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Abstract

The transient injection of current into a resistive sheet of infinite
transverse extent is considered. The surface current density in the sheet .
and the magnetic field just beneath the sheet are determined as functioms of
position and time. It is found that when the equivalent sheet resistance
takes values characteristic of graphite-epoxy advanced composite or of the
X bonded-junction wire mesh screen often cured into one surface of a nonconduc-
¢ tive composite, the surface current density in the sheet is practically
indistinguishable from that which would exist if the sheet were perfectly
conducting. The magnetic field beneath the sheet is small in comparison to
that directly radiated by the injected current; its time dependence is shown
to be proportional to the time derivative of the injected current waveform.
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I. INTRODUCTION

In this note we consider the problem of determining the surface

current density and the electromagnetic field produced by a transient
current which is injected into a planar sheet of conductive material of
infinite transverse extent. Our purpcse is to gain some insight into
the behavior of graphite-epoxy and screened nonconductive composite
materials as shields against injected current-induced fields.

A graphite-epoxy panel can be modeled as an anisotropically con-
ducting slab whose transverse conductivity is around lO4 mho m-l and
whose normal conductivity is around 50 mho m_l [1,2]. The panel is
typically 1-3 mm thick. The bonded-mesh screen which can be used to
improve the shielding effectiveness of a poorly conductive or noncon-
ductive composite panel (e.g., a boron-epoxy compositej can be modeled
as a equivalent sheet-impedance operator [3,4]. Over the frequency
range where the reactive character of the screen can be ignored .

(f < 106 Hz), both the conductive composite and the bonded-mesh screen

may be described as equivalent impedance sheets, with
z = (oa) ! (1.1)
s eq

denoting the sheet impedance. (Gd)eq is the equivalent conductivity-
thickness product of the conductive panel or the screen. Typical values
for this quantity are in the range 101 - 102 mhos.

In the following section (II) we formulate the problem in the

frequency domain. The surface current density and the penetrating

magnetic field are evaluated in sections III and IV. Section V

concludes the note.




IT. FORMULATION

The geometry of the problem is shown in Fig. 1. An impedance sheet
of negligible thickness and infinite transverse extent is located in the
plane z=0. An infinitely long filamentary current lies on the positive
z-axis. 1In the time domain, the current is iogt); the specific time
dependence which we consider in this note is

-t/T

i (t) = el %E; e ° g(r) (2.1)

P

in which Ip denotes the peak current which occurs at t=TO and U(t) is the
unit step function. We assume that 16210_6 sec, so that the reactive
component of a mesh impedance can be neglected. A plot of io(t)/Ip vs.
t/’ro is shown in Fig. 2. The objectives of the analysis are the deter-
mination of the surface current density in the sheet and the magnetic
field in the region z<O.

In the frequency domain (the time dependence exp(st) is assumed),

the electric and magnetic fields are given for p>0 by

[ _ 1 —
E(E,s) = o= VT x¥E (2.2a)
o
o No— _
H(r,s) =V x V¥ a, (2.2b)
0,
where ¥ is a solution of
n, 2 2
13 < aw) 2V &7
= lp=]|+—5-~-—=¥¥=0 (2.3)
e 30 op 822 c2
1/2

and in which ¢ = (uoso)_ denotes the speed of light in free space.

"y
Y satisfies the following boundary conditions at 2z=0:

)2

3087 is continuous at z=0 (2.42)




IMPEDANCE SHEET
Zg

Figure 1.

I P(p,4,2)

[
Alo(t) }z

|

[

il
— BB
¢ ~5-d

Geometry of the problem

<)




t/TO

Figure 2. 1O(t)/Ip vs. t/To



¥ i 1 %Y
2. 30 Yy = se 7 _Bpaz (2.4b)
z=0+ z=0- o s z=0
W 3
3. lim -27p 3 = I (s) U(z) (2.4¢)
o~+0 P ©

The first condition implies that the radial electric field Ep is
continuous through the impedance sheet, and the second implies that the

Y
surface current density Jsp is related to %p by

y
Ep(z—O) —'ZSJSp (2.5)

The third condition relates the field to the source current, whose
v .
Laplace transform Io(s) is
el T

T (s) = L[i (£)] = —B2 (2.6)
o o 2
1+ sro)

Curves of the magnitude and phase of %o(jw)/etolp as functions of wT
are given in Fig. 3.

Representations of @ which are appropriate for each of the two
regions of the problem and which satisfy the conditions of Egs. (2.4a)

and (2.4c) are

T (s) o 2,2 .2.1/2
z>0: W(p,z,s) = —%;—* KOQ§5) + JO F(A)JO(Ap)e z2(s/c™HA7) dx (2.7a)
© 2,2 .2.1/2
z<0: $(p,z,s) = - j F(A)Jocxp>e2(s [ g, (2.7b)
O .

in which F(}) is to be determined. Kn(:) denotes the modified Bessel
function of the second kind and Jn(') the Bessel function of order n,

and the square roots appearing in Egs. (2.7) are to be evaluated with
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2

ReQéj
c

+ 2525 (2.8)

Imposition of the condition given in Eq. (2.4bh) on the representations
for W in Eqs. (2.7) leads to the equation

Jm 2 2Z ' -sI (s) 2

FOO I2 /355 + 27 + 521 A3, 00)dd = —2— GO K, D) (2.9)

O o4 ' e} ]

from which we readily obtain

—KIO(S) Z 2 -1 c SZ 9 ZZS -1
F(L) = T (——) ()\ + ——‘) {g — + A+ -—*—Z—-] (2.10)
C [ o]

when Re(s) > 0, completing the formal solution of the prohlem.
= (po/eo)l/2 denotes the intrinsic impedance of free space.
The surface current density in the sheet has only a radial component,

which is given by

~sT (s) sT () = (2z /z )XZJ (Ap)da
¥ ,8) = —2—k ) + 2 =2
sp - °? 2me 1Y ¢ 2me 2 1/2 ZS
(x + ——)[(k + 2) 5 g—]
C (o4 [ed
t ) e XZJ L(o)an
=~ 7 (2.11)
o 2 1/2 1/2 s
Q 2) [(k + 2) = 7
o)
The magnetic field ﬁ¢ in the region z<0Q is
~lz[ 3% + &
-s%o(s) w\(ZS/Zo)AZJl(Kp)e € aa
H (0,2,8) (2.12)
¢ 27c o 2 1/2 ZS
(k + ——)[(A + 2) ~ 7!
C [ o4 (o]

In the following sections, we evaluate the surface current density and

the transmitted magnetic field in the time domain.

11



ITI. EVALUATION OF THE SURFACE CURRENT DENSITY
u
We begin with the second of the representations for Jsp given in

Eq. (2.11). First, we convert the integral from 0O to = intc an integral

on (~=,»}, yielding

—“fo<s) o AZHCZ) (Ap)dn

n
Jsp(p’s) - 4

Z (3.1)

o +—C—>l’2{<x2+ 2)1/2 CZZ]

Héz)(-) is the Hankel function of the second kind of order n. The
integration contour runs slightly below the real axis over the interval
(-=,0), then along the real axis over (0,=). We note that when Re(s) > O,
the integrand is analytic in a strip -Re(s)/c < Im(A) < Re(s)/c, except along
the branch cut on the negative real axis which arises from the Hankel
function. Now when p>0 we may close the contour in the lower half plane

with a semicircle whose radius is aiiowed to become infinitely large.

This semicircle is interrupted by the branch cut originating at A = -js/c,

so that the total closed contour becomes the original contour (~= < X < ®),

plus the semicirecle at infinite radius in the lower half plane, plus the
path around the branch cut. This closed contour is shown in Fig. 4.

The branch cuts have been chosen to lie on the paths

52)1/2 0 3.

Re(K + :
c |

and the integrals are thus evaluated on paths lying entirely in the

proper Riemann sheet of the cut A-plane.

There are no singularities enclosed by the contour when Z is
zZ

independent of A. The pole at (A + 2)1/2 + fi = Q0 is located on

c

12
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the improper Riemann sheet of the cut A-plane, so does not contribute to

the integral. Thus since the integral over the semicircle of infinite

radius vanishes, }Sp(p,s) is given by

N I (s) Vu (aoyar
Jgp (P28) = =3 2 2122 212 20 ° (3.3)
BC s s 1 s s
A"+ ;ii [+ ;59 + —E'zzl

where BC denotes that portion of the path in Fig. 4 around the branch
cut in the lower half plane.

Now let us introduce the change of variable
u =t (3.4)
into the integral in Eq. (3.3). We thus obtain for }Sp(s,p)

a 2 sp.
sIO(s) u Kl(u C)du

Jop(s:0) = (3.5)

2 Z
217 ¢ C (uz—l)l/zf—j(uz—l)l/Z + 9 Eil

(o]

where the integration contour C is shown in Fig. 5. The branch cuts in

the u-plane are the lines

m@?-n?% = o . (3.6)
: . . 2 1/2
and the upper sheet of the cut u-plane is that on which Im(u™-1) < Q.
The integration path C can be broken up into a segment just above the
cut, a segment just below the cut, and a cireular path around the branch
point at u=1. When ZS £ 0, there is no contribution from the branch point

itself, so we obtain after some elementary manipulations

o —s%o(s) o uzKl(uX) 4Zsfﬂ
J__(p,s) = j [ ] du (3.7)
sP Zme 1 (uz—l)l/2 422 + u2 -1

in which z = ZS/Zo and the positive square root is to be taken.

14
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Y
It is important to note that Jsp does not vanish when zs+0. The

reason for this is that the function in square brackets in the integrand

of Eq. (3.7) is actually a delta function in the limit z > 0. This
is clearly apparent if we introduce a final change of wvariable
v = (uz—l)l/z, so that

4z [=w

]
bz” + v2
s

—S%O(S)

4%}
Jsp(p,s) I T

p_— dv (3.8)

J (1212 K 2 1) |
o

. . 2 2
Now consider the function A(zs;v) = (ézs/n)/(4zs + v'). We have

J A(zs;v) dv = 1 (all zs) (3.9)
)

but when z_ = 0, A(zs;v) = 0 for all v # Q. Therefore A(zs;v) in the

limit z ~ 0 is a "one-sided" delta function in the sense that

J g(v) lim A(zs;v)dv = g(0+) (3.10)
o) z >0
- s
and so
—S%O(S) os
Jéﬁ £..ng = 21_}'7(‘:7 51 Q’E} <§=3=1§
z =0

as we expect (cf.eEq. (2.11)).

The inverse Laplace transform of Kl(gg' l+v2) is [6]

2
Ut - £ [1+v9)
L_l[Kl(z—S——/l+v2 )] = ct { c } (3.12)
pjl +v2 j 2 p2 2
r - —2- (14+v7)
C

so that, since io(t=0) = 0,

16 ®




1 dio
Jsp(p’t) =T 2mp  dt

& FJ(ct/p) (3.13)

in which the "*'" denotes convolution and

Az _;v) & (14

[sz—l
x2 - (l+v2)

FJ(X) = x U(x-1)
o)

The integral in Eq. (3.14) can be evaluated to yield

x U(x-1)

[ - a-uz?)

FJ(X) = (3.15)

It will be noted that (—l/2ﬂp)FJ(ct/p) is the surface current density
resulting from a unit step current io(t), i.e.,

-1 ,
= 9
Jsp(p,t) o F (ct/p) (3.16)
i (£)=I U(t)

Curves of FJ(x) vs. X for various values of z_ are given in Fig. 6.

When io(t) is given by Eq. (2.1), Jsp(p,t) can be expressed in integral

form as
LR
_ P _t 2 2 _t 2 2
Jsp(p,t) T Jo a T + v+ Qdexp(1 < + Jw o+ Q)
. _.___W_C_li__ , (3.17)

sz + 422Q2
s~o

when t > p/c;y Jsp = 0 otherwise. Also, Q = p/CTO.
When the sheet impedance Zs is of such a value as to be representative
of graphite-epoxy composites or screened boron~epoxy composites, ZzS is

typically of order 10‘4. Furthermore, the maximum value of p which would

17
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be of interest is of the order of 10 m. Thus when the transient current

of Eq. (2.1) is applied, the quantity p/CTO is typically less than 10_1.

As a consequence, the surface current density in the sheet is very nearly
identical to that which would exist if z_ were truly zero. This
observation is borne out by numerical evaluation of the expression in Eq.
(3.17). The resulting curves ofw(—Zﬂp)Jsp(p,t) are identical (within the
accuracy of the plotter) to io(t—p/c). Mathematically, this occurs
because when ZZSQO is very small, the function w/’w2 + 4Z§Qi is essentially
equal to unity over the range of the integration. Thus one is, in effect,
performing a convolution of diO/dt with a unit step; this yields a result

proportional to io(t—p/c).
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IV. EVALUATION OF THE TRANSMITTED MAGNETIC FIELD

")
We begin with the transform representation for H¢(p,z,s) in the

region 2z<0 given in Eq. (2.12}. Following a procedure similar to that

used in the previous section, we transform the integral to

s 2
i —{z!fu -1
2 z)e ¢ du

Y s
JSIO(S)f z u Kl(u

n
H, (p,z,s) =

(4.1)
¢ 2ﬂ2c

e N S I R P
where the contour C is shown in Fig. 5. Now we may convert the expression

in Eq. (4.1) to a form in which the residue contribution at u=1l is displayed

explicitly and the remainder is expressed as a definite integralz

. —s%o(s)
Hy(pr2,8) =~ K, (s Q)

S%o(S) ] fm»uzKl(u §%) [Juz-l cos(%{z[Juz—l) + ZZSSinCEIZ[ uz—l)}d
s

+ u
Trzc u2—l uz-l + 422 .
. . . 2 1/2 . .
Finally, we introduce the change of variable v = (u -1) , ylelding
—s% (s)
B (0,2,8) = —2>—K (s &)
I A 17 ¢ )
T (s) |
sI (s) ¢= :
o . 2.1/2 50 2 SV :
+ e Jo A(ZS,V)(1+V ) Kl( - 1+v7 ) [cos ( . ]zl)
2zs sV
+ = sin (—Elz[)}dv (4.3)

One will again note the presence of the function A(zs;v) in the integrand
of BEq. (4.3). 1In the limit zs+0, the integral and the residue contri-

bution cancel, yielding a null result for ﬁé’ as we would expect.

20




We now confine our attention to the determination of the magnetic
field just below the sheet, H¢(p,0—,t). This is done partly for mathe-
matical simplicity, since the inverse Laplace transforms of Klggs}cosss
and Kl(us)sinBs are rather complicated, and partly because our principal
interest is in the near field. The minimum wavelength in the radiated
field below the sheet wili be around et (of order 102 m) and the physical
distances lzl of interest are of order 1 m.

Defining a function FH(X) by

F (x) = %_x U(x-1) 1 x U(x-1) G

we readily obtain

1 dio ct
— = = — L2 x ALk
H(p,0-,8) = = 7= g * Fy(Co) (4.5)

Curves of FH(x) vs. x for various values of z_ are shown in Fig. 7.
One will note that if io(t) = IpU(t), then H¢(p,0—,t) = ~IpFH(ct/p)/2wp.
When io(t) is as given in Eq. (2.1), we find that H¢(p,0—,t) is expressible

as the integral

: (tZ/TZ _ QZ 1/2
T ° © t [ 2 2 t [2 2
H¢(p,o—,t) = Zmp (_l——Tz+ W +Q0)exp(.l—i+ W +Qo)
1-— ) aw ) (4.6)
2 2.2 )
ywo o+ észO
when t > p/c and H¢ = 0 otherwise. QO = p/cro as before.

Numerical computation of —AﬂpH¢(p,O—,t)/Ip as a function of t/rO
has been carried out for various values of p/CTO and zg- For the range
of parameters considered (i.e., small values of p/cro and zs) the

resulting curves are indistinguishable from the function

21
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- o1 "o
h(u) = 2zs(c10) - &.7)

where u = t/‘co - D/CTO. The reason for this is easily seen. Consider

the function

Gsw) = (1 - ——) 4.8)
w o+ x2
This function has the property that
J Alxsw)dw = 1 (211l %)
o .

and has a peak value of 1/x at w=0. The "width" of A(x;w) is proportional
to x. Thus in the limit as x - 0, A(x;w) approaches a Dirac delta-

function. Hence when ZZS << 1,

2<%~ o2/e22 1/2
“'p o s © t ‘/ 2 2, 22
H¢(p,0-at) * %o (ZZS)(E;" ) - E;'+ v o+ p7/c To) .
exp(l - %—-+ ¢w2 + pzlczti) §(w) dw (4.9)
(o]
1 0 t o t o o
= me (2J A -t e - U - )
8] o] o - Q Q

from which Eq. (4.7) follows. A curve of (TO/Ip)dio/dt is shown in

Fig. 8.
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V. CONCLUDING REMARKS

We have found that when the normalized sheet impedance Zs/zo is
small in comparison to unity, the surface current density in the sheet
induced by an applied ihjected filamentary current is given accurately
by

Jsp(o,t) = —io<t—p/c)/2vp (5.1)

where io(t) denotes the time dependence of-the injected current.

Furthermore, the magnetic field just below the sheet is closely approxi-~

mated by
dio
H(b(pyo—at) = _(ZS/ZTFC) a‘{:—'— (5°2)
in which t' = ¢t - p/c and z, = ZS/ZO. In both of these approximations,

it is assumed that p/c << To’ the characteristic rise time of the
injected current.

We note that since the current density in the sheet is essentially
identical to that which would exist if the sheet were perfectly conduct=-
ing, the "ideal' current density may be used in calculations of, for
example, the temperature rise as a function of position due to ohmic
heating. It is simple to show that the tempgrature rise occurring
because of an injected current of the form given in Eq. (2.1) is approxi-

mately given by 5 9
u2 Z e lT

A’I‘:-..—_S___M_ . . (5.3)
K 22

16m p°d

in which az is the thermal diffusivity of the conducting material and

K is its thermal conductivity. Thus immediately after the passage of
the wave of surface current density, the temperature of the panel will
be approximately TO + AT(p), in which TO is the panel temperature before

the current was injected.
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