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COUPLING EFFECTS BETWEEN BURIED INSULATED CABLES
1. INTRODUCTION

In this report, we address the problem of finding the coupliny effects
of parallel and identical insulated wires immersed in a semi-infinite
1désy medium. This problem has been studied by several investigators
(éefs. 1-3). A review of the problem and the approach for solving it will
be described briefly in the next section. Approximations involved in ob-
taining simple solutions will be discussed. The final expression of the
self and mutual impedances are then given. Finally, the formulas are
applied to a low frequency problem using typical low frequency data.

2. THE APPROACH TO THE PROBLEM

Consider an insulated wire of circular cross section with a center
conductor of radius a, with wave number k1 = Vﬂ_z; s where
E] = Eoerl'j c]/w = —jo1/w (the skin depth is 61 (2/ww c]) ?), and an
insulation sheath with radius b and dielectric constant €55 with wave
number k2 = W VR e, Let the insulated wire be immersed in a conducting
half space with a dielectric constant €3 = €.6p3 and conduct1v1ty O35
a loss tangent_ﬁ§_= O3/wyEgs 8 skin depth 6 = (Z/wuo 3)2 and a wave
number k3 = w/hoé3 s Where 53 = €63 303/w The upper space is assumed
to be air with dielectric constant € and wave number ko. As shown in
figure 1, the wire is buried in the medium at a distance h away from the
interface between air and the dissipative medium with the wire axis paraliel
to the interface. For the purpose of finding the circuit parameters, it
is assumed the wire is infinite in length. Consider a second identical
wire which is parallel to the first one. To find the common-mode propagation
characteristics, let the separation between these two wires be s such that
be¢s. The problem is to find the transmission-l1ine parameters of the wires
taking the effects due to the interface and the scattering due to the second
wire into account.

1. Sunde, E. D., Earth Conduction Effects in Transmission Systems,
Dover Publications, Inc., New York: 1968.

2. Guy, A. W. and G. Hasserjian, "Impedance Properties of Large Subsurface
Antenna Arrays," IEEE Trans. Ant. & Prop., May 1963, pp. 232-240.

3. Stratton, J. A., Electromagnetic Theory, McGraw-Hill. New York: 1941,
pp. 545-554,
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Figure 1. Coupled Insulated Wires in a Dissipative Half Space

The following assumptions are used to find the solutions:
(a) (a/AO) < (b/ko) << 1, where AO is the free space wavelength;

(b) Ikg kgl, where k2 and k3 as defined in the above paragraph
can be complex as well as real;

>>

(c) h >>b, such that the TM wave assumption is true in the dielec-
tric region;

(d) s >> b, such that the TM wave assumption is again true in the
dielectric region.

The approach to the problem can be divided into three steps:

Step 1: Referring to figure 2, we first consider a single insulated wire
when the depth h = =, Assuming the lowest TM wave is the dominated
mode when the wire is excited by a §-function generator, the
problem can be solved easily by standard technique as shown by
Stratton (ref. 3).



Figure 2. Single Insulated Wire in a Dissipative Medium

Step 2: Referring to figure 3, the effect due to the interface on the
single wire is then introduced by assuming that the T™M mode is
still dominant in the dielectric region while the axial electric
field in the dissipative medium is modified by the reflected wave

‘ due to the interface. Once the modification due to the reflection
is obtained, the problem can again be solved by the standard

technique. The procedure is given in reference 2.

y=h
XX P\ SN

X

Figure 3. Single Insulated Wire in a Dissipative Half Space.
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Step 3: Referring back to figure 1, the effects due to the next wire is
then introduced by making a similar assumption as in Step 2, that
T™ mode will be dominant in the dielectric region while%the axial
electric field in the dissipative medium is modified by the inter-
face reflection and that due to the scattered field of the second

wire.

~ - .

3. THE SOLUTION TO THE PROBLEM

1f the wire carries an axial current on the center conductor with
I=1 ert-jhz =1 ert'FZ, (where T = jh is the propagation constant),
then us1ng the procedure outlined in Section 2, the following characteristic
equation can be derived for solving the propagation constant T = jh = j(8- Jo):

ik A k2G (b
Yo(2p2) - L o o) Yi0g2) Yo (hp0) - ek : Ez? ) Yq( gb)
u2X2k1J1(X a) _ HohoksHy (k3b) )
“ﬂxkgd (2y2) “3A3K§G<X3b)
9, (Ap2) - 0 0ga) Iy (ky) - o 3, (3,0)
Hp 2“1“’1“ a) uphgkgHy ©/ (3b)

where J (x), Yn(x) and H(Z)(x) are Bessel's functions of the first kind

and second kind, and the Hankel's function of the second kind respectively,

and,

_ 4|2 2
)\1 = k1 - h

_ 42 2
AZ - k2 - h

_ 02 2
AB = k3 - h

My S My T Hg T Mgy oo the permeability of free space

phase constant (2)
attenuation constant

h =8 -jo with B

o



h=g¢o+ i8 in Stratton's notation, .

f jh = T in Guy and Hasserjian's papers.

“ In case of I = Ioe'1wt+ihz, h = g+ic (and replace j in all quantities

in the following by -1).
The function G(k3b) is given by,

in Step 1, G(A3b)

DVORE (3)

in Step 2, G(Xx,b) HéZ)(x3b) + Io(o,o,h) (4)

3

12 (ag0) + I (0,0,h)

in Step 3, G(A3b)

+

Héz)(k3s) + 1,(s,0,h) (5)

g. with

Io(x,y,h)

1/«,@_:2_{‘%_@2 exp[j§x+j(y-2h)4k§-52;‘ g (6)
1 z .

m

S 2 .2 2 2 . 2-_2

R v e

Equation (1) can be solved for h = g-jo provided that the following
approximations are used:

2
lkz

2 2
lkz 1

- ’ 2 2
>\3" k3"h ék3,

<<

2
k3|,

<<

k

’
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h is of the same numerical order of kZ’ j.e., h = O(kz)

[Apa] < poLY §< 1

Ighg2) = 1, 0100a) £ 0, Y 0pa) 2 Eama, v, 00) ﬂ;;a
Jo0g0) 2 1o 01050) £ 0, Y 0,2) £ Zamb, ¥, (4h) # ﬂf;b
Héz)(k3r) : Héz)(k3r)
ng)(k3r) 2 ng)(k3r) . (7)
It is found that h is given in Step 1 by:
2) 1/2
Hi% (kgb) Jo (kya)
h=ky {1+ 0 ) - 0 5 (8)
(k3b)2n(b/a)H] (kyb) (k]a)ﬁn(b/a)d](k]a)
in Step 2 by
(2) .
ey |1+ ——0 L) (73]
(k3b)en(b/a)H] Mkgp) T kgbin (b/a)Hi2) (kyb)
172
34(kqa) / -
(k]a)zn(b/a)d1(ka) ?
in Step 3 by
(2)
HYe) (kb .
heky |1+ o 3(;) ) /o)
(kgb)an(b/a)iy®/(kgb) T (kb)an(b/a)Hy’ (ksb)
(2
. H0 )(k3s) . Io(s,O,h)
(k3b)zn(b/a)H§2)(k3b) (kgb)an(b/a)H{?) (kb)
1/2
Jo(k]a) (10)
(k]a)ln(b/a)J{(k]a) ’

6
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where I_(s,0,h) is defined in eq. (6) and I(h/§) = IO(O,O,h)(ﬂ/j) with

I (0,0,h) given in eq. (6). In each case, one can express the character-

O r

jstic impedance of the insulated wire as (refs. 2,3,4) ‘

: 60 h N
. Z = sn(b/a) (11)
= 0 g K

With h and Z0 given by egs. (10) and (11), it is easy to find the
series impedance per unit length, ZL’ and shunt admittance per unit length,
Yy » from the following relations:

N

Z, = (,/y) (12a)
1
= (.7 .y \3
h = ( ZL yL) (12b)
Using eqs. (10) and (11), it is found that
jw-Zﬂez
YL % TnleraY - shunt admittance per unit length (13a)
_ i i e
ZL = Z] + Z3 + Z (13b)
g St .
= = internal impedance per uni
1 zm Zk]a)J](k]a) length of the center conductor (13c)
e JuM, . .
"= gn(b/a) = external impedance per unit length
between the center conductor and the
surrounding medium (13d)
Z; = Z;a + Z;b + Z;c + Z;d = internal impedance per unit
length of the surrounding
medium (13e)
i ijlo Hc()z) (k3b) )
13 = ) = earth impedance due to the (13f)
(kgb)Hi ™ (kgb)  first wire

4. King, R. W. P., "The Insulated Conductor as a Scattering Antenna in a

Relatively Dense Medium," IEEE Trans. Ant. & Prop., May 1976, pp. 327-330.
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Z;b = Zwo %‘ I(%é§) = impedance due to interface
(k3b)H] (k3b) reflection of first wire field (13g)
i dug HéZ)(k3S) .
: Z3C = 72) = impedance due to the scattered
. (k3b)H] (k3b) field of the second wire (13h)
i ‘ijO Io(saoah) .
Z3d = 2) = impedance due to the field gener-
(k3b)H] (k3b) ated from the interface reflection

of the second wire field . (131)

The self and mutual impedance per unit length of the insulated wire are
defined as

Iy = Z% + 7% 4 Z;a + Z;b = self impedance (14a)

Z.‘2 = Z;C + Z;d = mutual impedance . (14b)

The desired solution is now compiete except the evaluation of the inte-
gral Io(x,y,h). This will be discussed in the following section.

An equivalent circuit representation can be shown as in figure 4, where
each circuit element is defined in the above paragraphs.

Z” Z]z
A A
r 1 N N
1A AN E Lan A —AAA— A — AN ———s ;
w32 3b 3¢ 3d
Zi —l
3 =
2@ —9 4
; A% = 1 unit length !

Figure 4. Equivalent Circuit of One Unit Length of the Insulated Cable



Note that, in Step 1, Z3b Z3c Z;d = 0 since there is no interface
rgf]ectTOn and no scattered fields due to the second wire. In Step 2,
Z;C = Z;d = 0 since there is no scattered fields due to the second wire.

4. THE EVALUATION OF THE INTEGRALS r

The evaluation of 1ntégra1s I(h/8) and Io(s,o,h) involved in the impe-
Qances is discussed in reference 2. We will follow that approach in
this section. Some corrections are found and included here.

The integral to be evaluated is

f Jk -t - \Ik -t exp[jc:x +J(Y‘”‘W] d (15)
4

I X,¥sh)

when [ky| >> ko, x =y = 0, with k32 = -j 2/65 where 55 is the skin depth
of the earth,

i [ ({jmz - @) exol2” (h/8) (5+2%)%]
m —
e (%'w‘c? +\’c2) jef

L 1(hse) | - (16)

IO(O,O,h)

This integral is evaluated numerically by Guy and Hasserjian (ref. 2)
and is quoted in figure 5 for reference.

I(h/9%)
[en}

I | I T T T ST TR SR S B
0.4 0.8 1.2 1.6 2.0
h/§
Figure 5. Plot of the Function I(h/&)
(From reference 2)
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The next integral to be evaluated is IO(x,O,h), which can be rewritten

as, when lk3l >> Ky and x > 2h,

IO(X,O’h) = (12'211) 'le_kZ . (17)
3..

0

where I, and I] can be shown to be:

2
2 (2) 7 2) o2 (@), JZia?
IZ (k3+k )HO (k3 x~ +4h + ZE;EHO k3 X~ + 4h (18)
2
_ o STz . o2 (), [Z2 ‘
I.l -3 5% 3y Ho <k4 x +4h )- eXp(-32k3h) VHO k4¢x“+y -0

(19)

When the differentiation is carried as indicated, the final formula is

2 2 ..
2kEx 43 ksxh
I,(x;0,h) 72 {kB + kg - > -—7;3;—-} Hy ' (kgR7)
3 0

axh | u(2) 0 o
X } H{2) (k")

L AR

- expl-i2 kgh] s 1{2) (k%) (20)
P (kg-kgx1 o

where R” = qx2-+4h2 .

If one compares eq. (20) with eq. (34) in the Appendix of reference 2,
it is found that there is a minus sign missed before the fourth term in the
first bracket of that Appendix, and an extra factor x2 appears before the
second bracket. When a numerical example is worked out, it is found that this
x2 factor gives a very large error in the calculation and should be dis-
carded. In eq. (30) of that appendix, a factor 2 is missed in the third
term, and in eq. (31), the notation YZ should be k2 (or kg in our notation).
The final result, eq. (34), should be corrected for the minus sign and the

x2 factor as mentioned above.

10
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SUMMARY OF THE RESULTS

2 2

For Ik3[ >> ko and s© >> 4h°%,

Self impedance per unit length:

Cdmgn(ora) g, HEOGB) g, g

7, = +
11 m 2m (2) 2T (2)
k3b H] (k3b) wk3bH] (k3b)
jwuo Jo(k]a)
A CTEVSM (YY) (21)
Mutual impedance per unit length:
. D B L A CRLR) -
= +
2
28 gl kgb) T (kgb)HEE (kyp)
i (G+25)% - 1z exp[-2 (h/8)(3+22)7)
1(h/8) = LZE s dz (23)
J (G+25)* + [¢] (3+2°)°
2.2 a2
2k=s jékshs
] 2 2 3 3 (2)( 7 2)
I(s,D,h)-——T kS + k- - - H k-Ns© +4h
2 k
" 3 (1 3 5}) H{2) (k3 52+4h2>
(k2 - k%) V52 + 4n
3 7o
- exp[-2j ksh] : k° H(z)(k s) (24)
PLoed kgl w2720 M Y :

iy



For low frequency problems, the following approximations are appropriate:

. k.b
(2) ~ 1 _ 23 3
Hy“/ (kgb) ¥ 1 - &L 10.57722 + 2n =
: (2) _ 42
S Hy 7 (kgh) = 0k
3 (kja) ¥ 1
. k1a
J](k]a) i
n2 sy =1 - &l {o.57722 + n i
0 3 ki ) 2
(2) ~ 2]
H] (kos) - wkos

We shall work out an example using these approximations.

6. A NUMERICAL EXAMPLE
Let

Frequency = 1 Hz Ho 4ng -7 henry/m
w = 27 rad. €0 8.85E-12 farad/m
a=1.27E-2m €op = 1.0
b = 2.54E - 2m
oy = 5.8 -7 mho/m
_ _ qa=2
O3 = Oc0i1 = 10 = mho/m
10

€p3 T §rsoi1 =
s = 10"m

h = Im
Then

=
"

Wl Ey = 2.08E-8
= m/uo(eoer3-jc3/w) = /-7 2.81E-4
kO = 2.09E-8

1= cm/uo(s:os:M -J 0]/w) = /- 21.40

N W

>  x
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Q'II' [kqal

= |/-7 0.27] << 1
- [k3bl = l/rj 7.14E-6] << 1 :
; |kys| = 0.281 << 1
Sspi1 = \'——;2——— = 5.03E 3 m >> 1
WHo%s011
6cond = 6.61E-2 m
h .
5 1.99E-4 << 1
soil

k3l 2.g1E-4
&~ Zoose-g T M EA ]

s=103m> b=0.0254m

h=1m> b= 0.0254 m.

' Hence, the required conditions for the approximations are satisfied. From
figure 1 of reference 2 (figure 5 in this report),

I(h/8) = 1(0.000199) = I(0) = 1. + j O.
It is found that

Z 1° 3.55e-5+ j 1.65E-5

1
with the numerical values in (24), (25), and (22),

10(1000, 0, 1)  -0.4968 -~ j 0.9487

Z,, = 6.9087E-9 - j 1.3126E-7

12
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2o} . 3100E-7

2,1~ 3.9747E-5 ©

3.358E-3 = 0.34%.

Tpe mutual impedance per unit length is Tess than 1% of the self impedance
per unit length in this example, and hence is almost negligible.

7. DISCUSSION

In the derivation of the wave number h and the impedances, we have
assumed that the differential currents running in wire 1 and wire 2 are
negligible. This is no Tonger true when s is not much larger than b.
However, it is not too difficult to derive the parameters for the
differential mode using a similar approach,

The method outlined in sections 2 and 3 is applicable to more than
two wires as long as s >> b is satisfied. An example is given in
reference 2 where an infinite number of arrays is solved. Again, when
the differential currents are large, a new formulation is required.

. Note that the condition Ikgt >> 3k§| and [a/xof < lb/Aol << 1
must be emphasized for the approximate solutions to be applied. However,
this covers a large range of parameters in the practical use. The case
]kgl near lkgl has recently been studied for case 1 of section 2 (ref. 5).
The generalization to cases 2 and 3 seems to be possible if one follows
the same procedure.

5 Lee, K. M., T. T. Wu and R. W. P. King, "Theory of the Insulated Linear
Antenna in a Dissipative Medium," Radio Science, April 1977.
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