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ABSTRACT

This paper presents new methods of determining the electromagnetic
poles and natural modes of a structure as characterized in the
singularity expansion method (SEM). The method is based on the time-
domain scattering equation which can be cast in the form of a matrix
difference equation. The homogeneous solution of the difference equation
is a series of exponentials as found in the SEM representation. The
pole and natural mode solutions may be obtained either from the
determinant of a matrix sum, which is similar to the current frequency
domain search method,or by an eignevalue approach as in systems
theory. The latter has shown promise for efficient SEM computations.

An example of each approach is presented.

IV/C,



TIME-DOMAIN TECHNIQUES IN THE SINGULARITY EXPANSION METHOD

J. T. Cordaro
University of New Mexico

and

W. A, Davis
Virginia Polytechnic Institute and State University

Introduction

Since the original presentation on the singularity expansion method (SEM)
in 1971 (1), several researchers have endeavored to obtain poles and natural
modes of several standard structures [2,3}.

Primarily two techniques have been used to determine the poles. Frequency
domain SEM is the most popular method with the poles determined by searching
for the values of complex frequency which makes the determinant of an associated
matrix problem zero. This process is extrcemely slow, often requiring a minute
per pole. An alternate method has been to determine the time-domain response .
eitﬁer by a time-domain solution method or by the inverse Fourier transform
of frequency-domain solutions, and to obtain the poles from the time reséonse
by Prony's metbod;

This paper presents new methods of determining the poles and natural
modes using what we shall call time-domain SEM. THe method is based on the
time~domain scattering equation, but side-steps the calculation of the time
response. We wili review the time~domain equations and their numerical
representation., The numerical equations form a matrix difference equation
with real matrix coefficients. The homogencous solution of the difference
equations is a series‘of exponentials characteristic of the SEM representation.
We will review SEM and consider both the time-domain SEM matrix form of

soclution and an equivalent eigenvalue form of solution. To illustrate the




methods, we will present both the transmission line and wire scatterer
problems.

The Singularity Expansion Method

The singulafity expansion method (SEM) [4] represents the natural
current response of a finite-size perfectly conducting object in free
space by a sum of complex exponentials. This sum involves four parameters:
natural frequencies, natural modes, coupling coefficients,and the incident
field transform evaluated at the natural frequencies. When SEM is used to
describe a scattering problem, the incident field is assumed to be known.
This leaves the other three parameters to be computed. At least two
different approaches have been used to find these remaining parameters.

The first approach depends on solving an integral equation of the

|

where I' is some forcing function, J is the current density response

form
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function,and T is the kernel of the integral equation. A natural mode Ga

satisfies the equation
Jf (F,7' 58 )V (F') dv' =0 (2)
Y

where saris the corresponding natural frequency. This equation is converted

to a matrix equation

(T, a8 ) (v, = (0 3



using the method of moments. Since the kernel is required to be singular

at s, the natural frequencies can be found from
T = 4
det((T (s ))) = 0. (4)

When posed this way, the problem of finding the natural frequencies of an
object is reduced to that of finding the zeros of a complicated function of
s. Tesche [2] used this approach in his SEM analysis of the thin-wire
scatterer. He found two layers of poles and speculated that other layers
might exist. Several other techniques for finding solutions of Eq.(4) are
discussed in [4]. Of interest here is a method due to Singaraju, Giri,and
Baum who found a third layer of poles for the thin-wire problem [5]. Once
the natural frequencies are known the natural modes can be computed easily
from Eq.(3). The coupling coefficients can be computed as inner products of
the natural modes and incident field as detailed in [4]. It is fair to say
that the burden of computing the SEM parameters with this frequency domain
approach is in finding solutions of Eq.(4).

A second approach has been used successfully to find the SEM parameters
of a thin wire. In this approach the transient current response is genérated
using a time domain code. The SEM parameters are computed from these transient
currents using Prony's method. Van Blaricum and Mittra [6] found natural fre-
quencies and Pearson and Robertson [7] found both natural frequencies and
natural modes that compare well with Tesche's results. The natural frequencies
found were all from the first layer. There is no reason why this time domain
method cannot be generalized and used to find the natural frequencies for more
complicated objects. However, the method is indirect in that the transient
response at several points on the body must be known before the SEM parameters

can be found. This is the appropriate method for analyzing experimentally




measured transient data but not for analyzing theoretical models.

Time Domain SEM

For theoretical models, it is possible to avoid the time response
computation and go directly to the SEM problem from the time domain view-

point. The time-domain magnetic field integral equation for perfect

electric conductors is given by [8]

= - A=ine , Ax [ 1 3 = = I R, .
= h X ER ' - LA
JS(r,t) 2nxH + T jﬂ {C Py JS(r ,T) + R I ox Rz ds (5)
8 t=t-R/c
where S is closed surface, R = IE—E",and ¢ is the speed of light. If S

is thin, or approaches the same, then the electric field integral equation

is appropriate.
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Both (5) and (6) may be put into the time-domain form of (1) given by

j ?(?,;'; t-t') - JS(;',t') de' ds' = E'(;,t) (7)
t

where the dyadic Green's fuinction is a distribution in time containing

ordinary functions and the Dirac delta, doublet, and triplet distributions.

The process of digitizing (7) in the time-domain usually makes use of

pulse expansion functions and finite difference derivatives to represent

the effect of the doublet and triplet distributions. The expansion might

take the form

N _ _
ElJ PAt(t—mAt) s, (P) (8)
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where PAt is a unit pulse of width At and Sn is unity over the nth surface ‘

patch. The size of Sn and At are usually related. From this expansion and
the finite difference opecrators, we may write either (5) or (6) in the form

M

Ty =LA T

— , + Fm » m=1,2,3,... )
i=0

where Jm and Fm are vectors representing the current and forcing function

over the structure at the mth time step. The matrices A, relate the spatial

i
components of the current.

The natural frequencies and natural modes can be computed directly from

this time domain model. To see how this works consider setting

=7 v m=1,2,3,... (10)

in equation (9). Here Za = exp(saAt) and v, is a vector of N complex
numbers spatially describing the natural mode. The implication is that an
incident field has previously interacted with the structure and only the

homogeneous time period remains. It follows that
o w " (11)

On rearranging, it is seen that Za and v, must satisfy

(T - ? a, z”(HD

. i %y ) v, = 0 ‘ (12)
i=0

where I is the NxN identity matrix. This equation is the discrete time

analog of equation (3) above. The natural frequencies can be found from




-(i+1)
a

N
det(I - ] A, 2 ) =0 (13)

i=0
which is computationally simpler than equation (4). The elements of the
matrix in (13) are easier to compute than those in (4) and since

Z = esaAt, the frequency range of the possible 5, is explicitly limited

a
by the time sampling rate. But it appears that solution of (13) still
requires a search.

There is an alternative to this search. Define a state vector Xm by

T _ T .T T
Xm = [Jm, Jm—l’ cee Jm—N]’ (14)
where T denotes transpose, and state transition matrix ¢ by
—AO -A1 . —AN
I 0 . 0
0 I .
o = . .. (15)
0 0L O
Then it follows that
X = ¢ X , m>l, (16)

Nav let Za be a non-zero eigenvalue of ¢ and Ew a corresponding eigenvector.
To simplify notation it is assumed that the eigenvalues of ¢ are distinct.

It is easy to verify that any eigenvector Ea is in the form

T - -
Tt T s eee 5 Z NI Qa7
o QL 6] o4 43 2

by simply substituting this relation into (16) and using (12). More



importantly this shows that the eigenvalues Za of the ¢ matrix yield the

esuAt and the first N components of the

natural frequencies since Zu =
elgenvectors of ¢ are the corresponding unnomalized natural mode vectors.
Thus the problem of finding natural frequencies is transformed to an

eigenvalue problem.

The Transmission Line

The simplest example of this method is the shorted transmission line

of length L. For this problem, we have the equations

8l . _ 19V

at L oz
and

v __ 131

at C az

where LC = l/cz. Eliminating I we have

—....—-———V=LV=0 (18)
3z c” at

Expanding V as in (8),

N
V(z,t) =) )V Pp (t=md ) P (z-nb). (19)
mn=1 ™ t

For consistency in the time and space sample, we set A = ch, = L/(N+1).

We have also imposed the short circuit constraint requiring Vm,O and Vm,N+l

to be zero. 1In this instance we are looking for the homogeneous solution

given by the solution of (18) and treat the problem as though Vm o °F A

m, N+1

was non-zero at some past time.
~ Substituting (19) into (18) and using finite differences for the

derivatives,




t=md, 2 (20)
z=nl
If Vm = [Vm,l’ . s Vm,N] , then
Vm+l = Ao Vm - Vm—l

with AO given by unity in the super- andksub— diagonals. Eq. (12) takes

the form

-, -

(1+2°) -2z 0. ..
-z a+z%) -z0 .. . .
0 }f C oy, = 0 (21)
. . 0
. . "'Z
0 . .. 0 -z (1+22)

It is easily shown that the determinant of this matrix is given by

2(N+1) _

Det = z 3 L
Z7-1
or
_ on

Za = exp [j E;I] , o # i(N+l)5

Thus
[aX o1y .
s = =
a L (22)

which can be obtained directly from (18). Similar results may‘be obtained

. for arbitrary terminations with a percentage error up to about 100/N due to
the discretization error in the finite difference description of the termina-
Eion constraints.

The Wire Scatter

The transmission line problem has demonstrated the determinant

method of (13). We will now consider the eigenvalue method of (16) for the

9



wire problem. Using the thin wire approximation for the current I on the

wire, (6) may be written as

IJ
2 Einc(z,t) = - ~:E--LJ——%—» I(z',t - |z - z‘{/c) dz? (23)
0

ot £ 8nlR

1
where R = {az + (z-z')zli Expanding I as

() N
I(z,t) = Z_w nZlImnPA(ct—mA)PA(z-nA) (24)

and using finite differences, (23) becomes

€ *a-EinC(pA mAfe) = —l—~N§t G ' [I + I
at =z ’ 2A2 120 ‘Ip-n|' " (g+1-]p-n]),n (g-1-|p-n|),n
-1 - 25)
(q-|p-n|),n+1 I(q-[p—nf),n—ll (
where (n + %) A
Gn - *__’dz
1
81° (a*+22)’
(n-%)A
and I-l, IO, IN+1, and IN+2 are zero. Eq. (25) may be put in the form of (9)
N
= 3 = o 2
I 4 iz AT B, m= 125, (26)

t
where Im represents the vector of [Im nl and ' is a vector of the n b time
s m

. . . . 2
sample of the incident time derivative times the ratio 2eA /GO. Each of

10




the Ai are sparce and contain at most four non-zero diagonals. After the

incident field has past, Fm is zero and we may expand Im+1 in a series of

. the power terms given in (10) to obtain the SEM form of (12). From (12) we

may proceed with elther the determinant search method or the eigenvalue
method to determine the poles of the system.

Considering the simple case of N equal to unity, Eq. (26) becomes

Im+l = (ZGl/GQ - 1)Im_l + Fm (27

where Im and Fm are scalars. From the procedure of Eq. (11) we obtain the

polynomial

2 -
2"+ (1 -26/6) =0 (28)

or

zZ = tj(l-zc;l/co)l/2

= +j 1,146 (29)

for a radius to length ratio of 0.0l. The quantity Z, was introduced in (10)
as Zu = exp(saAt) and s, may be obtained from Za by the complex natural

logarithm. Scaling Sy by L/(en) to obtain s; we have

t - - _ .
Sy = 511 0.087 + j 1.0 (30)
where $11 designates the first pole in the first layer of poles. The value
L

obtained by both Singaraju, Giri, and Baum [ 5] and Tesche [ 2] is

- 0.082+ 30.926 which differs from (30) by less than 7.5 percent in both the

11



‘real and imaginary parts. This accuracy was not expected a priori for a
current expansion of only one unknown. However, partial explanation of '
this accuracy is the goodness of fit for simple sinusoidal current expansions
on thin wires [2] and the approximation relationship between piecewise
sinusoids and finite differences [9].

We have computed the poles and natural modes using the eigenvalue
approach for the number of unknowns varying from one to ten; The total
computation time for all ten cases was less than nine seconds for as %any as
35 meaningful left half-plane poles representing more than 4 layers. Addi-
tional eigenvalues generated by the routine represented additional zeroes
of the eigenvalue method to within machine accuracy or terms outside of the
Nyquist sampling range defined by an equivalent sampling interval éfszt'

The factor of 2 arises from the polynomial in Z having only even terms as in

(28). We present the data for the N = 18 case in Fig. 1 along witﬁ the

results of Singaraju, Giri, and Baum {5]. The computed poles show at least
six layers with several other poles imbedded in digital noise to the left,
Though we are limited on the imaginary axis by the Nyquist sampling rate,
we have been able to exceed the three layers computed by Singaraju, Giri,
énd Baum. It should also be noted that our total computation time was
approximatly one minute as compared to approximately one minute per pole

in Singaraju, Giri, and Baum's work, To be fair, their computation times
may have been drastically reduced with 18 unknowns. They adjusted the
number of unknowns to ten per wavelength for each pole. Similar accuracy
would also be expected. The cigenvalue method is currently limited by the
machine storage since no cffort has been made to take advantage of the f
sparce matrix form. Computational time may also be reduced by the use of

sparce matrix methods. -
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Figure 1. Plot of the normalized poles of a short-circuited dipole
for a radius to length ratio of 0.01. The eigenvalue
data is represented by "o" for 18 unknowns. The results

of Singaraju, Giri, and Raum are given by "A"
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Conclusions

We have presented an alternative method for the computation of SEM
parameters. The method provides a self-consistent relationship between the
time and spatial sampling and in particular relates the spatial sampling
to the Nyquist sampling rate limitations of the SEM pole computations.
This time-domain SEM formulation may be solved in a manner analogous to the
frequency -~ domain search method or as an eigenvalue problem. The latter
recognizes the difference equation form of the problem which may be cast
in a state vector format to obtain system eigenvalues and thus the poles.
The method has been found to be computationélly efficient, providing several
layers of poles. Reasonable accuracy has also been found for low order

approximation opening the way for low cost SEM computations.
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