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ABSTRACT

In this paper, the electric field integral equation (EFIE) is used with
the moment method to develop a simple and efficient numerical procedure for
treating problems of scattering by arbitrarily-shaped objects. The objects are
modeled for numerical purposes by planar triangular surface patch models.
Because the EFIE formulation is used, the procedure is applicable to both
open and closed bodies. Crucial to the formulation is the development of a
set of special subdomain basis functions defined on pairs of adjacent triangu-
lar patches. The basis functions yield a current representation which is free
of line or point charges at subdomain boundaries.

A second approach using the magnetic field integral equation (MFIE)
and employing the same basis functions is also developed. Although the MFIE
applies only to closed bodies, the moment matrix of the MFIE is also needed
in dielectric scattering problems and in the so-called combined field integral
equation used to eliminate difficulties with internal resonances present in
the MFIE and EFIE formulations.

The EFIE approach is applied to the scattering problems of plane wave
illumination of a flat square plate, a bent square plate, a circular disk,
and a sphere. Comparisons of surface current densities are made with previous
computations or exact formulations and good agreement is obtained in each
case. The MFIE approach is also applied to the sphere and reasonable agree-
ment with exact calculations 1is obtained.
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I. INTRODUCTION

Since the very beginning of the application of numerical methods to elec-
tromagnetics, there has been a keen interest in developing computer codes for
treating radiation and scattering problems involving arbitrarily-shaped con-
ducting bodies. Of the various possible approaches available to developers
of such codes, the most commonly used have been wire-grid and surface patch
modeling in conjunction with integral equation formulations.

The wire~grid modeling approach has been remarkably successful in many
problems, particularly in those requiring the prediction of far-field quanti-
ties such as radiation patterns and radar cross-sections [l1]. The approach is
not as well-suited for calculating near-field and surface quantities, such as
surface current and input impedance, however. Some of the difficulties en-
countered in wire-grid modeling include the occasional presence of ficticious
loop currents in the soiution, difficulties with internal resonances [2], and
problems of relating computed wire currents to equivalent surface cutrrents.
The accuracy of wire-grid modeling has also been questioned on theoretical
grounds [3]. These difficulties have provided strong incentives for developing
surface patch approaches as alternatives to wire-grid techniques.

Several approaches to surface patch modeling have been suggested. Knepp
and Goldhirsh [4] partition a surface into non-planar quadrilateral patches
and employ the magnetic field integral equation (MFIE) to solve the electro-
magnetic problem. Albertsen et al. [5] solve for the current and compute ra-
diation patterns for satellite structures with attached wire antennas, booms,
and solar panels. They use the MFIE with planar quadrilateral surface patches

to model the satellite, and use the electric field integral equation (EFIE)




to treat the wire antennas in their hybrid formulation. The arbitrary surface
treatment of the widely~used Numerical Electromagnetic Code (NEC) developed

at the Lawrence Livermore Laboratory [6] is also based on the formulation of
Albertsen et al. Wang et al. [7] extend the use oﬁ piecéwise—sinuséidal basis
functions, well-known in wire analyses, to the tféatment of surfaces. They
use an EFIE formulation and model surfaces by planar rectangular patches.
Sankar and Tong [8] employ planar triangular patches to model a square plate
and point out the possibility of extending their approach to arbitrary bodies.
Their formulation, based on a variational formula for the current which is
made stationary with respect to a set of trial functions, is equivalent to a
Galerkin solution of the EFIE. Wang [9,10] employs planar triangular patches
in conjunction with the MFIE and uses basis functions which contain the phase
variation of the incident field in each patch. Unfortunately, this procedure
makes the resultant moment matrix depend on the incident field., Jeng et al.
[11] propose using‘the MFIE and non-planar triangles to model arbitrary sur-
faces. Singh and Adams [12] propose using planar quadrilateral patches and
sinusoidal basis functions with the EFIE,

In arbitrary surface modeling, the EFIE has the advantage that it applies
to both open and closed bodies, whereas the MFIE applies to closed bodies only.
On the other hand, for arbitrarily-shaped objects the EFIE is much more diffi-
cult to deal with, as attested to by the fact that of the EFIE formulations
discussed, only Wang et al. have actually treated non-planar structures--and
their formulation is limited to structures with curvature in one dimension
only. The difficulties with the EFIE stem primarily from the presence of
derivatives and a singular kernel in the integral equation. One manifestation

of the derivatives is that if basis functions representing the current are not



constructed such that their normal components are continuous across surface

edges, then line or point charges are deposited along the edges. If present, .
tﬁese ficticious charges usually lead to deleterious effects in the solution.
The approach of Wang et al. [7] is, as they point out, free of these diffi-
culties, but their use of rectangular patches restricts their consideration

to (finite) cylindrical surfaces. More appropriate for modeling arbitrarily-
shaped surfaces are planar triangular patch models such as shown in Fig. 1.

Some of the advantages of triangular patch surface modeling have been
noted by Sankar and Tong [8], as well as Wang [9]. For example, triangular
patches have the-ability to conform to any geometrical surface and boundary,
they permit simple descriptions of the surface and patch scheme to the computer,
and they may be used with greater patch densities on those portions of the

surface where more resolution is desired. (Although planar quadrilateral

patch modeling shares many of these features, the vertices of planar quadri-

laterals may not be independently specified because all four vertices must ‘
lie in the same plane.)

In this paper, we use planar triangular patch modeling and apply the
method of moments [13] to develop numerical procedures for both the EFIE and
MFIE formulations. The computer code based on the EFIE is capable of handling
either open or closed and arbitrarily-curved structures of finite extent.
Discounting limitations of the computer, the code can, in fact, treat any
object whose surface is orientable, connected (i.e., the body does not com—
prise, in reality, two or more separate objects), and free of intersecting
surfaces. Not only open and closed surfaces, but also multiply-connected
objects such as the structure with a "handle" (c.f. Appendix A) shown in Fig.

1 are admissable. The computer code based on the MFIE has the.same range of
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applicability, except that it is restricted to closed surfaces. Both the
EFIE and MFIE approaches developed are simple and efficient to apply.

We remark that a previous paper has considered the electrostatic problem
of determining the charge distribution on arbitrarily~shaped conducting bodies
modeled by triangular patches [14]. We note also that the formulation used there
is related to the static limit of the present EFIE formulation and that both
formulations employ @iéééwiée éonstént charge representations.

In the following section, we present the EFIE formulation. A new set of
basis functions defined on triangular patches is described and used to repre-
sent the current in the moment method. These new basis functions are free of
ficticious line or point charges and are analogous to the so-called "rooftop'
functions defined on planar rectangular subdomains [15].

The MFIE formulation, which also makes use of these new basis functions,
is presented in Section III. Despite its lack of generality, the MFIE formu-
lation is important because its moment matrix is required in problems of
scattering by dielectric objects [16]}, and in the so-called combined field
integral equation formulation [17]). The latter is a technique for eliminating
difficulties in both the EFIE and MFIE formulations for scattering problems
at frequencies corresponding to the cavity resonances of the interior region
for closed surfaceé.

In Section IV, numerical results obtained using the ETIE formulation are
presented for triangular patch models of a flat square plate, a bent rectang-
ular plate, a circular disk, and a sphere. Results obtained using the MFIE

are also presented for the sphere problem.




ITI. ELECTRIC FIELD FORMULATION
In this section, we derive an integral equation for the surface current -
induced on a conducting scatterer from the boundary conditions on the electric
field. A set of expansion functions and a testing brocedure are then devel-
oped for use in applying the method of moments, and the moment matrix is de-

rived. Finally, the evaluation of elements of the moment matrix is discussed.

Electric Field Integral Equation

Let S denote the surface of an open or closed, perfectly conducting
scatterer. An electric field ﬁi, defined in the absence of the scatterer,
is incident and induces surface currents J on S. If S is open, we regard J
at each point as the vector sum of thé currents on opposite sides of the sur-
face., We can compute the scattered electric field E° from the surface current

by

E°= —juwA - Vo (1)

where the magnetic vector potential is defined as

o ~ e—ij
@) == f J S as' (2)
S
and the scalar potential is !
_ 1 -jkR
&(r) = e { c ds' (3)
S



An exp(juwt) time dependence is assumed and suppressed, and k = w/pe = 2W/A,

where X is the wavelength. The permeability and permittivity of the sur-

rounding medium are U and-.€, respectively, and R [? - E'[ is the distance
between an arbitrarily-located observation point r and a source point r' lo-
cated on S. Both ¥ and r' are defined with respect to a global coordinate

origin 0. The surface charge density ¢ is related to the surface divergence

of J through the equation of continuity,

Ve J = -jua. (4)

We derive the integro-differential equation for J by applying the boun-
dary condition fl X (E* + E°) = 0 on S, obtaining,
=1

-E
tan

(—ij—V@)tan, r on S. : g?)

Egq. (5), with (2) - (4), constitutes the so-called electric field integral
equation (EFIE). One notes that the presence of derivatives on the current
in (4) and on the scalar potential in (5) suggests that one should be careful
in selecting the expansion functions and testing procedure in the method of
moments. In the néxt section, we choose expansion functions which yield a

continuous current and a piecewise constant charge representation,

Development of Basis Functions

In this section, we discuss a set of basis functions, originally pro-
posed by Glisson [18], which are suitable for use with the EFIE and triang-
ular patch modeling. We assume a suitable triangulafion approximating S and

defined by a set of faces, edges, vertices, and boundary edges (c.f. Fig. 1).

+ -
Fig. 2 shows two triangles,Tn and Tn’ associated with the nth edge of a




nth edge

Fig. 2. Local coordinates associated with an edge.



. . . + .
triangulated surface modeling a scatterer. Points in Tn may be designated
either by the position vector r, defined with respect to O, or by the position

—+ . . -+ o
vector pn, defined with respect to the free vertex of Tn. Similar remarks
apply to the position vector 5; except that it is directed toward the free
vertex of T;. It is assumed that the plus or minus designation of the tri-
angles has been chosen such that the positive current reference direction
. . . th . + - .
(c.f. Appendix A) associated with the n edge is from Tn to Tn' We define

a.vector basis function associated with the nth edge as

M Tin T
s
2A+ o s}
)9}
2
fn(r) = { —~% o , T in T_ (6)
A n n
n
0 s, otherwise,

where Zn is the length of the edge and Ai is the area of triangle Ti. (Note
that we use the convention, followed throughout the paper, that subscripts
refer to edges while superscripts refer to faces.) The new basis function En
is to be used to approximately represent the current, and we list here some
of its properties which make it uniquely suited to this role:
i) The current has no component normal to any of the edges except
the common edge (edge n) of T: and T;; were this not the case, the
continuity equation (4) would demand the presence of line charges
along these edges.

ii) The surface divergence of the basis current, which is proportional

10




iii)

iv)

to the surface charge density, is

{

Rn -, +
— , T in T
A n
n
vEol L Eamrl | ™
s n AT
n
0 ,» otherwise,

: + + + +
where the surface divergence in T; is (il/p;) B(p;fn)/ap;. The
charge density is thus constant in each triangle, the total charge
associated with the triangle pair T: and T; is zero, and the basis
functions for the charge evidently have the form of a pulse doub-
let [15].
The component of current crossing the nth edge is continuous, and
hence no line charge exists there; this may be seen by Fig. 3
which shows that the normal component of Ei along edge n is just
the height of triangle Ti with edge n as the base and with the
height expressed as (ZAi)/Qn. These factors are used to normalize
fn such that its flux density normal to edge n is unity in (6),

hence ensuring continuity of current normal to the edge.

The moment of f_ is given by at + ATYFEVE yhere
—_— n n n’n
+ -\zavg - Qn —-ct, =¢
+ = | f dS = — + o
(An An)fn I n S 2 (pn °n )
T+-+T
n —ct+_  =c-
= - 8
gn(rn r ) (8)

.
and pg_ is defined between the free vertex and the centroid of

* - —c- .
Tn with p;+ directed away from the vertex and pn directed toward

11



Fig. 3. Geometry showing normal component of basis
function at edge.
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the vertex, as shown in Fig. &4, and ;Et is the vector from

0 to the centroid of Ti; Eq. (8) may be most easily verified by
expressing the integral therein in terms of area coordinates,
which are discussed later in this paper.

Except for boundary edges, a basis function fn is associated with each edge

of the triangulated structure. The current on S may be approximated in terms
of the ¥ as
n
Je) I E (D) (9
nn
n=1

where N is the number of edges not on a surface boundary. Since a basis
function is associated with each non-boundary edge, up to three non-zero
basis functions may exist within each triangular face. At each edge, how-
ever, only the basis function associated with that edge may have a component
of current normal to the edge; by (i), all other basis currents in that face
are parallel to the edge. Furthermore, since the normal component of fn at

the nth edge is unity, each coefficient In in (9) may be interpreted as the

normal component of current density flowing past the nth edge. Because the

normal component of current at a surface boundary must vanish anyway, we need
not bother to define basis functions associated with boundary edges, and
hence (9) includes only contributions from non-boundary edges.

The radial nature of the current flow associated with each basis function
is at first disconcerting--certainly for a small triangle modeling a smooth
section of the scatterer surface, one would not expect the direction of the
actual current to vary substantially within the triangle. Turning the ques-
tion around, one might ask, "Can a superposition of the basis functions within

a triangle represent, say, a constant vector in the triangle?" That the

13



Fig. 4. Geometry of vectors to centroids of triangles
associated with an edge.
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answer is affirmative can be seen with the aid of Fig. 5, which shows a
triangle T with the edges arbitrarily labeled 1, 2, and 3. With the vectors
51, 52, and 53 as shown, the basis functions in T are Ei = (21/2A) 51, i=1,
2,3, where A is the triangle area and where, for simplicity, we assume that
the current reference directions are out of the triangle for each edge. It
is apparent from the definition of Ei and the figure that the linear combina-~
tions szl - Qlfz and %351 ~ 2153 are constant vectors for every point r in-
side the triangle and are parallel to sides 3 and 2, respectively. Since

the two composite forms ére linearly independent (i.e., non-parallel), a con-~
stant vector of arbitrary magnitude and direction within the triéngle may be

synthesized by an appropriate linear combination of the two forms, as asserted.

Testing Procedure

The next step in applying of the method of moments is to select the test-
ing procedure. As testing functions, we choose the expansion functions ?n

developed in the previous section. With the symmetric product definition

I, J £ .3 ds, (10)
S

we test Eq. (5) with fm, yielding

<E7, £> = jw <§, 'f'm> + <V, Em>. (11)

By standard surface vector calculus formulas {19], the last term in (11) can

be rewritten as
<V, fm> = -~ JS @VS . fm ds, (12)

where use has been made of the fact that none of the Em has a component nor-

mal to any part of the boundary of S. Using (7), we next approximate the

15



Fig. 5. Edges and local coordinates associated
with a triangle.
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integral in (12) as follows:

[cw-fds
SS m m

i
zo
e
A
Sy
+3
©n
[N
%
1
PIIF‘
.\"'—_‘\
3
1
=y
o
%)
| ——

o Go) -0 <f§;>]

iR
=

(13)

+ -
where the two averages of ¢ over triangles Tm and Tm have been approximated by

the corresponding values of ¢ at thecentroids of the triangles. We similarly

approximate the integration of the vector potential and incident field terms

in (11):
=1 i (=1)
<{_E_ ,§>=2[——l:j+{E ~5;ds+—l—_—J_}E?-5;dS]
A S TS SRV 26 1" (R
=i —ct (=i =c-
SIPDL ) PR e
2 LEEhH Po ) 7 g @ =

where the integrals are eliminated by approximating F1 and & with their values
at the centroid of each triangle and then carrying out integrations similar

to those used to obtain (8). With (12) - (14), (11) now becomes

—c+ c-

P p
. < =t m - =C- m -c+ -c-
Jjw Qm [:A(rm ) . —§~+ A(rm ) . > :] + Qm [:@(rm )y - Q(rm {]

-ct —C-

. o . S

_ zi,=ct, ,_m  zi -c—y W 15

_Qm[E(rm) 5+ E(r ) 2J’ (15)
which is the equation to be enforced at each triangle edge, m = 1,2,..., N.

Another interpretation of the testing procedure arriving at (15) is also pos-

sible. One may integrate the vector component of (5) parallel to the path

ct+

= = = =c- . . =i -1
from the point rm to (r;+ + p;+/2) and thence to r; , approximating E~ and A

17



along each portion of the path by their respective values at the triangle

centroids. The resulting equality, when multiplied by Qm, is Eq. (15). Under

either interpretation, the purpose of the testing procedure is reduce the
differentiability requirement on ¢ by integrating it first. The purpose of
approximations (13) and (14) is to remove all surface integrals of potential
quantities; were this not done, a prohibitively expensive two-fold surface
integration would be required to fill the moment matrix since computation of

the potentials themselves already involves one surface integration.

Evaluation of Matrix Elements

Substitution of the current expansion (9) into (15) yields an N X N

system of linear equations which may be written in matrix form as -

ZI1I=1V (16)
where Z = [Zmn} is an N X N matrix and I = [In] and V = [Vm] are colum vec-

tors of length N. Elements of Z and V are given by

-c+ -c-

' P o
= N S NP ST ol T e
z_ =2 [y%%m R J + o @mg (17)

m m N m - (18)
where N
-ikR™
o=k f FEy & gs (19)
= i T —_— s
mn 4T g B Ri
m
-3kR"
oF = - —= 7' - E (T e T ds’ (20)
m 4Tiwe s n * ?
S R
+ —ct -
R- = [T - r'|
huil m
18




and

=r =1 ,—cZ
Em = E (rm }. (21)
For plane wave incidence, we set .
z
=i.oy A A jk ¢ T (22)
E7(xr) (EeeO + E¢¢O) e
where the propagation vector k is
T = . "+ . “ . A \ ~
k k sin 60 cos ¢o X + sin 80 sin ¢O v + cos Co z) (23)

and (60, ¢O) defines the angle from which the plane wave arrives in the usual
spherical coordinate convention. The unit vectors éo and @O are constant
vectors which coincide with the spherical coordinate unit vectors at points
on the line from 0 in the direction of k. Once the matrices Z and V of (16)
are determined, one may solve the system of linear equations for I.

YWe note that although a general matrix élement Zmn is associated with
the pair of edges m and n, each computed integral appearing in Zmﬁ is actu-
ally related to a source triangle attached to edge n with an observation
point at the centroid of a triangle attached to edge m. For each such”ob—
servation and source triangle pair, these same integrals contribute to an
element of Z whose row index corresponds to one of the observation triangle
edges and whose column index corresponds to one of the source triangle edges.
Thus, rather than individually compute each element of Zmn’ we instead com-
pute all vector and scalar potentials associated with each observation- and
source-face combination and then place the quantities, appropriately
weighted, into the elements of Z corresponding to the various edges associ-
ated with these faces. (The face matrix described in Appendix A provides a

convenient means for keeping track of the correspondence between faces and

19



edges as well as for determining the current reference directions within each
patch.) Doing the computations in this fashion results in up to a nine-fold
increase in efficiency in filling the matrix Z over the direct edge-by-edge
approach.

In accordance with the above discussion, let us consider the evaluation
of the vector and scalar potential integrals for a given source and observa-
tion face combination. Fig. 6 illustrates an observation point in face p
with current sources residing in face g. For purposes of illustration, we
1 F2e

and Qéﬁiénd opposite vertices at ;1’ 52, and ;3, respectively. We further

assume the edges of face q are numbered 1, 2, and 3 with edge lengths Z

denote face q simply as triangle Twith area A%, Each of the three basis
functions which may exist simultanecusly in T is proportional to one of the
vectors El,Aﬁz, and 53 defined in Fig. 6, where the subscripts correspond to
the'associated edges and we have dropped the % superscripts. Each of the

vectors Bi’ i=1,2,3, is shown directed away from its associated vertex in
the figure, butmay instead be directed toward the vertex if the current

reference direction for that edge is into the triangle. Consequently,

6. =t (¥' - 1,)), i =1,2,3, (24)
i 1 .

where the positive sign is used if the positive current reference direction
is out of T! and the negative sign is used otherwise. We wish to evaluate

the magnetic vector potential,

R,y _ -ikeP
J oy ——— ds8', (25)

RP

and electric scalar potential,

20
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Fig. 6.

Local coordinates and edges for source
triangle ¢ with observation point in tri-
angle TP,
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5P
AR f { 3 J SEaa o (26)
i 4re @ L a9 P ?

. , .th . . .
associated with the i~ basis function on face q observed at the centroid

of face p. In (25) and (26),‘

RP = TP - 71| (27)

where T°F is the position vector of the centroid of face p.

Integrals (25) and (26) are most conveniently evaluated by transforming
to area coordinates [20] within tﬁe source triangle. Fig. 7 shows the posi-
tion vector r' at some arbitrary point in T3, The vectors Ei then divide T¢
into three regions of areas Al, AZ’ and A

Al + A2 + A3 = Aq. We define the normalized area coordinates as

3 which are constrained to satisfy

A

£=—=, (28a)
Aq
A

n=-2, (28b)
Aq
A

r=—, : - (280)
AQ

which, because of the area constraint, must satisfy
E+n+zc=1. (29)

Note that all three coordinates vary between zero and unity in T and that at

the triangle corners,‘;l, r

5> and EB,the triplet (£, n, ) takes on the values
(1,0,0), (0,1,0), and {0,0,1), respectively. The transformation from Cartesian

to area coordinates may be written in vector form as

1

r! = irl + nr, + §r3, (30)

22




Fig. 7. Definitions of areas used in defining
area coordinates.
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where &, n, and ¢ are subject to the constraint (29). It can easily be shown

that surface integrals over T9 transform as follows: .
f' _ q 1 l—T‘[ _ _ _
g(r) dS = 2A J j g(&r, + nr, + (1-E-n)r.,) d&dn. (31)
JTq 0o 1 2 3

With (24), (27), (30), and (31), (25) and (26) may now be written as

_ b, - - _
Y=o (7 B+ 1) Y+ T -1, 79 (32)
and
'
Pq _ 7 __ i Pq
®i + j2nwe L (33)
where
1 (1-n -jkRP
Pq e
I =j J '—T d&dn, (34a)
0’0 R
1 1-n e-ijP :
ng = f f £ =——— d&dn, (34b)
070 R
1 (1-n e-ijp
ng = J [ n — d&dn, (34c) :
0 ‘0 R !
1
R R L (34d)

z g n

Thus we see that only three independent integrals, (34a) - (34c), must be
numerically evaluated for each combination of face pairs p and q. The three
integrals, in turn, contribute to up to nine elements of Z in (17). For a
closed object, the number of independent integrals to be computed turmns out
to be (4/3) Nz. Numerical evaluation of the integrals (34a) - (34c) may be

accomplished by using numerical quadrature techniques specially developed for

24




triangular domains [21] together with the procedures discussed in Appendix B.

III. MAGNETIC FIELD FORMULATION
In this section, the magnetic field integral equation (MFIE) is derived
for a conducting scatterer S. Since the MFIE applies only to closed bodies,
throughout this section we assume that S has no boundary edges. The vector
basis functions En of the prévious section, used there as expansion and test-
ing functions for the EFIE, are chosen to play the same roles here in the nu-
merical solution of the MFIE. The resulting moment matrix elements are given

and their numerical evaluation is also discussed in this section.

Magnetic Field Integral Equation

The magnetic field integral equation is derived by noting that the in-
duced current J on S is related to the incident and scattered magnetic fields

' and ﬁs, respectively, by

J=ax (F +8), (35)

where n is an outward unit normal vector on S. It may be shown by a detailed

limiting argument [19] that for observation points r not on an edge,

ﬁxﬁs=}m§xv><2\
r>S
=%+ﬁx—}—J J x v'eas', (36)
AT o ,

where G = exp (-jkR)/R and T approaches S from the exterior. Combining (35)

and (36), we obtain the magnetic field integral equation (MFIE):

25



-1 x %f J x V'Gds’. (37)
T s

]
[l
o feat

Eq. (37) is an integral equation of the second kind (i.e., the unknown J ap-
pears outside as well as under the integral), and the kernel is regular. 1In
fact, if S is a triangulated surface and T is somé point on S interior to a
planar triangular face, then the current in that face does not contribute to
the integral since J x (¥ - T') is parallel to n there. A slight modifica-
tion to (36) and (37) is required if T is directly on an edge [22]; this sit-

uation will not arise in the present approach, however.

Expansion and Testing Procedure

As with the EFIE, we find the functions fn to be suitable both as expan-
sion and testing functions. Treating the testing procedure first, we test

(37) with ?n and use approximations paralleling those yielding (13) and (14)

to obtain
_.C+ —-C—
I IS s e SO BNEST) - B
n 2 m 2
_ 5(‘.+
= = + 1 - +
= L > - —& « A X —— ! t
5<J, fm Rm L_ 2 L fs J x(V G)m ds
. Va(‘—
m_, A 1 Eq 1ty gat 7
o A x jij (V'e) _ ds :[ (38)
P - + -
where m is the outward surface normal in triangle Tm and

: -c: - * * *

(V'G): = (rc_~ ') (I+HjkR7) exp (~ikR )/ (R )3. Substituting expansion (9)
m had jul m m

for J results in a matrix equation of the form

i

BI=1I, (39)

26




where the elements of the matrix 8 = [an] and the column vector I= = [I;]

are given by

—c+
=L £ £ - —En—-- . A+ _].'_ - 1 + 1
an 2 <fm’ fn> Qm {: 2 T X 4 JS fn x (¥ G)m ds
—c—
+ ‘n C AT x & E x (V'G)_ dST[ (40)'
2 m 4 g D m B
and
- 5C+ EC—
i_ At mlomety W A= o, ml=c~y , m
Im Qm L—nm x H (rm ) > + A x H (rm ) 5 :1. (41)

Solution of (39) yields the column vector I of coefficients of the current

expansion.

Evaluation of Matrix Elements

One notes that a matrix element an is associated with edge pair m and

n of S, whereas the integrals and observation points appearing on an

in (40) are associated with the faces that are connected to edges m and n.
Consequently, it is efficient, as with the EFIE, to evaluate all integrals
required for a given face-face combination and then to sort the integrals

into the appropriate rows and columns of B with the aid of the face matrix

(Appendix A), which provides a mapping from faces to edges.

Referring to Fig. 6 and the analysis following (24), we may write the

required integrals in terms of the vector integral

~+kRP
P9 Zl— J [-Q—i] o, x (TP - ') (1+5kRP) E—EER—_Q, ds', ptq, (42)
* T e Ugpt (RP)
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which represents the contribution at the centroid of the pth triangle due to ‘
the ith basis function (i = 1,2,3) in triangle q. If p=q, qu = 0. Eq. (42)

can be written in terms of area coordinates defined on T2 as

2.
=pq _ i - =cp = Pq = _ =cp = P9, = .PqQ , = .pq
I i [(r7F x ri) IR+ (ri rr) x (rng + ern + r3JC )1, p#q, (43)

where

1 ¢l-n -ikRrP
JPq = ( f (1+3%RP) EL———7§ dgdn (44a)
0’0 (RP) ~
1 1-n e—ijP
ng = f J £ (1+ikrP) S——5 d&dn (44D)
0’0o (R®)
1 (1-n o~ kRP
ng = [ J n (1+3ikRP) ———5 d&dn (44c)
0’0 (rRP)
o
ng = JPd ng - ng (44d)

and R is given by (27). The evaluation of (44a) - (44c) may be accomplished
by numerical quadrature by the method of [21].

We next consider the evaluation of contributions from each patch to the
symmetric product term in (40). If edges m and n do not lie on a common tri-
angle, there is no contribution to the symmetric product. If they lie on a
common triangle Tq, then let us assume for illustration that m,n = 1,2, or 3

as in Fig. 6. Then the contribution from TY to the symmetric product is

1 < %n - Qm - Rmzn - -
T A= D0P ,—0p > R J p_+ p_ ds!
2\ 4% ™7 49 /g 2% T
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- .2 - .2 -
. Q,mﬂ,n [i[;cqu .\ jrl] + {rzf + [r3 _
8(Aq)2 4 12 : m

_ _
+ ro e rn_J (453)

where the positive sign is selected if the reference directions of edges m
and n are both directed either into or out of Tq; the negative sign is se-
lected otherwise. If m=n, two terms of the form of (45) contribute to an,

+ -
one from Tm and one from Tm.

IV. NUMERICAL RESULTSr
In this section, numerical results are presented for current distributions

induced on selected scatterers under plane wave illumination. The geometries
considered are a conducting square plate, a bent plate, a circular disk, and

a sphere. The first three of these involve open surfaces and therefore test
the EFIE approach when edges are present. The disk is also an example of a
structure whose curved boundary is not amenable to modeling by rectangular
patches, and the sphere is both an example of a closed surface, to which both
the EFIE and MFIE apply, and of a doubly-curved surface, which is not amenable

to rectangular patch modeling.

Flat Plate
Fig. 8 and 9 show the dominant component current distributions along the
two principal cuts on a square plate illuminated by a normally incident plane

wave. For comparison, the solution of Glisson [18], obtained using rectang-
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ular patches, is also given. The number of patches listed in the figures re-
fers to the numbex of charge patches in the earlier solution of Glisson and
to the number of triangles (also equal to the number of charge patches) in

the present solution. Note that these quantities play similar roles in the
two approaches. No comparison of the rate of convergence of the two approaches
should be inferred from the figures since both solutions are already
well-converged for the number of unknowps used. Note also that the density of
data points appearing in the figures for the triangular patch solution is not
truly indicative of the linear demnsity of the subdomains. This is because,

in effect, we show data points for every other edge, i.e. only for those edges
where the associated current normal to the edge is parallel to the current
component we wish to observe.

Fig. 8 shows the current induced on a plate 0.15A on each side. At this
low frequency, the current distribution is largely determined by the edge
conditions and this case therefore provides a good test of the method's ability
to handle surface edges. We note the absence of any anomalies in the com-
puted distribution near the plate edges. The elimination of such anomalies
is attributed to using basis functions in which the expansion coefficients
are not assoclated with currents at plate edges and to a testing procedure in
which potentials are not evaluated at edges [15].

Fig. 9 shows corresponding results for a 1.0X square plate. It also
shows that the edge behavior of the current distribution is confined to a
smaller region near the edges than for the 0.15) plate and that the current
on the interior portion of the plate is beginning to exhibit the physical

optics-plus-standing wave distribution characteristic of the higher frequencies.
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Bent Plate

Figs.1l0 and 11 show the dominant component current distributions along
the center and perpendicular to the direction of current flow at two frequencies
on a square plate bent through an angle of 50°. The bend is located at a
distance of one-third the plate width from an edge and a plane wave with the
electric field polarized parallel to the bend is incident normal to the
larger section of the bent plate. Other polarizations and angles of incidence
have been examined and the resulting current distributions show good corre-

spondence with those of Glisson [18].

Circular Disk

Fig. 12 shows the computed current disbribution on a circular disk il-

luminated by a normally incident plane wave. The component J, is shown along

¢
the cut across the diameter oriented perpendicular to the incident electric

field vector. Also shown for comparison is the quasi-static solution valid

at low frequencies [23].

Sphere ) -

Fig. 13 shows the current distribution computed by the EFIE along the
principal cuts on a 0.2X radius conducting sphere. The cases of axial inci-
dence and equatorial incidence are both considered in order to observe the
influence of the triangulation scheme on the solution. Also shown for com-
parison is the exact eigenfunction solution. Both ill;minations show very
good agreement with the exact solution.

Since the sphere is a closed body, this problem may also be examined
using the MFIE. Fig. 14 shows the results of the MFIE computation. Compar-

ison of the exact solution with the MFIE computation is disappointing, partic-
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ularly when compared with the EFIE solution. In an attempt to try to improve
the accuracy of the MFIE, an alternative testing procedure was also examined
in which point-matching at the mid-points of edges was used. Although this
had the effect of radically‘changing several of the elements. including the
diagonal,of the matrix, the resultant current distributions were virtually
indistinguishable from Fig. 14 . Due to computer budget limitations, further
experimentation with frequency, number of unknowns, and triangulation schemes
was nmnot possible., We point out, however, that the surface discretization
used results in a rather crude approximation to the sphere and wesuggest that
perhaps the good agreement in the EFIE case may have been largely fortuitous.
More experimentation is abviously needed to establish the superiority of

either formulation for closed bodies.
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V. SUMMARY

In this paper, the electric field integral equation (EFIE) is used with
the moment method to develop a simple and efficient numerical procedure for
treating problems of séattering by arbitrarily-shaped objects. Theobjects are
modeled for numerical purposes by planar triangular surface patch models.
Because the EFIE formulation is usgd, the procedure is applicable to both
open and closed bodies. Crucial to the formulation is the development of a
set of special subdomain basis functions defined on pairs of adjacent triangu-
lar patches. The basis functions yield a current representation which is free
of line or point charges at subdomain boundaries.

A second approach using the magnetic field integral equation (MFIE)
and employing the same basis functions is also developed. Although the MFIE
applies only to closed bodies, the moment matrix of the MFIE is also needed
in dielectric scattering problems and in the so-called combined field'integral
equation used to eliminate difficulties with intefnal resonances present in
the MFIE and EFIE formulations.

The EFIE approach is applied to the scattering problems of plane wave
illumination of a flat square plate, a bent square plate, a circular disk,
and a sphere. Comparisons of surface current densities are made with previous
computations or exact formulations and good agreement is obtained in each
case, The MFIE approach is also applied to the sphere and reasonable agree-

ment with exact calculations is obtained.
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APPENDIX A

TOPOLOGICAL PROPERTIES AND MATHEMATICAL
REPRESENTATION OF TRIANGULATED SURFACES

In this appendix we consider some topological properties of a triangu-
lated surface and present a simple mathematical representation for such a
surface. In the topological discussion a number of geometrical quantities
are defined and some relationships between them are given. Consideration
is then given to a means for mathematically representing a triangulated
surface in a form that is convenient whether the surface data is supplied by
the modeler or is generated by an automatic surface triangulation computer
subprogram [24}. From this representation may be derived an alternative
representation which is actually more convenient for the subsequent
numerical processing necessary in applying the moment method.

We mention here at the outset that one aspect of the electrical repre-
sentation of the scattering problem also has a bearing on what information
is required in the geometrical representation of the surface. That factor
is that the unknowns to be solved for are the components of current normal
to each triangle edge. There are two possiblessenses in which the current
can flow normal to each edge and the modeler should be able to select either
choice to establish an assumed reference direction for the current at each
edge. Furthermore, it 1s desirable that the reference current specification

be incorporated, if possible, in the geometrical representation so as to
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minimize the amount of user-supplied data. As wiil be seen, the geometrical
representation given here does indeed incorporate the specification of cur-
rent reference directions.

An arbitrary body modeled by triangular patches is‘shown in Fig. Al.
The body is assumed to be connected, orientable, of finite extent, and
composed of non-intersecting surfaces. In general, a triangulated surface

modeling an arbitrary body consists of N_ planar triangular faces, Nv

f
vertices, and Ne,edge . These geometrical elements are illustrated in Fig.

Al.

An arbitrary surface may also have Nh handles. Roughly speaking, a
handle is a portion of a surface which, if detached from the surface, would
resemble a torus (Fig. Al). Any closed, orientable surface with Nh handles
may be continuously deformed, by twisting and stretching, into a sphere with
Nh handles. These spheres with Nh handles may be thought of as canonical
objects used to classify all closed, orientable surfaces. In deforming
surfaces into spheres witg handles, edges are permitted to pass through one

another, but they may not be broken or disconnected. A surface with no

handles is simply-connected; a surface with N

Y handles is said to be (Nh+l)-

connected.

If a surface is open, it is bounded by one or more boundary curves

(Fig. Al), each of which is assumed to form a closed, non-intersecting
curve on the surface., We may associate with each boundary curve an aperture,
which is any simply-connected surface having one and only one boundary curve

congruent to the associated boundary curve on the triangulated surface.
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Intuitively, an aperture surface is merely a surface which can be used to
cover a "hole' in another surface. (Unfortunately, the term "hole" is not
appropriate to describe regioms such as that exterior to the boundary curve
of a rectangular plate, and hence we use the term "aperture' to describe a
closing surface instead. For the rectangular plate, for example, a suitable
aperture is a rectangular box with one open end.) We assume that an
arbitrary surface has Na apertures (and assoclated boundary curves) and

that a total of N_ edges, called boundary edges, lie on these boundary

b

curves. If there are no boundary edges, Nb=0 and the surface is closed.

We next employ a theorem due to Euler which states that [{25] for closed

surfaces,

ot v _
Nf Ne + NV 2(1 Nh). (A1)

The primes remind us that the result applies only to closed surfaces. The
right hand side of (Al) is a topological invariant known as the Euler

characteristic and is the same for any closed surface which can be contin-

uously deformed into a sphere with Nh handles. To extend the theorem to

open surfaces, we first close all the apertures. This may be accomplished
by introducing for each aperture an auxiliary vertex and auxiliary edges
connected between this vertex and each vertex on the associated boundary
contour (Fig. A2). These auxiliary vertices may be arbitrarily located,
provided they do not coincide with one another or rest on edges or vertices
of the original surface. The resulting closed triangulated surface consists
of NL =N
£

+ N, faces, N' = N + N edges, and N' = N + N vertices.
b e e v v a

£ b

Substituting these relationships into (Al), one obtains
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- N + N =2(1-N) - 2

Ng e NV (1 Nh) Na’ (A2)

an extension of (Al) to open bodies. We may also eliminate either Nf or Ne
in (A2) by noting that since all of the faces are triangular, 3N£ = 2Né.

This follows from the fact that for a closed surface, each edge is counted
twice if we sum the three edges per triangle over all the triangles. Use

of this relation to eliminate Nf and Ne’ respectively, in Eq. (A2) yields

=z
n

+ . — —
3Nv 3Na + 6(Nh 1) ~ X (43)

b

and

Ng

ZNV + 2Na + 4(Nh-l) - N (ad)

b
Eq. (A3) may be used to determine the number of unknowns to be found if one
knows the number of vertices, apertures, handles, and boundary edges of the
model. Since currents normal to boundary edges are zero and hence are not
solved for, the number of unknowns, N, is equal to the number of surface
interior edges, Ne - Nb'
A computer subroutine, GEOM, has been developed to accept data describ-
ing a triangulated surface and to generate auxiliary information and data

necessary for further numerical processing. The subroutine requires two

sets of input data. The first is an indexed list or vertex matrix of

position vectors r, = (xi’ Yy Zi)’ 1=1, 2, see, Nv' The components of
the vectors Eiare the Cartesian coordinates of the ith vertex with respect
to a global coordinate system. The second set of data is an edge matrix
. 1 =1, 2, e+, N3 j=1, 2 (A5)

in which is listed in the ith

th

row the indices of the two vertices to which

the 1 edge is connected. The order of appearance of the vertex indices
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in each row of E assigns a vector direction to each edge, with the first
index corresponding to the tail and the second, to the head of the vector.
The cross-product of this vector with the surface normal of a face adjacent
to the edge then gives a positive reference direction for the surface
current in that face. GEOM does not actually compute surface normals to
determine the reference directiéns, but uses a procedure to be discussed
later.

The vertex and edge matrices together completely determine the surface
geometry, the interconnections of the edges to form triangles, and the
current reference directions. However, one notes that in filling the moment
matrix, one integrates over the surface faces and that the results of the
integrations must be placed in rows and columns of the moment matrix
corresponding to the appropriate edges. ﬁence it is convenient to introduce
a face matrix,

F=([f ,],1=1,2, «so¢, N_; j=1,2,3, (46)
relating edges to the corresponding faces. The ith row of the face matrix
contains the edge numbers of those edges making up the boundary of the ith
face. Subroutine GEOM makes use of information in the edge matrix to
find each face, to assign it an index, and to fill out the corresponding
row of the face matrix, The order in which the numbered edges appear in
each row may be used to assign an orientation to the boundary curve formed
by the edges of each face. We may associate this orientation , in turn,
with the direction of the surface normal of each face through the usual
convention relating a surface normal to an oriented boundary contour.

If the surface normals for all the faces are to be on the same side of the
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surface (which is always possible if the surface is orientable), then if

one travels in the prescribed direction around the boundaries of two adjécent
faces he must traverse their common edge in opposite directions (Fig. A3).
GEOM makes use of this property to correctly order the elements in the face
matrix so that the orientation of all the face normals is toward the same
side of the surface. The direction of the surface normal is initially
chosen by locating the lowest numbered edge connected to edge i = 1.

Then these two edges are treated as vectors pointing away from their common
vertex and their cross-product is computed with edge i = 1 as the second
vector in the product. The surface normal is then assumed to be parallel to
this cross-product. Thus, by properly numbering the edges connected to

edge i = 1, the modeler can fix the choice of the normal for an open surface.

Furthermore, as already noted, by properly ordering the elements of the

edge matrix, he may also choose the positive reference direction for each
individual edge.

If the surface is closed (N. = 0), the normal pointing into the region

b

exterior to the surface should always be chosen. In this case, GEOM

automatically determines whether the correct choice has been made by cal-

e

culating the volume of the model according to

V=J dV=}' Ve (x%) dV
v A\ .
N PR
S Sx
gflf
= n .XdA
i
=1 * T
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N
Ly :
= Z n, x, A7, (A7)

where Ti is the triangular patch formed by the ith face, ni is the x-
component of the normal to Ti, xi is the x-coordinate of the centroid of Ti
with respect to the global coordinate system, and Ai is the area of Ti. If
the volume computed from Eq. (A7) turns out to be negative, then the modeler
has erroneously chosen the interior normal and GEOM'rectifies this by inter-
changing the first two elements in e§ery row‘oﬁ thé face matrix. The
orientation information is used in subsequent calculations in the following
way: ILf the boundary of a face and one of its edges have the same orien-
tation (as determined by the face and edge matrix, respectively), then the
pogitive:reference direction for tﬁe current normal to the edge is out of
the face. Otherwise, the reference direction is into the face (see Fig. A3).
In the course of computing the face matrix, GEOM also determipes.all
boundary edges. It also sorts them into their correspondiﬂg boundary curves
and hence determines how many apertures are present. Then using Eq. (A2),
it determines how many handles the surface has and computes the number of
interior edges (i.e., the number of unknown current coefficients) by N =
Ne - Nb. Finally, as a partial check on the correctness of the triangulation
scheme, GEOM checks to see if (A3) and (A4) are satisfied. This test would

fail, for example, if through an error in an entry in the connection matrix

a patch was not triangular, but quadrilateral.
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APPENDIX B

EVALUATION OF INTEGRALS APPEARING
IN THE ELECTRIC FIELD FORMULATION

In the solution of the EFIE using triangular patches, the numerical

evaluation of the following

three integrals is required:

1 1-n e-ij
1= J J = d&dn, (BL)
n=0 ’&=0
1 1-n e—ij
Ip = J J £ =g dé&dn, (B2)
n=0 ‘£=0
and
1 1-n e—ij
I =,J J n —¢— d&dn, (B3)
N Jp=0 ‘&=0
where R = |r - r'| and ¥' is a position vector within a triangle whose area
coordinates are £ and n. If the observation point r is within the triangle,

then R will be zero for some
integrals will be singular.

rewrite (Bl) - (B3) as

value of £ and n and the integrands of all three

To circumvent difficulties with this case, we

{l 1-n e—ij*l 1 1-n 1
I= J ‘ J G——E;——o d&dn + J J ﬁvdgdn, (B&)
n=0 /&=0 n=0 ‘&=0
1 1-n -3kR ; 1 1-1 £
Ii = { J & () dgan + J J T dédn (B5)
n=0 ’&=0 n=0 ‘E&=0 '
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and

I 1 o~JKR_; 1 (1
I = f f n (T——) dgdn + J J 3 dedn. (B6)
n=0 “&=0 n=0 “&=0

The integrand of each of the first terms in (B5) - (B6) is non-singular
and hence can be numerically integrated by using quadrature formulas for
triangular regions obtained by Hammer et al. [21]. The remaining integrals
in (B4) - (B6) are evaluated analytically by the following procedure.

We begin by expressing r' in terms of area co-ordinates as
- = - - S — .
= + - -
r r, + (r, r)& + (r3 r)n, (B7)
where ;l’ ;2 and 53 are the position vectors of the vertices of the source

triangle. Hence,

1

R=|t-t | = |(E-El)-(§2-51) § -(x4-1;) n
= (422 + Bn? + CE + Dn + Een + F1%, (B8)
where
- = 2
A= irz—rl’ s
- = 2
B = [r3—rll s
C= - 2(?-?1) . (Ez-zl), ' (B9)
D= - 2(1’_.‘—;1) * (;3_;1_)’
E = 2(?2-El> . (53-21),
and
F= -5 2

With these definitions, the second integral in (B4) can be expressed as
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1 1-n :
te J J gy 5 (510)
n=0 ‘£=0 [AE° + Bn~ + C{ + Dn + EEn + F)°

Next, making use of (2.261) of Gradshteyn and Ryzhik [26], one obtains from

(B10)
‘l 1 /2
I' = ——F—r { J in {:VA n+Bn+C, +bdnt E:I dan
l?: -7 i =0 1 1 1 1 1
271
1 % )
- n /Q n“~+Bn+C,+Dn+ E, | dn (B11)
2 2 2 2 2
n:O pasR
where
- = (2
Al - ir3_r2) )
By = - 2(¥y-1,) (r-1,),
- 2

@}
1l

H
J

H

=
it

L= G s G/, E

B, =~ (F7) + ()75, 1
A, = 15,5 12

By = = 20gmrp) + Gorp)s

C, = |;_;l;2,
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and o o
_ (rz—rl . (r—rl)

l;‘z-—;l[

The remaining integrals in (Bll) are both of the form

IA = fn=0 4n [t Aln + Bln + Cl + Dln + Ei} dn. (B12)

With the subsitution x = D.n + E., equation (B12) reduces to

1 1
D_+E
IA = ﬁL f 11 in [:V ax2 + bx + c + %] dx, (B13)
1 x=El
where a=A/D 2
1’71 °?
_ ByDymaAEy
b_.
D 2
1
C.D, -B_E.D, + A_E 2
I e M s o M
¢ = 2
Dy

v ax2 + bx + c. Eq. (B1l3) may be written

and, in terms of the variable x, R

n

as

lw)

el
"

[}
i

D.+E
- f UL gn (Rex) dx (B14)

x=El

and hence the problem is reduced to evaluating the integral

)
Il = f n (R+x) dx. (BlS)
*1

By some elementary substitutions and integration by parts, I, may be written

1

54




as

2
Il = [:x Qn(R+x)—%1 + 12 (B16)

where

Next, we note that

R +
x 2

(@Dx+3 L+ 5 lJE’-][-J

e —lJER"]

X + -
[ Z(a-l) " 4(8"1)2
Defining
+ b
S XY oGE-D
and
2 c b2
dc = = -
a 4(a=-1)
12 may be written as
u2 uR u2 u2 b u2 u
I, = j du -~ j d J du, (B17)
2 ) u2 + d2 L u2 + d2 2(a~-1) iy 2+ d2
1 1 1
where
b
u =

17 % T 3G
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and

_ b . b
Uy = Xy Y TG -

2
We note at this point that d 1is always greater than or equal to zero,
as can be easily verified by noting that R2 - x2 is greater than or equal to
zero for all x. The last two integrals in (B17) may be integrated with the

aid of tables and the resuit combined with (B16) to yield

I. = [xfn R4+ x) - R-~-x~-4d tan—l-5
1 d
2 2 X
b R™~x 2
— 8
T Za-D) o Gz ) | * I (B18)
X
1
where
u
13={2'—§B—R———§ du.
ul u + d

With the substitution z = u + jd, I3 can be written as

Using Eq. 2.267.1 of [ 26] and taking the real part with some straight-forward

but tedious algebra, one cobtains

Il = {[-x + E?%ii)-l fn (R+x) -x~ R in f2/§ R+2ax+b]
) - 2va (a-1)
*2
-lu _ ~1 2dR(a-1)
+ d [:tan 3 tan % F 2o } (B19)
x=x

1
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Combining the results of all these steps, one may now write I'as

2
I'= — l_ Y (51) {ul fn (R +0x))
|r2 rll i=1 i
b, , .
- ———%—— 9n |2/a, R, + 2a, x, + b,
2/57 (a,—l) 1 1 1 1 1
1 1
(ot ;1 24 Ry (aymb) .
L -
} di tan ( di ] di tan {: 5 R T I C :l} (B20)
i'i i n=0

where

=
]

5
/ + +
Agns +Bin + Gy

X, =D + E, ,
i - P TRy
- = 2
Ai {r3—rl| R
Bi = —2(r3—ri) . (r—ri),
- - ;2
Ci = !r—ril s

D, = —
Irz—rl!
oL <;2";1) 7 (x-r,)
* |t -1, |
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2
a, = Ai/Di .

2

by = (ByD; - 2A.E,)/D,",

c. = (C,p.% - B.D.E, + AE.%)/D.%,

1 1 1 1 1 1 1 1 1
. b, 2
2 i i

di S a -1 2

i A(ai—l)

Some comments concerning the evaluation of (B20) are in order: 1) If either
Dl or D2 is zero (which happens whenever the corner of the triangle at ;l’ or
Ty respectively, forms a right angle), Eq. (B20) cannot be evaluatedrin the

form indicated. Avsimple way to circumvent this difficulty is to cyclically

permute the assignment of vectors ;l’ Y, and r., to the corners of the triangle

2 3
until neither Dl nor D2 is zero, i.e. until the right angle corner is placed
at ;3. Under this new assignment of vertex indices, (B20) is valid. 2) The

argument of either of the logarithmic terms appearing in (B20) may vanish
for certain combinations of parameters. Whenever this situation occurs, how-
ever, the corresponding coeffiicient of the logarithmic term also vanishes and,
by L'Hospital's rule, the product can be shown to vanish as well.

At this stage, all that remains 1s to evaluate the singular integrals in

(B5) and (B6). Consider the pair of integrals,

1 (i-n
- gd&dn
n=0 £=0
and
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1 1-n
IQ = J : nd&dn

~3 (B21b)
n=0 &=0
where
: 1
_ 2 2 2
R=}| AE" +Bn +CE&+Dn+En+F .
With al = A,bl = C + En and Cl = an + Dn + F, we have
. L
~ 2 o |
R = ali + bli 1
Using Eq. 380.011 of [ 27], one obtains for (B2la),
Vi s
IP = j N Ln (A+B-E) + n (-2A-C+D+E) + A+C+FJ dn
n=0
-1 [Bn2+Dn+F]2dn——C— d&dn
A 2A =
n=0 n=0 &=0
B 1 1-n
- — nd&dn ' (B22)
2A =
n=0 £&=0

One notes that the last two integrals in (B22) are I', evaluated earlier, and

IQ of (B21b). Again using Eq. 380.201 of [ 27] and evaluating the first two

integrals in (B22), one obtains

J.=J
1 2 _C . _E (B23)

where
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_ (2B-C+D+E) (VB+D+F) + (2A+C-D-E) (VYA+CHF)
1 4 (A+B-E)

4(A+C) (B¥DHF) + 4F(B-C-E) — (CHD4E)>
8 (a+B-E) /2

2V (A+B-E) (B+D+F)+ (2B-C+D-E)
2V(A+B-E) (A+C+F) - (2A+C-D-E)

and

_ (2B+D) (/B+D+F) - DVF

) 4B

i 4BF-D on |2YB(BADHF) + 2B +D

&BVB 2/BF + D

_l

Adopting the same procedure, I in (B21lb) can be written as

Q

J,-J

T (B24)

where

_ (2A+C-D~E) (VATCH+F) + (2B-C+D-E) (VB+D+F)
3 4 (A+B-E)

4 (A+C) (BADHF) + 4F(B-C-E) - (CHD+E)>
8(a+p-E)>/?

_;/(A+B—E)(A+C+F)+ (2A+C~D-E)
2/ (A+B~E) (B+D+F) - (2B-C+D-E)

X

and

] = (24+C) (VA+CHF) - C/F
4 4A

2
" LAF-C

8AVA

2VAF + C

2VA(A+CHE) + 2A+4C ’
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Equations (B23) and (B24) may be solved simultaneously for the unknown inte-

grals IP and IQ to obtain

. 4B(J1—J2) - ZE(J3—J4) - (2BC-ED) I (B25)
P 4AB-EZ

and

- AA(J3—J4) - ZE(Jl—JZ) - (2AD-EC) 1'.
Q (4AB_E2) (B26)

This completes the analytical evaluation of the singular integrals.
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