum and R. Mittra, "& Technique for Ex-
tracting the Poles and Residues of a System Directly
from Its Transient Response," Interaction Note 245.
Air Force Weapons Laboratory, Kirtland Air Force Base,
NM, February 1975,

F. B. Hildebrand, Introduction to Numerical Analysis.
McGraw-Hi11, 1956.

D. L. Lager, H. G. Hudson, and A. J. Poggio, User's Man-
ual for SEMPEX: A Computer Code for Extracting Complex
Exponentials from a Time Waveform. Lawrence Livermore
Laboratory, CA, March T1977.

H. G. Hudson and D. L. Lager, Observations on the Opera-
tion of the SEMPEX Code. Lawrence Livermore Laboratory,

CA, September 1270.

D. G. Dudley, "Fitting Noisy Data with a Compex Exponen-
tial Series," Mathematics Note 51. Air Force Weapons
Laboratory, Kirtland Air Force Base, NM, March 1977.

76




[12]

[13]

L14]

(18]

[16]

(17]

[18]

J. T. Cordaro, "Pole Measurements for the ATHAMAS Pipe
Test," Mathematics Note 56. Air Force Weapons Laboratory,
Kirtland Air Force Base, NM, August 1977.

L. W. Pearson and D. R. Robertson, "Extrapolation of In-
duced Transient Surface Currents on a Scatterer to a
General Band-Limited Excitation Conditions," Interaction
Note 360. Air Force Weapons Laboratory, Kirtland Air
Force Base, NM, October 1978.

K. Steiglitz and L. E. McBride, "A Technique for the Iden-
tification of Linear System," IEEE Transaction on Auto-
matic Control, Vol. AC-10, October 1965.

L. D. Scott, "Deterministic Error Analysis Applied to EMP
Simulator Data Acquisition,” Measurement Note 24. Air
Force Weapons Laboratory, Kirtland Air Force Base, NM,
June 1977.

G. M. Jenkins and D. G. Watts, Spectral Analysis and Its
Application. Holden-Day, 1968.

J. A. Landt, E. K. MiTler, and M. L. Van Blaricum, "A
Computer Program for the Time-Domain Electromagnetic Re-
sponse of Thin-Wire Structures," Interaction Note 210.
Air Force Weapons Laboratory, Kirtland Air Force Base, NM,
May 1974.

B. K. Singaraju, D. V. Giri and C. E. Baum, "Further De-
velopments in the Application of Contour Integration to
the Evaluation of the Zeros of Analytic Functions and
Relevant Computer Programs," Mathematics Note 42. Air
Force Weapons Laboratory, Kirtiand Air Force Base, NM,
March 1976.

77



