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ABSTRACT R

This report develops techniques for bounding the voltages and currents
at terminations on a wire which is excited by incident electromagnetic
energy coupled through an aperture. The theory of aperture coupling for
low frequencies is reviewed and the quasistatic aperture problem is modeled
by dipole moments and the corresponding polarizabilities. Bounding methods
are considered and the bound of a circumscribing ellipse is chosen. The
interaction with a wire and modifications to the coupling are developed
using spatial approximations. The analysis identifies a new capacitive
term in the aperture loading. Bounds are developed for the power waves
launched on the wire structure and the termination signal levels bound with
a term included for multiple reflections. Tighter bounds are obtained by
separating the incident field into individual parts typically characterized

by poles in the complex frequency domain.
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I. INTRODUCTION: -

The past two decades have involved a substantial effort in the
analysis and measurement of electromagnetic pulse (EMP) effects. The
interest has centered on the clectromagnetic effects resulting from
nuclear explosions, particularly high altitude blasts, with a lesser
effort in lightening strike cffects., The Air Force is primarily
interested in the survivability of aireraft and weapon systems when
exposed to an elecﬁromagnetic pulse environment.

An EMP problem is typically broken into three separate problems:
external interaction, coupling, and internal interaction. Since
coupling effects are often minimal, it is not uncommon to neglect the
coupling effect on external interaction and also to neglect the internal
interaction effect on coupling. The knowledge of currents coupled to
equipment inside of aircraft due to incident electromagnetic energy
is of vital importance to assessing the survivability of aircraft
exposed to high level electromagnetic energy. The coupling problem
is further broken into three classes: direct coupling to antennas and
similar structures, aperturc coupling, and diffusion through the skin.
The objective of this investigation was to develop a method for
obtaining bounds on the signal levels at terminations resulting from
energy coupled to a wire behind an aperture. A more difinitive statement
of the objectives is given in Section II.

Numerous authors have contributed a wealth of information to the
subject of interaction and coupling of electromagnetic energy with
structures, The external interaction problem often involves computation
or measurement of the currents and charges on an approximate structure
geometry. [1,2)} This often involves simple stick or pipe models of
aircraft. [3] The resultant current and charge is the short-circuit
current and charge used in the aperture coupling problem. The theory
of coupling by small apertures [4~7] is reviewed in Section III. The
intent was to provide a complete development with standard notation
for a small aperture in a plane. The well~known solutions for the
circle and ellipse are given which provide the basis for bounds
obtained in the following sections.

Section IV provides the development for the interaction of a

wire with the aperture. VFor a thin wire at lecast one aperture dimension
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from the aperture, it is shown that the interaction can be modeled by a
voltage and a current source on a transmission line. A new capacitive
term arising from the discharge of the aperturc region by outgoing
currernts has been identified for a wire clouse te the apertnre.
Comparison of the sources is made to those obtained for aperture coupling
through a coaxial sheath. This comparison suggests the planar problem
bounds above the coupling to a wire by an aperture in a shield given
the same short circuit aperture fields from the external interaction
problem.

Using the planar problem as a bound for aperture coupling,
bounds are developed in Scction V for the planar problem and thus for
shield problems. The planar bounds involve two steps: First, current
methods of bounding the aperture polarizabilities are reviewed and a
bound for the aperture polarizabilities is given.: Secondly, bounds
for signals launched on the wire structure are developed along with
bounds for the resultant currents and voltages. The results are
generalized with the power wave concept to account for geometrical
variations along the wire. “Phese bounds are applied to a simple problem
in Section VI. The vesults of the example suggest the separation of
transient incident fields into several pieces as might be characterized
by a series of complex exponentials; summing the bounds obtained for
each separate part of the iuncident field. Measured data are also
considered.

Section VII summarizes the results and provides recommendations for

further work.




IT. OBJECTIVES: . : . - - - -
The prime objective of this project was to develop a technique
for bounding above the magnitudes of currents and voltages in terminations
of wires. 1In particular, these wires are located behind an aperture
in a perfectly electric conducting plane. The following sub~objectives
were chosen to accomplish the task:
(1) To review quasi-static theory for coupling by small apertures.
(2) To bound the aperture polarizabilities above.
(3) To develop the spatial approximation theory for aperture
coupling to a thin wire,
(4) To develop upper bounds for the power or voltage waves
launched on the wire and for the resultant voltages and currents at
the terminations.
Due to the nature of EMP, the objectives werec restricted to
small apertures. To make the problem tractable for the given time
period, the wire was assumed to be thin and to be sufficently far
from the aperture for the aperture polarizability approximation to
be valid. The sponsor expressed minimal concern for cavity effects,

resulting in its exclusion from the theoretical treatment of such

as part of the task,



III. APERTURE COUPLING:

Coupling through an aperturc in an infinite plane is generally
cast in the context of a diffraction problem. To determine the
coupled or diffracted ficlds, we must determine the perturbed fields
in the aperture and on the plane from which the diffracted ficlds may
be computed. For the problem at hand, the computation may be limited
to the electric field intensity in the aperture of the plane by
image theory or an appropriate dyadic Green's function. The diffracted
fields of a small aperturc are typically computed from two equivalent
dipoles which approximate the aperture field expansion. [8]

Following the development of Butler, et al [7], we consider
the aperture shown in Fig. 1 cut in a perfect electric conductor (PEC)

with sources on both sides of the plane. We write the total fields

- —SC+ —)*
L E;c_ £ 0 | | W

and

—Ft —_— o
B o= 507 4+ i (2)

>
where * designates 2z < 0, SC designates the fields with the aperture A
shorted, and D designates the diffracted ficlds. Incorporating image
theory in the basic boundary value expressions for the electromagnetic

fields we may write [9] (ejmt convention)

EP* . _.2I [V'6(F,") x (-% x B(£))) ds' (3
A
and
A% = =2 | [k2G(-2 x F) - 9' + (-5 x F) v'G] ds' (4)
“juwu ‘ s
A

where G is the free space scalar Green's function

_ eﬂM;J'l .
1 = = -
c(xr,t") Lr|E | (5)
~ — +
with k = wvue. Since z x ESC’

ED+ or ED— in the integrals of (3) and (4) if desired.

1l

0 at the PEC, E may be replaced by

The boundary conditions at the aperture require the continuity of

p
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E and ﬁ, Taking the limits of (3) and (4) from both the left and right

and imposing field continuity in the aperture we obtain

. =SC-  -SC+ ~ | =
z + (E - B¢ )y = 4z - T [V'G x M} ds! (6)
A
and
~ =8C-  =8C+ 4 - =
z x (H -n) = jiﬁ z X f [k?CM - (V' - M) V'G] ds® (7)
A
where
M=-zxE(r), reAa
is the equivalent magnetic surface current in A, the - through the

integral denotes the Cauchy principal value, and the surface V; is
replaced by V' without awbiguity. Since the tangential components of
ESCi and the normal components of ﬁSCi are zero by interaction with the
PEC, the tangential E and normal il continuity of Egs. (1) thru (4)
are automatically satisfied.

Two observations may be make about (6) and (7) as they stand.
First we note that (6) may be obtained from the divergence of (7), implying
that (7) is séfficient for non-zero frequencies. Sccond, due to the

existence of edges with an aperture, we must impose an edge constraint

on M. From energy considerations this constraint may be written in two

parts as

f, s H= 00, po 0 (8a)
and

ﬁe x M = O(p—%'), p >0 (8b)

for ﬁe the normal to the edge in the plane, p the distance to the edge,
and O0(x) read order of x. Eq. (7) has been solved numerically by Graves,
et al [10}. A modified form of these equations for the dual problem

of the disk were proposed by Mittra, et al [11], and subsequently

solved numerically by Rahmat-Samii [12] for apertures up to about

ﬁhree wavelength dimensions. However, our interest is in expanding

(6) and (7) for low frequency coupling rather than obtain a complete
current description.

Lord Rayleigh [13] proposed the use of a series in k to obtain




equations for the dominant quasi-static terms in aperture coupling.
Bouwkamp [4] used this idea to solve some canonical apertures
analytically in the low frequency region. More recently, De Meulenaere
and Van Bladel [14] have treated the quasi-static problem of several
shapes numerically. We now proceed with a review of this quasi-static
theory.

Using a Rayliegh scries, we expand all field quantities f(;,k) as

~=-‘ L . '.nT .
Fo=Fy+ 3k, + o0+ (jK) Fo+ o )]

vhere we have assumed analytic fields in k for the low frequency

region. We also expand the free space Green's function as

G(r,t))= Gy + JKG, + ...+ (jk)“cn +... (10)

where Gy = 1/47R, the statle free space Green's function, and R = lr—r'l.

Substituting (9) and (10) into (6) and (7) we obtain

N
~ =SC~ =SC+ ~ -
- Y ¢ — e = [’ . : '1 !
7 (EN LN ) t % b { v Cn X MN—n] ds (1)
n=0
A
and
N+1
=SC~ =SC+ 4. = o1 o ' 1
LA - - . ds' (12
z x (HN Heoo) zZ x I f [ N (v MN+1_n) v Gn] s' (12)
n=0
A
where ﬁ—l = ﬁuz = 0, n= Yu/e, and
v g . ¥ "= Q. 13
}.[V GO (v 10)] ds 0 (13)
A
Integrating (13) we have
{ [GO(V' . ﬁo)] ds' = A = constant (14)
A
with a solution [12] for a circle of radius a given by
e W= A/ (n/a? ST, (15)

0

The surface integral of (15) is

ZHQMOp(a) = 2aA



or

A= nMop(a)

which requires A to be zcero upon imposing the edge constrint of (8a).
Assuming that we may generalize this result for the circle to arbitrary

apertures, we take the sovlution to (13) to be

v' . MO = 0. (16)

It is interesting to note that if (13) had been interpreted as a
finite part integral, the solution in (15) would have contained terms
o[(a - D,)~n/2} corresponding to the multiplicity of solutions to
Maxwell's equations in the vicinity of an edge with no physical edge
constraints imposed [15].

It is straight forwvard to show that the divergence of (12) for N
gives (11) for N-=1. However our general iuntcrest is in N=0 for both
(11) and (12) to solve for M the

and the divergence of M. or m

0 1 0’
zeroth order magnetic charge. The use of (12) for N=1 would provide
the further complication of adding the unknown divergence of ﬁz and
still require the soltution of (11). .

To summarize, the quasi~static equations for the magnetic current

and charge in the aperture are

SC+ _ SC~y _ - . byt '
(&, Eg, ) = 4z ¥ x fAMOGO ds', (17)
- =5C+ 78C~ ,[i 5 ; Lt
z X (HO - HO } = ” 2 %XV {Amoco ds', (18)
and
' L] M = 6
v My =0 (16)
where Mg is given by (~-V' - ﬁl)/ug . The importance of using both ﬁO

and my WAy be observed by rewriting (3) and (4) as

WD oy« (- { o ds') (19)
A

and

~D* i -
i £ [- LK ] NG ds' -
oA

i
3+
T |-

v J nG ds') o (20)
A

where n = Ypfe. The near electric fields are dominated by the zero

10
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order magnetic current whereas the ncar magnetic fields are dominated
by the zero order magnetic charge requiring both terms for distances
less than one wavelcngth., This requirewment can also be shown to be
valid in the far field of the aperture (distances greater than one
wavelength).

It is more common to describe the fields in the distant region
of the aperture (distances > maximum aperture dimension) which extends
the far field expansion into the near fiecld region. TFrom (19) we define
the magnetic vector potential by

F(E) = [ H(E')G(r,T') ds'. - (21)
A

For r>>r', we may ecxpand ¢ to. obtain
G(F,T) ~ 6,00 11 + (Bory BEEE

Substituting into (21) we have

1 +-jkr

F(r) ~ G(r,0) f MCE') [1 + (reT") } ds'. (22)

A
The first integral is given by

J it ds' = f [~ v' - (HE")] ds’
A A :

using the constraint (8a) and the surface form of the divergence theorem.

Expénding the dyadic divergence we obtain

{ M ds' = - { (V' - M) ds!
A A

il

jw [ r'mds’'. 7 (23)
A

The second integral may be expanded as

[ Enmas < 1] (F e dix ) ¢ 1GEOR+ T DI o)
A A
The last two terms may be written in dyadic form as

Moo v'(E'(rr")).

Subtracting the divergence of (Mr'(f+r')) which integrates to zero due

to (8a), we obtain

11



j (3.1 ds' = H [# % (f x £') + jo(#-5)F'n] ds’ (24)
A A

Substituting (23) and (24) into (22)

F o jua(E,0) J =T
A

- v6(r,0) x 1 [ (M x r') ds'
2 A

- jwVG(;,O) .k [ r'r'm ds' (25)
A

with the magnetic vector potential composed of a magnetic dipole, an

electric dipole, and a magnetic quadrupole given respectively by

pime 1 f T'm ds’ (26a)
mooEJ,
pim E-f ( = ¥') ds! (26b)
e 2 A
and
Sim L { FE'm dst. (26¢)
m H A

Adding these dipole moments and their images, the diffracted field may be

written

~N+ ' . =,
& - £ - %—v x (Etmx VG) + 2jwp5§“x VG 4+ jwpv X (agnx vG) ] 27

and

~T)+ — - : .
PE L ul - 27 x (p;mx vG) - ijpimx VG - V x ¥V x (aﬁnx &)J. (28)

jan)
I

Usually the quadrupole term is small and therefore neglected. In fact
=im

is zero for a circular aperture in the quasi-static problem.
9m0 p P

The short-circuited ficlds in (17) and (18) are nearly constant for

small apertures sufficiently far from the sources such that

-1 ~A =SC- ~5C
pii= e&hRZZ' (¥ e ES(+) (29a)
e 23 .
and
Erl;'lm‘: _ &:ﬁm . (ﬁSC— _ ﬁS('+) (29b)

=im - =4 .
where a has no z components and pémand pémhave been approximated by the
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zero order current and charge. The neglected quadrupole term would be
represented by a triad term if it were to be used. The quantities
ai“hnd a;mare called the aperture electric and magnetic polarizabilities
respectively.

Equations (16) to (18) have_been solved analytically for the circle
and ellipse [4,6,16] with the resultant polarizabilities of Table I.

K and E represent the complete elliptic integrals of the first and
second kind respectively and the ellipse wmajor axis of length £ is
along x. The polarizabilities of several cother shapes have been
obtained numerically by Do Meulenaere and Van Bladel {141].

To use these results for aperture coupling into aircraft cavities,
one obviously becomes concerned with the cfflects of nearby conductors
‘and surface curvature on the coupling dipole moments. Latham [17] has
shown that surface radii of curvature and distance to nearby conductors
of at least the linear dimensions of the aperture cabse less that one
percent variation iIn the aperture polarizabilitics. I defer the

discussion on the dipole moment effects to Section IV,
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Table T

APERTURE POLARIZABILITIES

Shape oim gim am
e XX myy
/,
Circle %’&3 %-a3 %-33
(a = radius)
. 123(1 - e?) 78 3e2 723e?
Ellipse LENRY il S
(e = eccenzricity) 3E(e) 3[K(e) =~ E(e)] 3lE(e)/(1-e ) -K(e)]
. 23(1 - e?) 2793 123(1 - &%)
N ¢ E114; et = 207 LLME WA
B Slpse 3 3% (16/(1-a%))=7] 3

. . .
o= [1 - (malor ax1s)2]2

minor axis
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IV. "WIRE BEHIND APERTURE:

Coupling to a wire behind an aperture has been treated in a variety
of ways. Kajfez [18] derived the equivalent sources using both mode-
matching and reciproecity, but neglected the loading effects of the
aperture on the wire. Lee and Yang [19] developed the same sources
using transform approximations and added the effects of the loading
in order ro discuss the ceffects of a wire close to the aperture. The
problem has also been cast in numerical form by Butler and Umashankar
[20]. The following development is spatially equivalent to the
transform method of Lece and Yang, but identifies an additional
capacitance not included in the previous development. Under the
problem constraints, it will be shown that only the sources arc needed
and are equivalent to those obtained by Kajfez. If the wire approaches
the aperture, then the lumped clements must be included and the new
capacitance becomes of importance.

The geometry of interest is shown in Fig. 2 with the constraints
as follows: the wire of radius a is considered to be thin and the
distance po ig greater than or equal to the maximum aperture dimension.
Two simultaneous boundary value problems are involved in this development.
The aperture problem may be considered solved in terms of the
polarizabilities of the aperture once’the short circuit fields of the
incident field and wire have been computed. The remaining problem
is to determine the wire current from the dipole moments by requiring
the electric field on the wire to be zero.

The electric field 4long the wire due to the aperture is obtained
from (27) and (28) as

A 3% ¢ n 8G
= . + oA LA AT 30
Ex 2[ﬁ2V€ oxdz FJen my oz 1 (30)

The electric field due to the x-directed wire current and its image is

-3 -x' < -3 ".’ -
o ikv (x-x ) 2+a? o Jkv (x-x ) 4+4d?

W_ 1 2 32_ T _ & '
EX ij(I\ + axg)[l(h )[ ZHTV/(X-X'YZ'*'GZ 41!/(X“X')Y+Z%d‘z }dx .(31)

—
Since the kernel of (31) is approximately zero for (x—x'l > 2d, we

integrate (31) as though T(x') were constant to obtain

A 2
W 0 2 d

1, o —— 3 2
F K (k= + Z;g) T(x) (32)

15



) small
% aperture

Figure 2. Wire geometry for aperture coupling through a

planar perfect electric conductor.
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Mty

‘where the impedance of a thin wire over a conducting plane ZO given

by n &n(2d/a)/2w has been used.
To obtain the current, we set {32) equal to the negative of (30)

and invert the differential operator to obtain

fas)
_1 k| x-x"| 226 pind G :
I(x) Z, J ¢ e s + Jonp o ggy 1 dx
+ A e“JkX + B eka

. G
which may be approximated due to the peaked nature of %;7 by

e"jkixl 4
I(x) = Jkp ?e sgn(x) - quﬁ‘ 1 (—»
ZO my ZWOO
boa Iy
NS P L ngn(x)e—Jk[X] + D enjklxl (33)

Computing the average short circult ficlds in the aperture. we obtain

im

. - o da :
plm = ~[?°alwusc - “ﬂ%z (A + B + D) (34a)
my m mpo
and
pife o™z 85 R A - rc - 1. (34b)
e e 1po 1\00

The last term in (34b) accounting for the capacitive discharge of the
aperture region by the vutgoing current was not obtained by Lee and
Yang. As P4 becomes small, this new capacitive term will dominate the
capacitance of the aperture region. Substituting (34) into (33) and

solving for C and D we obtain

[(%E°CTy + n(~ﬂz><A—B>]

- imn d o
C J(D&Cle 7 (Z”TD } Jknaem a 2 1 (353_)
0 0 1+ (1T ~77) (Jkp ~-1)
2z "Po 0
and G
aing oim A+ B
o : {y- a myy(EEg)( )]
D = 28 (=) ; (35b)
ZO 2Hpo jknoath 4.2
14 WY (—)
22 "P0

We may model the equations of (33) and (35) by the transmission

line model of Fig. 3. For the dimensional constraints chosen, it is

17
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Figure 3. General source and impedance model for the aperture

LLd

region of a wire behind a planar conductor.
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easily shown that Z; and Z; may be neglected compared to Zy as may the
braket in the Ij expression. What remains is the two source model of
Kajfez [18). We observe that as long as the conductor is at least
an aperture dimension away, the dipole moments depend only on the
exterior short-circuited fields, We would sugpect this to also be true
for a coax.

We may obtain the sources for a coax given by Latham [17] simply
by replacing Zg by the coax impedance n n(b/a)/2n [21] and (2d/pg)
by 1/b where b is the radius of the coaxial outer sheath. From the
general form of Latham and the results presented, one might hypothosize
that Vl and Il may be obtained for any concave geometry by letting
ZO be the line impedance and d/ﬂp% be replaced by the ratic of the
short-circuit aperture current density to the total current on the
line. For b=d, the coaxial sources are approximately one-half those
for the planar case. This is reasonable in the sense that the more
confined coaxial region causes fewer coupled magnetic field lines to
cut the wire and fewer coupled electric flux lines to interact with
the line charge. This suggests a bound similar to that of Harrison
[22] for the exterior problem. It is reasonable to claim that in the
time domain, the signals coupled to wires behind apertures irrepective
of cavities are bound by the signals coupled to a wire behind an
aperture in a plane given the same dipole moments determined from the
exterior interaction problen.

Taking the planar problem as bounding aperture coupling, we
model the equivalent transmission problem as shown in Fig. 4. 1In the
Laplacian frequency domain we may write the voltage and current at Z4 as

~8Th
=

A
~2sT 4
v, = — [((I 24V )+ T. (I 2.-V de 3] (36)

4 1-T3T, e 2sTp eq 0 eq 3 7eq 0 "eq ZO+£4

and

Ly

[}

VA/ZA . (37)

where T3, TA, and 1,. represent the time delays of £3/c, QA/C’ and

T
(23+24)/c respectively (¢ ~- the speed of light). These equations will
be the basis for our discussion of the hounds in the next secction.

Before we proceed with the bounding problem, it is interesting to

19



K= 0 0 A

. - im SC
V = ) s o . i
o joub (y m i )

Zyleq = jwanbuim(é < E°7)

Z0 =nin(2d/a)/?w I

JSC
b = Aperture _ _d_
1€0) ﬂps

Figure 4. Simplified transmission line model for aperture

coupling to a wire behind a planar conductor.
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note some power relationships for aperture coupling. The average

power transmitted by & small aperture to a half-space is given by
im

!
k* Pe

- K 2 B “im 2
P% 611 [IE"' F l”pml 1.

The average power launched on the wive structure is

k2 4 i 2 im |2
P, = z (;;;g) [[Sil + Inplr:;l l.

im

Neglecting , which is unrelated to the wire problem, we have
= Fmox ?

N 3 ad2
Pw/Pl/z 72 2n(2d/a) (T)é> :

For many problems of intcrest, d is on the order of Py Since o has
bheen required to be much less than A, one wavelength, the power
launched on the wire is much greater than that transmitted into

the half-space. This increase in power is due to the higher field
strength in the veglion of the aperture due to the presence of the
wire. This is ecasicr to visualize for the coaxial structure in which
power is coupled to the TEM mode of the coax. Without the wire, the

structure is simply a cutoff waveguide.
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V. BOUNDS:

In the previous sections we have developed the relations for
low frequency aperture coupling to a wire. We have suggested that
such coupling may be bounded above by a wire behind an aperture in
a plane. This suggestion was based on comparison of the planar and
coaxial problems and the physical mechanisms bounding the coaxial
problem above by the planar problem. Hence, the first step in
bounding the signals at terminations is to replace the given wire
structure with a wire situated beliind an aperture in a planar perfect
electric conductor.

The second step is to bound the aperture polarizabilities and
thus the sources in the transmission line model. For circles and
ellipses, no bounds arc required since exact formulae arce available.
However, other structurcs, which in general must be treated numerically,
are not readily amenable to analysis and thus suggest the use of a
bound.

Fikhmanas and Fridberg [23] have developed variational methods
for bounding the polarizabilities. Unfortunately these methods still
require a fair amount of computation. Papas. and Jaggard [24,25,26)
have considered bounds which depend only on the area and perimeter of
the aperture and are based on symmetrization of isoperimetric
variational analysis. The primary disadvantage of their results is
exclusion of the aperture cccentricity which causes the magnetic
polarizabilities not to be bounded as given,but which requires an
averaging of the components of the magnetic polarizability. In fact,
the bounds that are presented may be classed more as estimates since
they do reasonably estimate the polarizabilities in many cases and
do not bound the polarizabilities in several uther cases.

Since our prime interest is in an absolute upper bound, T suggest
that the aperture of interest be bounded by an elliptical aperture of
minimum area circumscrihing the given aperture. This bound would
exceed that of constant pevimeter for concave objects as is suggested
by Papas. [24], but is less than the bound of Papas for many convex
objects. Comparing this bound to the results of De Meulenaere and
Van Bladel [14] for the polarizabilities of several shapes, we find

the ellipse to bound the rectangle and diamond by a factor of
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approximately 1.8. The rounded-off rectangle is also bounded by about
1.8 for eccentricitics approaching unity and is equal to the ellipse
for small eccentricity. In a similar manncr, the cirele bounds the
polarizabilities of the cross.

In those cases when It is undesirable to compute the ellipse
dimensions and bounds, a less tight bound may be obtained with a

circle circumscribing the aperture. In this instance the polarizabilities

are
d2n= %"(radius)3

and
c&m = a:hn = é (r1d1u9)3
mxx myy 3 - 77

These polarizabilitics and those of an ellipse with an x-directed
major axis are tabulated in Table I of Secetion III.

Having bound the original problem by the planar problem and
developed bounds for the aperture polarizability, we may complete
the problem by determining the termination signal levels from the
model of Fig. 4. The appropriate equations for this problem are
(36) and (37). In many instances the geometry is known, but 23
and Z, are not. Let us consider several cases of interest. 1If the

4

terminations are matched, then ', and T

3 4 are zero and V4 and I4 are

iV4| - IquZO * ch‘ /2

< (lleqzoi + tch!) / 2
and

]I[‘I =!V[}I / ZO

where we neglect phase cancellations that may occuer between qu and
Veq represented by the previously discussed bounds.

Absolute bounds may be obtained by considering open and short
circuit terminations along with a multiple reflection decay constant.

In the time domain, (36) may be written for resistive terminations as

A o
4 n,.n
v, (t) = - - I [2.4 (e-1,~2nt, )+v (t-1,-207T, )
¢ , / y T ¢
| 2oty e 34 "0 eq 4 17 eq i T
+ I 7

ke 2 (b Y 2 (n , 38
4 Olcq(L v, 2(n+l)rT) IBVCq(L4T4 Z(nFI)TT)] (38)
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The simplest bound of (38) is to neglect all multiple-reflection phase

cancellations, sct 24 to infinity and let 23 tend to zero to obtain

vl <

n—02c~0nmax[Z0|ieq(t—ZurT)I,lveq(t—ZnTT)l]

where the overall tiwe delay has been neglected and @ represents the
attenuation of the reflections and the power loss of the line if any.

This may be written as a bound on |v

5!

[v ‘ <2 maX{%Gllcqlmax’lveqlmaxl (39)
4'max — 1 - e—(c+2aTT)
wvhere o is the exponential decay bound on the sources.
To bound the current, the only modification is to let 23 and 24
be short ecircuits to obtain
. < .
llékmax - lvélmnx / LO' (40)

In the rare case of oscillations in the exterior fields at multiple
frequencies, it might possibly be required to remove the maxiﬁum
operator in the bounds and replace it b& a sum. We shall neglect this
case here and consider an alternative in the next section. If the
phase de}axrof F3 and Pa are known to combine with twice the line
length delay to cancel over the frequency range of interest, the
denominators of (39) and (40) may be set to unity giving the bounds
in terms of the maximum time derivative of the incident signal.
Current transmission line measurement and analysis techniques
make use of power waves [27]. ZOieq and Veq need only be divided
by Z/Es-to be normalized in the power wave sense. Thus we may bound
the voltagéd and current at terminations with a local geometry

characterized by Z_ as

L
[val ax §'2//E£ max[zolieqlmax’lveq!max] (41a)
me Z0 -(o+2atT)
1 ~e
and
li4|max i-lvélmux / ZL (410)
24




where TT is proportional to the minimum distance between significant
obstructions on the line one might encountcr, such as the ribbing

inside an aircraft.
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VI. EXAMPLES: 7
To obtain a fedling for the capabilities of the developed bounds .

we consider the case analyzed by Kajfez [18]. He considered a

circular aperture problem with the following parameters:

aperture radius 10 mm
w (y distance to wire) 20 mm
a (wire radius) 1 mm
d (wire height} 10 mm
2,4 ‘ 2.1 m
23. 3.0m
¢y T incident wave 120°
9} direction 90°

and an incident time bhehavior of a double exponential
-Gt =t
F(t) =4y (eF -7 uw.
The incident parameters used were

A = 100 kV/n
0 6 -1
o =3 x10°s

B = 108 71,

The time domain cquivalent sources may be obtained from Fig. &

as

_1/ 2
zi =2.001 x 10 x 2L
07eq at
. and
- / 4
v = 4.902 x 107+ x &E,
ed 5T ot 13
The maximum of S5t occurs at t=0 and is 10~ V/m-s. For ZL = ZO and
the ¢ of (41) the same as in F(t), we have
’Vélmax < .98 / (1 - .903) V
= 10.1 V. (42)

Kajfez chose 24 as 10 ko and 23 as 10Q to obtain a peak voltage of

approximately 0.5 volts occuring before reflections. Later voltages
were of lesser value. Noticing that F3 and F4 provide phase cancellation
with the line length for the frequencies of interest, we may neglect

the denominator in {42) to obtain

Ivﬂ]max < .98 V
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which is a reasonable bound.

It may be of interest to obtain a better bound without neglecting
the denominator. In the problem given, the early time behavior has
a decay constant of B and not «. One method of improving the bound
is to bound the response to cach pole term of the incident field
separately and add the results. To do this we write

F(t) = ag [(L - e P8 - e uio)

to obtain the bounds

(! ——
IVAImaX = .303 V
and
B a
lvélmax = 1,014 V

which sum to bound A at 1.317 V. By treating the poles separately
we obtain a reasonable bound and do not have to be concerned with
multiple modes requiring the maximum function of (41) to be replaced
by a sum in some instances as suggested in Section V,

An interesting observation may be made by comparison with the
measured data of Lin, et al [28], for a circular aperture of radius
18 in. with 2 wire centered 3.5 in. behind the aperture and 24 in.
long. The low frequency data obtained for a parallel plate short circuit
field incident from the x-direction has the sawme frequency behavior

obtained from (36). (Constant for Z. = « and proportional to f for

3

23 = () However, (36) overcstimates the levils for Z

both open~ and short-circuited Z

infinity and

4 .
by approximately 20 dB. In additiom,

(36) has been used where the conitraiuts on its derivation are no

longer valid due to both the aperture interaction and the polavizability
approximation. One might conjecture from these results that (36) and
(37) bound problems for wires close to the aperture. Further study

is required to support this conclusion.
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VII. CONCLUSIONS AND RECOMMENDATIONS: ] «
This report has presented the results of an investigation on .
bounding sighal levels coupled to wire tevamination behind apertures.
The theory of small aperture coupling has been reviewed and interaction
with wires developed in the spatial domain. The latter development
has identified a capacitance not found in previous developments.
This capacitance results from the discharge of the aperture region
by currents launched on the wire and is of importance if the wire
is sufficiently close to the aperture.
Bounds were developed for the signal levels at terminations
with the following results: A wire behind an aperture in a plane
bounds the problem of a wire behind an aperture in an enclosing
structure for the same extermal short circuit fields; the aperture
polarizabilities may be bound above by the polarvizabllities of cither a
circumscribing ellipse ol mininmum area or less tightly bound by an cir-
cumscribing circle; bounds on the power waves launched on the wire
may be obtained from the aperture bounds using proportionalities
related to the geometry in the vicinity of the aperture; Bounding
rﬁtlltip].e reflections with a decay constant, bounds on the termination .
voltages and currents are proportional to the power waves and a
multiple reflection function; For phase cancelling multiple reflections,
only the power waves need be considered, neglecting the multiple
reflections; and To obtain a tight bound with multipe reflections,
the bounds for the separate parts of the incident field should be
summed 1f the ficld is separable into different time functions. These
results follow a step-by-step form for obtaining bounds to the signals
at desired terminations. -
There are several recommendations for further work. It would
be desireable to review the work of Lee and Yang [19] for wires close
to an aperture to include the capacitive term that was not included
in thelr work. It would also be desireable to extend this work to
include larger apertures for applications in conformal antenna design.
In some instances, the currents on wires in a bundle have been found
to be larger than cxpected (greater than the bulk current). Hence
it is desireable to consider the coupling to thick wires, wire bundles,

and the associated differential mode currents in wire bundles. .
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Though the bounds appear to be reasonable when compared to
computation, it would be worthwhile to set up measurements of several
canonical problems for both aperture polarizability and wire coupling.
With the importance of direct coupling, it would also be useful to
develop the theory of coupling by wires passing through apertures between
the interior and exterior regions. This coupling might involve
either antenna structures or control cables, the latter ofter
covered by composite panels and excited by diffusion. From a theory
for such coupling, similar bounds may be developed as in this report

for apertures.
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