MR
3-H4b
. ao. V-
Interaction Notes
Note 398
May 1980

Toward an Increased Understanding of
the Singularity Expansion Method

Maurice I. Sancer
A. D. Varvatsis

R & D Associates
P.O. Box 9695
Marina del Rey, CA 90291

Abstract

Four separate efforts related to the singularity expansion
method (SEM) are described in this report. Two of the efforts
deal with acoustic scattering and two deal with electromagnetic
scattering. The rationale for treating acoustic scattering is
that useful inferences can be drawn from the results obtained
to enhance our understanding of electromagnetic scattering.

The first acoustic scattering effort was to establish that
important theoretical results valid for electromagnetic SEM,
are also valid for scalar (acoustic) SEM. 1In the process of
accomplishing this task, an interesting relationship was estab-
lished between the interior Dirichlet and exterior Neumann
problem. This relationship is viewed as the scalar analogue of
the pseudosymmetric argument developed for electromagnetic SEM.
The remaining scalar scattering effort consisted of an addi-
tional theoretical development that established the relationship
between scalar SEM theory and a prominent scattering theory. A
byproduct of the second effort is a formal proof that SEM poles
are simple.

One of the two electromagnetic SEM subjects treated in this
report is a continued study of an old question concerning the
class of coupling coefficient issue that exists in electro-
magnetic SEM. The remaining subject is a numerical study that
demonstrates the dependence of the numerically determined
‘electromagnetic SEM pole locations on aspects of the procedure
employed to find them.
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I. INTRODUCTION

The singularity expansion method (SEM) has received
considerable attention by workers in the EMP community. This
report does not address the applications of the method to EMP
system effects, rather we elaborate on the contribution of SEM

to an increased understanding of basic scattering theory.

One of the major objectives of this report is to demon-
strate how SEM is connected to general scattering concepts
developed by workers in other communities. This objective
evolved as a result of our having demonstrated that important
theoretical SEM results developed for electromagnetic
scattering were obtainable for scalar (acoustic) scattering.
Qur purpose in establishing scalar SEM was to have the
benefit of dealing with scalar scattering to address some of
the open questions that exist for electromagnetic SEM. Some
of the scalar results that we obtained do not appear in. the

scalar related literature we utilized, and may be new.

In addition to our scalar SEM results as well as the
connection to related theories, this report presents results
from two separate and distinct SEM studies, both dealing
specifically with electromagnetic SEM. One study was an
examination of the relationship between class 1 and class 2
coupling coefficients, and the other study was a demonstration
O0f the sensitivity of SEM pole location values as a function

of the numerical procedure used to obtain them.

In a previous work (Ref., 1) we showed that class 2
coupling coefficients yielded results that were in conflict
with the known sphere solution. Despite this, it seemed
class 2 coupling coefficients might still be of some use if
they were viewed as wrong in principle but possibly a gdod

approximation in practice. With this as the motivation for




further study, we obtained the following results. First, we .

showed that after a time which is the sum of the transit time
across an obstacle of an incident plane wave pulse, plus the
time corresponding to its pulse width, class 1 and class 2
coupling coefficients yield the same result. Second, for the
case where the incident field was a step function, and conse-
quently had an infinite pulse width, we showed that class 1
coupling coefficients yield the correct late time magneto-
static solution while class 2 coupling coefficients do not.
These coupling coefficient efforts are presented in Appendix D

and Appendix E.

We now return to our scalar SEM investigation and describe
it in more detail. It 1s our view that scalar SEM theory
would be comparably established relative to electromagnetic
SEM if the scalar SEM equivalent of the following electro-
magnetic SEM results could be obtained: (1) a demonstration
that the basic concept works for a special case; the work of

Baum (Ref. 2}, which initiated electromagnetic SEM accom-

plished this for the perfectly conducting sphere scattering
problem; (2) the establishment of the meromorphic nature of

the scattering solution; (3) the establishment of the relation-
ship between SEM and eigenmode expansion method (EEM) solutions
in oxrder to obtain explicit relations for coupling coefficients:
(4) a demonstration that the EEM~derived solution works for a '
particular case; and (5) the establishment that cavity SEM

pole locations do not cause nonphysical results for the external
scattering problem. Results (2), (3), and (5) appear in the work
of Marin and Latham (Ref. 3). Later Baum elaborated on the
relationship between EEM and SEM in Reference 4 and obtained
expressions that had a wider use. In Reference 1, we established
result (4) and in addition we further clarified the relationship
of cavity SEM pole locations with external scattering results.

In that work we also presented a more useful form of EEM solutions

than had previously existed. Much of the remaining literature .



concerning electromagnetic SEM deals with numerical calcul-

ations for special cases.

In this report we emphasize the scalar scattering problem f
in which Neumann boundary conditions are imposed on the surface
of the scatterer. We choose to deal with this scattering
problem because it directly leads to a scalar integral equation
that is the analogue of the equation that provided the basis
for the theoretical investigations contained in Reference 3,
i.e., the magnetic field integral equation (MFIE). As will be
explained shortly, even though we emphasize the Neumann problem,
the structure of scalar SEM will force us also to treat the

scalar Dirichlet scattering problem in some detail.

Utilizing both the Neumann and Dirichlet scalar integral
equations, we establish the scalar equivalent of results (1),
(3), (4), and (5) within the body. of the text. Concerning
result (2), the meromorphic character of the scalar scattering
solution, the literature dealing with scalar scattering treats
this feature of the solution as a foregone conclusion. A
procedure to obtain this result is to use a theorem histori-
cally described in the very informative review article by
Dolph and Scott (Ref. 5) and'ultimately attributed to Steinberg.
It is well known that the scalar integral equation we derive
conforms to the Steinberg conditions which in turn guarantees

the desired meromorphic properties.

Before leaving this topic, it is appropriate to describe
some of the work in more detail. To provide a demonstration
that scalar SEM exists for a particular problem, we considered
a plane wave incident on a spheroid which then included the
sphere as a special case. For the reasons previously diécussed,
we consider the case where Neumann.boundary conditions are
satisfied on the surface of.the spheroid. We show that 'the
solution obtained by the EEM is the same as the standard




solution one obtains by separation of variables. We then

specialize this solution for the case where the spheroid
becomes a sphere. We rewrite this scalar sphere solution in
a manner which exhibits all of the SEM properties that Baum
showed for the electromagnetic sphere problem in Reference 2.
Having done this, we were immediately in a position to
increase our knowledge as a result of treating the scalar
problem. The only analytic solution for scattering from a
finite object that it is possible to examine in the electro-
magnetic case is the solution for the sphere. For the sphere,
we find that the eigenmodes do not depend on frequency. The
scalar sphere EEM solution also has this property; however,
the scalar spheroid eigenmodes do depend on freguency.

The spheroid EEM solution provided information in another
related area. Conditions are given by Ramm in his very
informative review article (Ref. 6) that can readily be inter-
preted to be a set of sufficient conditions for the EEM .

sclution to our scalar integral equation to be meaningful.

Ramm presents enough detail in that article for us to conclude
that we would not meet the described sufficient conditions
unless our scalar integral operator is normal. We are able to
show that this is the case when the scatterer is the sphere,
but we were unable to show this when the object was the
spheroid. For the sphercid we show that the integral operator
is complex symmetric and, despite this, the EEM solution is

shown to be the standard separation of variables solution.

An aspect of the scalar EEM solution worth noting is the
scalar pseudosymmetric analogue of the electromagnetic
pseudosymmetric theory presented in Reference 1. We show that
the set of eigenvalues for the Neumann integral operator for
the external scattering problem is the same set of eigenvalues

one obtains for the Dirichlet integral operator for the




interior scattering problem. This set equality implies the
existence of purely imaginary zeros of the exterior Neumann
eigenvalues. Just as in electromagnetic SEM, these extraneous
zeros must be shown not to contribute to the resulting scalar

SEM expansion and we provide this demonstration.

We now present a more detailed description of how we
relate scalar SEM to general scattering concepts that
workers in other communities have developed. 1In particular,
we will connect SEM to a theory of scattering developed by
Lax and Phillips (Refs. 7 and 8). This theory deals with
solutions valid over a volume as opposed to solutions on a
surface and it still has the satisfying guality that it leads
one to view the internal scattering (cavity) problem and the
external scattering problem in a manner that exhibits
considerable uniformity. A connection to the Lax-Phillips
theory acts as a connection to a chain of theories as effort
on their part was made to connect to other prominent
scattering theories and effort on the part of workers outside
the EMP community was made to connect to the Lax-Phillips
theory.

Our introduction to the Lax-Phillips theory came from
reading the review article by Dolph and Scott (Ref. 5). This
informative article not only summarized important features
of the Lax-Phillips theory but connected that theory to other
theories; however, it only minimally mentioned SEM. We
were motivated to pursue the connection because we had been
speculating on the insights into SEM one could obtain if a
theory such as that of Lax-Phillips existed. Lax and Phillips
as well as Dolph and Scott, made special effort to relate to
an approach that has been much studied in gquantum mechanical

scattering. This approach utilizes the concept of a scattering




operator and the S-matrix. Another work that makes a connec- .

tion between the S-matrix approach and the Lax~Phillips theory
is the book by Nussenzveig (Ref. 9). This book contains
detailed material concerning applications of the S-matrix
approach and presents a general review of other efforts where

it has been utilized.

This report demonstrates that scalar SEM theory, based on
the EEM expansion, is related to the Lax-Phillips theory. In
particular, we prove that the set of complex eigenvalues that .
play a central role in the Lax-Phillips theory is exactly the
same set as the one consisting of the (nonextraneocus) 2zeros
of the eigenvalues of the surface integral eguation with the
latter set being the SEM pole locations. At this point, one
of the noteworthy connections between Lax-Phillips theory and
S-matrix theory is that the complex eigenvalues have been shown
to be in one-to-one correspondence with the poles of the
S-matrix. We have now established that SEM pole locations are .

in one~-to-one correspondence with these S-matrix poles.
Another important feature of the Lax-Phillips theory is an
asymptotic expansion (valid for late times) that has as its
only time dependence, exponential functions having an argument
that is the product of the complex eigenvalues and the time
variable. The set eguality we proved concerning the complex
eigenvalues and SEM pole locations, as well as the form of the
SEM expansion, allow us to conclude a term-by-term equality

of the two expansions. This conclusion is based on the
argument that the common time functions employed in both

expansions are linearly independent functions.

The connection between the Lax-Phillips theory and scalar
SEM based on the EEM approach benefits both efforts. The
Lax-Phillips approach has a more advanced theoretical founda-

tion. As an example of this, some conditions have been

10



established on the shape of scattering surfaces to which this
theory can be applied. This information had not yet been
determined by the SEM/EEM approach. In addition, guantative
and qualitative estimating techniques have been developed for
the complex eigenvalues. Finally, as has already been
discussed, the Lax-Phillips theory has been connected to other
scattering theories. The SEM/EEM approach contributes to the
scattering problem by providing explicit expressions for the
expansion coefficients and these expansion coefficients, as
well as SEM pole locations, have been numerically determined
by workers in the EMP community. More generally, workers

in the EMP community have developed the capability to numer-
ically obtain SEM solutions for scattering shapes that are

beyond analytic treatment.

A generalization of the arguments presented for the scalar
case may readily be possible for the electromagnetic case
since the Lax-Phillips theory has been extended to electro-
magnetic scattering (Ref. 10). We would be inclined to
continue focusing attention on scalar SEM because of the
untapped information contained in the explicit analytic scalar
solutions, the analogue of which does not exist for electro-
magnetic scattering. We certainly have not exhausted the

information in the spheroid solution presented in this report.

Finally, we describe a result that we were able to obtain
due to the fact that we have made the described connection
between scalar SEM and Lax-Phillips theory. We were able to
obtain a formal proof that the SEM poles are simple, and this
has long been identified as an open guestion by workers in
the EMP community. This formal proof is totally constructive
in nature and such a proof can alternately be thought of as
providing a sufficient set of conditions for the desired

conclusion. The sufficient condition nature of the proof is

11



implicit in that certain formal manipulations are assumed .

valid and that the sufficient conditions are those implied to

make the manipulations valid. For the case of the sphere,

we have verified that these manipulations are valid.
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II. A SCALAR THEORY OF THE SINGULARITY
EXPANSION METHOD

The presentation of the material in this section is facil-

itated by referring to Figure 1.

Figure 1. Separation of space into an interior
and exterior region.

In this figure we introduce a surface, S, that separates
all of space into an interior region, VI’ and an exterior

region, V At this point S is just a mathematically con-

structed gurface; however, as this presentation proceeds, S
will correspond to a physical surface on which boundary con-
ditions are satisfied and it will also have shape requirements
placed on it. 'Also in Figure 1 are sources denoted fE and fI’
which are nonzero on finite volumes Vg and Vg contained within
V. and VI' We are interested in finding solutions to the

E
scalar wave equation in each region, which is given by

2
5 1 a3 ¢u(£’t)
Ve (x,t) = - ———— = f (x,t) (1)
o c 8t2 o -

13



where

o = E,I for revV, or rev

E I

Employing the Laplace transform with the convention

o]

E(s) = f £(t)e™ St at (2a)
_ 1 g st
f(t) = m ‘ér f(s)e ds (2b)

where Br indicates an appropriate Bromwich path, we obtain

(0% =) F (2 = E_(z.y) (3)

where ¥ = s/c¢. In the remaining portion of this section we
will omit the ~ notation. We now introduce the Green's

function satisfying the equation
2_ 2 . :
(Vo -v7) G(z,x',y) = =8(zx - ') (4)
which is given by

oYz -z'l

G(x,x',y) =
- = dm|r-zx'|

This Green's function is used in conjunction with the identity

7 e [qu)a - %m} = sz% - cpavzc.- (6)

!
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Substituting Equations (3) and (4) into Equation (6) and
integrating over vV, we have

/_\; Ve [GVd -0 VGl av = ¢ (z') + Q (r') (7)
o4
where
Q (') = f £,(x) G(z,2",Y) dv (8)
Vo

At this point we make a distinction between the cases a = E,I.
In particular, we wish to apply the divergence theorem to the
left~hand side of Equation (7). In order *o éo this, it is
necessary to identify the surfaces bounding the volume over
which the integration occurs. For the integration over V

I’
the bounding surface is S and we have
/ AR [Gv¢1 -quT/‘G]dv = / npoe [GVqSI -quVG]dS (9}
VI S

For the integration over V we identify the bounding surface

E’
as being S as well as a spherical surface that has a radius

approaching infinity. We now have
f v . [qusE —quVG}dV = / ng ¢ [GquE —quVG]dS + I (10)
v S
E
where

. ~ 2 .
IL = iig .jrar -[GV¢E -¢EVG]r sint déd¢ (11)

15



with 8, ¢, and r being spherical coordinates defined in a
coordinate system having its origin at some finite distance
from S. At this point we will consider that the surface $
is the physical surface corresponding to a hard acoustic
scatterer so that ¢I and ¢E satisfy the Neumann boundary

conditions on S. That is,

n+v¢, = —— =0 (12)

In addition, ¢E(£), in the terminology of Reference 7, must
satisfy the "y-outgoing" condition, which is expressed as

bg (£) ~ K(8,p)r Te™YE (13)

for large r. For a y—-outgoing solution for ¢E one can show
that

3, + [V ~0 VGl ~ F(r,r',m)e 2" (14)

for large r and further that F is such that

2im rzF(E,E',Y)e—ZYr =0 (15)
r'sw
for
Rey 2 0 (16)
16




‘ The significance of Equation (16) is that it defines the
region for a Bromwich path that in turn allows us to conclude
that |

I. =0 (17)

It is worth noting that the specification of a region for the
Bromwich path has always been inherent in the more usual

Fourier treatment of the wave equation. The Sommerfeld radi-
ation condition is satisfied if Equation (16) is satisfiedz as

can be seen by making the substitution
y = -ik (18)

This substitution is consistent with the Fourier transform

convention

‘ £lw) = f J‘f(t)eiwt dt (19a)

£(t) = 2—1,” / F(w)e 9t gy (19b)
Br

Both Equations (14) and (15) are valid under this substitution
and, accordingly, the region for the Bromwich path which allows
I, to vanish is

fmk = 0 (20)

For Y or k restricted to the identified regions so that IL =0,
utilizing the Neumann boundary conditions expressed in
Equation (12), and changing the notation so that the roles of
r and r' are interchanged, we combine Eguations (7), (9),

. (10) ., and (17) to obtain

17




¢, () +_£ Ay (') * V'G(x, 2], (x)ds" = -0 (x)  (21)

Equations (8) and (21) are sufficient to give Q (x)
meaning without any explicit evaluation of integrals. From
Equation (8) we see that Q,(x) is independent of the presence
of the surface S, so by letting the surface integral in
Equation (20) vanish, we conclude that

610 () (22)

-Q, (x) =
where ¢;nc(£) is the field radiated by the sources without the
surface being present. Substituting Equation (22) into
Equation (21) yields

(o4 -V

- ' e 1 T ' | - inc
by lr,) + jg: [ng(£") « 7'6(r ,x)] ¢, (x)ds" = o>%%(x ) (23) ®

and we have changed the notation, temporarily replacing r by
r,r in order to emphasize that Equation (23) was derived

with Ly ranging over the volume Va. We will reserve the
notion r to represent an observation point on the surface S.
Next we consider the limit as Iy approaches the surface, i.e.,
r, in both the left- and right-hand sides of Equation (23).
Both ¢a(£V) and ¢inc
limit is taken for values of Iy in the appropriate vV, SO that

(r,) are continuous functions as this

we need only consider

1, = bn /S‘ (A (x') * 7'6(x,,z)] ¢ (r')as’ (24)
._v —

18



The limit described in Equation (24) is a frequently treated
limit and our major focus in this report is to present a
simple bookkeeping scheme to identify critical plus and minus
signs without addressing the subtleties of this limit. Refer-
ring to Figure 1 we see that the sign of the dot product of
the vectors r -r' and Bu(E') is the same when r eV, whether
@ = E or o = I, It is the sign of this dot product that
determines the sign multiplying .the term %(h}E) which is part
of the expression that will be used to describe the limit.
Since the sign of the dot product is independent of the choice
for o, the sign multiplying the % ¢a(£) term in the resulting
expression is also independent of the choice for a«. Using

this information we have

I =-—¢u)g/[nqw-wu5yn¢QW%' (25)
o - S (a4

and we see that the common sign is a negative sign. We also
note that the factor % is appropriate only if r does not
correspond to a pathological point on the surface, e.g., a

tip or an edge. We now introduce the notation

n(r') = ng(z') = -n (x") (26)

i 1A I A TE (27)

K ¢(r) =/ 86 - o(ras (28)
S .

Combining Equations (23) through (28), we have

19



L_ ¢ = ¢inc (29)

R (30)
where

LY = 2 -K (31)

Ip = 1- L (32)

In Equations (29) through (32) we have introduced the subscript
"s" to the operator LS in order to indicate that we are treat-
ing the scalar scattering problem. The reason for this addi-
tional notation is that we are now in a position to make an
important distinction between the scalar scattering problem

and the vector scattering problem.

From Reference 1, we see that the vector perfect conductor

scattering problem treated by the MFIE has a generic represen-

tation that is equivalent to Egquations (29) and (30). It is
given by
E _ Linc
LVEE = Iz (33)
and
I _ <inc
Lydy = Jp (34)
I _ _ L E
Ly = 1 LV (35)

The point we wish to make is independent of the specific
a

v and we refer the reader to Reference 1

representation of L

20



if he is interested. 1In Equations (33) and (34) the

guantities EE’ EI’ g;nc, and E;nc have analogous meanings
to ¢E’ ¢I’ ¢Enc’ and ¢;nc. If we consider that the same

surface depicted in Figure 1 was perfectly conducting and
fE and fI were replaced by electromagnetic rigid sources,
;E and EI’
tities as follows. The quantity I is the total current

density induced on the exterior of the surface that had as

its prime excitation EE’ and E;nc

would be excited by EE at the same mathematical points

then we can describe the electromagnetic quan-

is a current density that

describing the scattering surface; however, the physical
surface is considered to be removed. The gquantity EI is
the total current density induced on the interior of the
surface by g;nc , which again is the current density excited
by £I on the mathematical surface S, but the physical surface
is considered to be removed. We will shortly present essen-
tial details of an eigenmode solution to Equation (31) as we

present eigenmode solutions to the scalar scattering problem,

We now consider the scalar eigenvalue equation
) o = E,I (36)

and in Appendix A we define an inner product between two
functions £ and g and introduce the standard notation to rep-
resent this inner product, i.e., (f,g). This inner product
is used in the determination of the adjoint operator L§+
which is also presented in Appendix A. The eigenmode expan-
sion method (EEM) solution to Equation (36) is expressed in
terms of the eigenmodes ¢i and eigenvalues Xi’s satisfying
Equation (36), as well as the eigenmodes satisfying the

adjoint equation

21




at . at _ ,a,s* ot _
Ls ¢n = kn ¢n o =E,I (37)

The corresponding EEM solutions are

0

Et E

E . .

" = E L_oAne (38)
n=1 ln

<) I-f- I
r 9
¢I - Z : <¢n lnc) ¢I (39)

Using results from Reference 1, we see that the EEM
solution to Equation (31) is

E,v —-n
=1 kn'

where the quantity {iﬁ’ginc} is a pseudo-inner product which

is defined in Reference 1 and its explicit representation is
not required for us to make our desired point. The eigen-

mode QE and eigenvalue kﬁ’v satisfy the eguation
E.E _ ,E,v_E
Lvdn kn In (41)

where Ls is defined in Reference 1. A feature that makes

the connection between scalar and vector EEM as well as SEM
more dramatic, is the scalar analogue of the vector pseudo-
symmetric theory, presented in Reference 1. In order to make
the analogue, we retrieve essential results from Reference 1.

First we introduce the vector interior equation given by

22




(42)

To make the desired point we present the equation satisfied by
the ii which appeared in the pseudo-inner product contained in
the EEM solution given by Equation (40). The eqguation satis-

fied by this gquantity was obtained from adjointnesé considera-~
tions that are presented in detail in Reference 1. Retrieving

the desired equation from that reference, we have
(43)

Comparing Equations (42) and (43), we conclude the set equality
{kE’V} = {kI,V} (44)

For the scalar case, there is also a connection between
the interior and exterior eigenvalues that appears to be fun-
damentally different. However, viewing the SEM consequences
of the relationship, shows that it is, in fact, fundamentally
the same. In Appendix B, we present the details to support
the following statements. First, we cite the surface eigen-

value equation for the interior Dirichlet problem. It is
ol = A o (45)

where o, is defined in Appendix B, the superscript D is
affixed to the eigenvalue to indicate Dirichlet boundary
conditions, and the crucial point is that the L§+ turns out
to be the adjoint of the Neumann exterior integral operator,
Comparing the complex conjugate of this equation with
Egquation (37), we conclude the set equality

23



oo - fie) “ @

‘which states that the set of exterior Neumann surface eigen-

values 1s the same set as the set of interior Dirichlet
surface eigenvalues. In addition, we conclude that the set
of exterior adjoint Neumann eigenfunctions are the complex
conjugate of the set of interior Dirichlet eigenfunctions.
That is,

{d’rEf*} = {Gi} (47)

Using this result we can write Equation (38) in a manner
analogous to Eguation (40) as follows:

{
E _ E 192/ ®inc| B
¢ = ‘——;ETE—*" ¢n (48)
n=1 n
where
I E I* E _ E+ E
{on'@inc} =(Gn ’¢inc) - (¢n ’¢inc) (49)

The SEM consequences of the analogous relations,
Equations (40) and (48), will now be discussed. First we
express the following relations in a form that exhibits a
desired amount of uniformity. Egquations (38), (39), (40),
- and (48) can be written as

NY (s)
o - 8 a 8 =s, ¢ =E,I
ygls) = 2: —o,8 Ygnls 8 =v, =& (50)
n=1 n

24




wa(s) = {627(s), 0%, (9)) (51a)
Eis) = (s, (9] ~ (51b)
NE(S) = {Gi(s)w?nc(s)} ' (51c)
ye (s) = ¢3(s) (514)
va(s) = ¢%(s) (51e)
v (s) = 2E(s) (51£)
yi(s) = 3%(s) (51g)

The argument s is the Laplace transform variable while the
subscript s indicates scalar. We arrive at the desired

SEM related residue series by taking the inverse of that
equation using the Laplace transform convention presented in
Equation (2). From independent analyses as discussed in the
Introduction, we know that yg(s) is a meromorphic function of
s and from additional arguments we can confine the poles of
yg(s) to the left-half s plane with the presence or absence
of poles lying on the imaginary axis requiring special atten-
tion. The argument that there are no right-half plane poles
is related to causality. It is argued that the Bromwich path
can be closed by increasingly large right~half plane semi-
circles and further that the integral of yZ(s)eSt over these
semicircles vanishes for all t less than the time when the

scattering object is initially struck by an incident field.

25



This allows us to close the Bromwich path to the right for
these values of time. Because of causality, we do not wish to
enclose any poles since they would yield residue contributions
to the inverse transform for nonphysically interpretable
values of time. There is a connection between causality and
the radiation condition in that the radiation condition
arguments led to the specification that the Bromwich path lie
to the right of the singularities, thus making the zero
residue response possible.

We now employ analytic continuation and close the Bromwich
path to the left for a range of positive times. The results
for this case are formal in that we will simply make any
mathematical assumption required to obtain the results desired.
If we proceed along this line, a question arises as to the
utility of our results. 1In a subseguent section we will make
some of these results rigorous, and in addition we will explain
how these results are consistent with those obtained by anal-
yses which did not make these assumptions. These results will
also be shown to be in agreement with a known sphere solution.
To obtain the desired form, we look for the totality of the
zerxos of the eigenvalues Kz'g(s) and we denote an arbitrary

o T
zero as sng?' where

kcx,B(sfx,B,T)

DT s ) =0 n'=1,2,..., H,{n) (52)

and the superscript T is used to indicate totality. 'As
a result of Eguation (44) for the vector case and Equation (46,
for the scalar case, we expect a decomposition of the total

set of zeros as follows
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{santh = {sufh v {sorfrmry (53)

The zeros szn% are the significant zeros and the zeros having
the superscript EX attached are the extraneous zeros. For

the exterior problem, the significant zeros are the ones having
a negative imaginary part and the extraneous ones are purely
imaginary. For the interior problem, the significant ones are
purely imaginary and the extraneous ones are in the left-half
plane. Equations (44) and (46) demonstrate the existence of
the extraneous zeros for the exterior problem because we know
that the interior surface eigenvalue contained in each of
these equations has purely imaginary zeros. The value of the
pseudosymmetric argument presented in Reference 1 and in
Appendix B is to eliminate nonphysical residue results due

to the extraneous zeros for the exterior problem. More

specifically, in Reference 1 it is shown that
E, E,v,EX } _
{Nv(snn, )y =0 (54)..
and in Appendix B, we show that

E. E,s,EX. | _
{Ns<snn. )} -0 (55)

Assuming that the significant zero is simple, we write the

residue arising in the inverse Laplace transform corresponding

3 sa’?t
. o o,B Orb 0 - nn
to the significant zero S nt as ann'ann‘(')e where
o, o,B
S0r8 _ Ng (Spnt! (56)
nn'

AL A
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y%nn'(E) = an(sgég’z) (57)
wa,B, o,8 - n
M (snn') T T ds o= g% B (58)

nn'

Using these residues, we write the response as

Yg(L,t) = Sy(r,t) + Rg(z,t) (59)
where
7 7 0 N(n) su’Bt :
s%(z,t) = > E : atrfye s (e PP (60)
n=l n'=

and Rg(r t) is just the remaining function needed to augment
the sum S (r,t) in order to represent yB(r t). The real
assumptlon is that SB(r +£) converges in some meaningful sense
and then it also dominates Rg(z,t). By comparing the surface
approach used in the EMP community to the volume approach

used by workers outisde of that community (Ref. 8), we can
infer that Sg(g,t) does have the desired property. Finally,

we note that an alternate form for the scalar expansion, one
that bears a closer resemblance to the more prominent electro-

magnetic SEM expansion, is presented in Appendix C.
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III. BACKGROUND MATERIAL FOR THE CONNECTION
TO THE LAX-PHILLIPS THEORY

To facilitate the desired connection between the theory
just presented and the Lax-Phillips theory which is a volume
approach, we introduce the volume eigenvalue equations for
both the interior and exterior scalar scattering problems

244 =0 o =E,I (61)

2
(V" =Y on) ®an

For the interior problem, o I, the boundary condition

20 - ) (62)

on the surface as well as certain volume behavior reguire-
ments, e.g., requirements which force us to reject the explicit
solutions obtainable for separable coordinates that become
unbounded, are known to lead to denumerable sets of eigen-
functions {¢In} and {YIn}. Furthermore, for the eigenfunction
equation convention used in Equation (61l), it is also known
that the YIn'S are purely imaginary and occur in complex con-
jugate pairs. To clarify this and to provide a point of
reference for a subsequent discussion, we note that the more

common form of the interior eigenvalue equation is

2 2 _
(VC + ki )op, =0 (63)

which, when the same boundary conditions and volume behavior
requirements are imposed, 1t is known to lead to a discrete
set of eigenfunctions and eigenvalues with the further result

that the kIn's lie on the real axis.
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Returning to Equation (61}, we consider the exterior .

scattering problem. The fact that, subject to appropriate
boundary conditions, there exists only a denumerable set of
eigenfunctions and eigenvalues is not as well known to be the
case for the exterior problem as it is for the interior
problem. The boundary conditions that lead to these denu-

B¢En
an
condition expressed as

merable sets are = 0 on the surface the the y-outgoing

’ - —'Y r
~ K _(8,8)r 1l 'En

°En (64)

for large . As discussed in Reference 8, we also have the

additional information that

Reyﬁ <0 (65)

The requirement on the shape of the scatterer is an issue
that has received attention. Many of the cited properties have
been proved when the object is star shaped, i.e., a point
within the object can be found from which a straight line can
be drawn that connects this point to any other point within
the volume bounded by the surface of scatterer. Star-~shaped
surfaces include convex surfaces. There has been some work and
some conjecture concerning the applicability of the work to
surfaces described as confining or nonconfining (Ref. 8). It
should be noted that the predominant situation of an imperfectly
sealed enclosure, i.e., a finitely thick-walled enclosure con-

taining an aperture, is not a star-shaped surface.

We now restrict our attention to surfaces for which we
have the desired discrete spectrum for the exterior scattering

situation and utilize the identity
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v (6, VG -G, ] = qbomsz - szqbom (66)

Substituting Equations (4) and (61) into Equation (66), we have

2

Ve l¢ nVG-GV¢an}

2 '
a (" =y )9, nC =8 (z-x") ¢ (67)_

an

First we consider this equation for the interior problem and
integrate both sides over the interior volume and use the
divergence theorem as well as the boundary condition given
by Equation (62) to obtain

' ~ . ' - 2_ 2
b (") +fs Ap(r) - V6(r,z') oy, (£)dS = (v an’,[f 6 GAV

I
(68)
Interchanging the notation r and r' and taking the limit as
r approaches the surface, we have
I - (w2 _ .2 .
Lodr, = (ypp -y )'/\; ¢, GAV (69)
I

where Li is defined by Equations (27), (28), (31), and (32).
We now rewrite Equations (36) and (69) emphasizing the ¥
dependence. Equation (36), after changing the dummy index

to m, is
o o _ L 0,S o
Lo(y)o (y,x) = A "7 (y)o (v, x) (70)

and Equation (69) is

I _ 2 .2
LS(Y)¢In(£) = (v, ~ Y )II(Y,YIn,g) (71)
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where

I (reypyrx) =/V ¢In(£')G(Y,|£-£'|)dV' (72)
I

Rather than discuss the connection between SEM and the volume
approach at this stage, i.e., having only provided'material
for the connection to the interior problem, we will obtain

an equation that has the same significance for the exterior
scattering problem as does Equation (71) for the interior
problem.

To obtain the desired equation, we consider two mathemat-
ical surfaces to be introduced in the exterior domain. One
is the smallest sphere that can circumscribe the scattering
object, and the other is a sphere whose radius we will allow
to approach infinity. Initially, we will not make use of the
smaller sphere and will integrate both sides of Equation (67)

over the volume, V which is bounded by the scattering

E r
object and the large sphere, denoted S, v and having a radius

r. Performing this integration we obtain

¢En(£') +/SﬁE(£) * Gz, L") ¢y, (x)dS

- (2 _.2 _
= (v -YEn) j[ ¢EnGdV Ir (73)
v
B
where
I, = tim f a_ - [evoy = ¢y VGIdS (74)
r+o 7S
r
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Now the "y-outgoing" condition leads to conclusions analogous
to those expressed by Equations (14-16). That is, for large r

- (y +YEn)r

ay * [GVog, =65 VGl ~ F_(x,z',Y,vg,)e (75)

where Fn is such that

- (v +YEn)r

. 2
Lim x7F (r,z',Y,Yg,)e =0 (76)
T
for
Re(y-+YEn) 2 0 (77a)
Recognizing the Rey, = -|ReYEh[, this condition becomes
Rey = ]ReYEn[ (77Db)

Since IReYEn| is a nondecreasing function of n, we see that
the specification of the Bromwich path moves to the right as

n increases. Despite this, we can make the choice of the path
independent of n, at least for some time, by employing the
following argument. We can analytically continue any function
of v that is of interest back to the line Rey = -IReYEl| where
[ReyEl] is the smallest {ReYEn| for all n. We can perform
this analytic continuation in the finite vy plane without
encountering any singularities since all the YEn have negative
real parts. We now see that with the Bromwich path initially

chosen according to Equation (77), it follows that

I_=20 (78)
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We now turn our attention to the volume integral appear- .
ing in Equation (73) and denote this integral as Ig. We
write this integral as the sum of three terms and in order
to do this, we utilize the previously defined smallest

circumscribing sphere. That is, we express

In =/ ¢En(£)G(Y"£—£ll)dV (79)
VE

alternately as the sum of the terms

2 = %+ 1P+ 12 (80)

where

n
I7 = f b GAv (81)
a v En "'

n f—d 1 -
Ipg = Sle/ (65,G = £ )aV (82)
r-+w JV,
b
1t = Zim/ £ dv (83)
bf o IV n

b

To complete the definitions expressed by Egquations (80), (81l),

and (82), it is necessary to define Va , Vb , and fn . The

quantity Va is the volume between the surface of the scatterer

and the circumscribing sphere whose radius we denote as a.

The quantity Vb is the volume between the circumscribing sphere

and the increasingly large sphere having the radius r. The

quantity fn is a function that is constructed as the product .
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of the functions describing the large r asymptotic behavior

of ¢En and G. For large r, the asymptotic behavior of ¢En is
given in Equation (64) and we Jjust note that the K, given in
that equation is a function of angular variables which will
now be defined. Let us consider a spherical coordinate system
defined as having its origin at the center of the circum-
scribing sphere and let us denote the usual angular variables

A

as ¢ and ¢. Then we can write

r 2 T
Igf = 2im v/ﬂdr"j[ d¢./rde r"2 sing fn (84)
o)

oo a o]

For our purposes it is sufficient to represent fn as

(Yo +Y)r"
—_ 1 L En
fn = ‘Pn(E /91¢IYIYEn) r”2 e (85)

and we shall see shortly that the exact form of wn is not

important. Substituting Equation (85) into Egquation (84),
we have

I, = A (x' v,y )Io9 (86)
where
. 2m ™
An = Jé- d¢.4: ds wn sind (87)
and




1 [ -(Y+YEn)a -(Y+YEn)r]
— |e - e _

If Equation (77) 1is satisfied, then

. ~-(y+y,_l)a
sing _ -1 En
In (Y+YEn) e

Egquation (73) can now be written as

where

and

n -(Y+YEn)a

In = A, Y ivg,le

(88)

(89)

(90)

(92)

The significance of the terms contained in Equations (91) and

(92) is that they are not singular when y = Yan and this is

still the case when r' approaches the surface of the scatterer.

We are now concerned with taking this limit in Eguation (90)
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and we introduce the same notation change that was used in
taking the same limit of Equation (68). That is, we inter-
change r and r' notation, use Equation (26), as well as the
limiting arguments preceding that equation to obtain

E _ 2 2 n _ n
Lotog, (@) = (v =vp ) I (YovgyrE) + (v=yg ) I (¥rYp,,X)

(93)

where Lg is defined in Equation (31).
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IV. CONCLUDING ARGUMENTS CONCERNING THE CONNECTION
BETWEEN THE TWO THEORIES

At this point we will retrieve appropriate equations from
the preceding section and rewrite them in a more convenient
form. We begin by presenting Equation (70), without modifi-

cation, to make it convenient for reference.

o o _ ,0,s o _
Lo(W)op (vex) = A ""(y)o_(y,r) o =E,I (70)
We rewrite Equations (71) and (93) as
o = -
LS(Y)%n(E) = (v Yon) Foan (YLD (94a)
and
tIity)o. (x) = (y+v- )FS_(v,r) (94b)
S In'= In" " In'''=
where
Frp = -(Y+YIn)II(YrYInrr) (95a)
c - —
Fln (V=) I (YeYp o E) | (95b)
F_ = (y+y_ )IZ( r) + I8¢ ) (96)
gn = (YY) I (YevYg rE p(YrYgn L

A major conclusion that we wish to draw concerns the

following sets. One set is described following Equation (53)
a,s

. . . . N a,s nn'
in conjunction with the definition Yné, = = , and we

write this set as

a,s\ _f.a,s| 0,8, 0,8, _ I,s _ E,s }
{Ynn.} —{Ynn. ‘ AT YA ) =0 Ry = 0, ROYLAY <0 ($7)
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The other set is

boundary } (98)

{Yam} - {Yum ‘(V _Yam)¢am =0+ conditions

The first conclusion that we wish to draw is the set equality

{Yié?} = {Yum} : (99)

To prove that

{Yum} c {Yié?} (100)

we consider the interior problem first. We do this to empha-
size a major difference between the interior and exterior
problem. This difference manifested itself in the need to
present Equation (94b) for the interior problem. Consider a
typical YIm and let y = YIm in Equation (94a) to obtain

I -
LS(YIm)¢Im(£) =0 (101)
Letting vy = Y 1Im in Equation (94b) yields
LI(-v. )o_ () =0 (102)
S Im’ "Im =
Equation (101l) implies that there exists some A%’S(Y) such
that Ai’s(ylm) = 0, while Equation (102) implies that there
exists some Ag’s(Y) such that A%’s(-ylm) = 0. This not only

proves Equation (100) for o = I, but it also proves that if
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I,s
YIm€ {Ynn'} (103a)

then !
_ I,s }
Y€ {Yn,n’ (103b)

The conclusion expressed by Eguation (103) is acceptable for
@ = I but would not be acceptable for o = E. The reason for
making this observation is to emphasize the need for the
bounding arguments presented in the previous section that led
to Equation (94a) for o = E, and at the same time eliminated
the need for an equation corresponding to Egquation (%94b) for
the exterior problem. Substituting vy = YEm into Equation
(94a) leads to

E -
Lg (Yg ) 0p (¥) =0 (104)

which (by exactly the same arguments applied to Equation (101))
leads to the result

I,s .
Yem® {Ynn' } i (105)

however, there is no result corresponding to Equation (103b).

This i1s necessary in that

ReYEm < 0 (106)

while, as is well known for the interior problem,
ReYIm =0 (107)

Equation (107), together with the fact expressed in Eguations
(103a) and (103b), simply states that Yqy occur in complex
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conjugate pairs. If an equation corresponding to Equation
(103b) were true for the exterior problem, then because of
Equation (106), we would be led to contradictions concerning
the existence of right half-plane values of Yem® The bounding
arguments presented in the previous section precluded this
undesirable conclusion. Finally, we note that the more familiar
form of Equation (107) is obtained by using the cémplex plane
rotation described by Equation (18), which was presented in
conjunction with the complex Fourier transform. The statement
equivalent to Equation (107), after making the indicated
substitution kIm = iYIm is

ImkIm = 0 (108)

Equation (108) is the more familiar result corresponding to

internal resonances.

Equations (103) and (l105) prove Equation (100). To com-
plete the proof of Equation (99), we will prove that

{Yi;ﬁ’} C {Yum} (109)

To accomplish this, we form the following function

1 r '1'* &,S ' .
by (z,) = 'éG(EVrE Y0 (v iEt)ds (110)

where # indicates complex conjugate and ¢§+(Y,£') satisfies

the adjoint eigenvalue equation. The adjoint operator is
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given in Appendix A, and the adjoint eigenvalue equation is

given as

ES %*
LT 6% v,z = 2% STy 68T

s (y.x) (111)

As in the previous section, subscript v is attached to the
r to indicate that I, varies over the appropriate three-
dimensional volumes V. or V_,. Direct substitution of wi(gv)

I E
given by Eguation (110) into

2 a,s2

(VV = Ynnr

Jpo (x) = 0 (112),

shows that this equation is satisfied for Ly in the appropriate

open volumes VE or VI' In addition, wi(gv) can readily be

seen to satisfy the Y-outgoing condition. For Eguation (105)
to be true, it remains to show that the Neumann boundary condi-
tions on S are satisfied. To show this we take the gradient

of both sides of Equation (110) to obtain

o at* S
vy (r ) = jg VVG<£v,£',Y§£?)¢n <y§;.,£'>ds' (113)
Identifying r as a point on S which will be approached by T,
and defining ﬁa(ﬁ) as the appropriate normal defined at the

point r, consistent with the convention depicted in Figure 1,

we have
PPN o _ ) TR y JQ,s, ., af*, a,s ' '
2im na(r) . VVLIJn (EV) = Lim _/nOl.(r) VVG(EV'E ’Ynn')(bn (Ynnr L )ds
r_ -r r -r
v = —-v =~ 8
(114)
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The appropriate 1/2 factors come from the limit expressed by
the right-hand side of Equation (114) so that the following

equation is true:

* *
at ( o,s, , at a,s ) (115)

A [0 _
na(_n_f_)-an(g) = L, an'

First we recognize that the left-hand side of Equation (115)
a,s

is the desired normal derivative. Next we substitute Y =Yt

into Equation (111) and then take the complex conjugate of

the resulting equation to obtain

at*, a,s, . at*, a,s _ ,4,s, a,s, ot*, ao,s
Ly (Ypatdon (vprtem) = A Sy rDrer’ (vprtir)  (116)
Combining Equations (115) and (116), we obtain
o
oY (xr) Lk
- n — = OL,S dp,S (] OL,S
n )&n (Ynn|)¢n (Ynnvr_x_') (117)
where we have used the convention that
o
Yy~ (x) .
—5— = -0_(x) * V() (118)

Referring to the definition of the Yié? given in Equation (97),

we see from Equation (117) that
n (L) _ (119)

on

Equations (112) and (119) yield the desired result
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v3rS e {Yum} (120)

which in turn implies that Equation (109) is true. Equa-
tions (100) and (109) together prove the desired result
expressed by Equation (99).

Shortly, we will interpret the significance of.Equation
(99). However, we will first point out the intrinsic con-
sistency of the equations that led to this result. There
were two intermediate results that occurred during the course

of this study that appeared as detriments to drawing desired
n
E
by Equation (79) became unbounded. The other initially

conclusions. One was the fact that the integral I_ given
appeared as a nuisance factor when we determined that the
operators Lg turned out not to be self-adjoint as described
in Appendix A. The analysis presented in this section showed
that both of these apparently undesirable results turned out
to be very desirable. The unboundedness of Ii is the under-
lying reason that precluded the consideration of ~Ygn 2S be-
longing to {Yiﬂ?}
facilitated the proof of Egquation (109).

The nonself-adjointness of Lg greatly

Returning to the interpretation of Equation (99), we first
prove that the elements of this single set which we now denote

o . . .
as {Yg} for notational convenience, i.e.,

{o) = Lreat = D07 (121)

contain the pole locations of the ¢a that satisfy Equations

(29) and (30), which we rewrite as

Lo (v) 6% (v,x) = 65 . (¥,5) (122)
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From arguments already discussed, we know that ¢a(y,£) is a
memomorphic function of Yy having all of its poles in the
closed left-half/y plane. First we will consider the possi-
bility that a pole at the location P has multiplicity Mnu
Next we multiply both sides of Egquation (122) by (Y~pnﬂ)Mna
and then set vy= p__ . Assuming we have not chosen an incident

no
field having the same pole location, the resulting eguation is

o a
Ls(pna)Rn(g) =0 (123)
where
RY(r) = (y- )Mn“ *(v,x) (124)
n'L T WWTPpy ¢ v,z -
Y Pna
Equation (123) implies’
Pra © Vent) (125)

which, according to Equation (121), implies

b, € {Yg} (126)

At this stage we have not presented an argument that all of

the members of in} are pole locations.

A major goal of this work is to facilitate the use of
complementary efforts related to SEM that have been generated
by different communities. In Reference 8, the following
asymptotic expansion, expressed in the nétation of this work,

is given as
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(£,t) ~ S_(z,t) (127)

E =

where

Yo T
Sg(r,t) = E c. e ™ ¢ () | (128)

and T = ct. ¢_(xr,t) is said to behave asymptotically like

E

Sg(r,t) for large t.

After performing only a cursory search, we found no
explicit representations for the cm's nor did we find esti-
mates on errors introduced by terminating the sum as a
function of either r or t. Despite our inability to obtain
this information, the existence of Eguation (127) together
with our result, Equation (99), benefits our state of knowl-
edge. A formal comparison of Sg(g,t),-given by Equation (60),
after the following substitution,

E,s
L Y 1 T Y
e nn = e nn = e Em (129)

with SE(

formal conclusions. The sum of all of the terms multiplying

Yo T
a particular e Em , i.e., allowing for degeneracy of the

r,t) given by Equation (128) yields the following

complex eigenvalue Yem in the representation SE(£,t) given

by Equation (128), is equal to the sum of the terms multi-

Yo T
plying the same e Em in the representation of Sg(g,t) given

by Equation (60). This formal equality has mutual benefits.
The terms contained in the representation Si(;,t) have
explicit representations in terms of surface guantities and

furthermore they are numerically calculable.
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The benefit in going the other direction is that we now
have additional reasons to believe that the remainder term
RE(E,t) becomes unimportant for large t. This result has
frequently been assumed to be true by workers in the EMP
community, based on the argument that Rg(g,t) was the inverse
transform of an entire function. This argument suffers in that
a very simple entire function can be identified whose inverse
transform would dominate S%(E,t) in a controlled manner. This

function for the scalar case is simply
£,(v) = Ae T (130)

If fE(Y) were the additive entire function for the case

where the time dependence of the incident field had a Dirac
delta time dependence, then the inverse transform of fE(Y)
convolved with the time dependence of a general incident field
could be chosen to yield Rg(g,t) which is larger than the
Sg(g,t). All that would be required would be to choose the con-
stants A and T so that this occurred. The asvmptotic nature of
SE(E,t) precludes this possibility for the scalar scattering
problem and suggests there is no hidden surprise in the

Rg(E,t) for the wvector scattering problem.

Before leaving the formal connection between SE(E,t) and
Sg(g,t), two additional comments are in order. The first is
just to note that the SE(E,t), which results from the volume
approach, contains the features discussed in the Introduction.
The second is that the form of SE
¢E(£,Y) has only simple poles at the location Yam* This

is very indicative that
follows from taking a termby-term Laplace transform of the

sum SE(E't)' We will shortly present a separate structured

argument that this is actually the case.
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OQur argument that ¢E(£,Y) has only simple poles requires ‘
a number of clearly identified mathematical statements to be
true. A crucial mathematical requirement is that Equation
(29) have the eigenmode solution expressed by Equation (38).
Changing the notation of Equation (25), we ask whether a
solution y(v,r) exists to the

LE (V0 (y,5) = F(y,1) (131)

for a given F(y,r) and furthermore we ask that the solutiocn

can be expressed as

% E
(oZ (v,m) 7 v
bv,e) = ¢_(v,xr) (132)
n=1 n
The conditions that ¢ exist for a specified F can be found in ‘

discussions of Fredholm operators since Lg(y) is such an
operator. The conditions for the validity of the EEM expressed
by Equation (132) require further discussion. A recently dis-
tributed report by Ramm (Ref. 6) presented conditions that an
operator very closely related to Lg(Y) could be inverted
according to Equation (132). In particular, he treated the
operator KJr presented in Appendix A. He concluded that, for

a suitable class of scattering surface shapes, the root
system of KT formed an appropriate expansion basis. He then
emphasized the limitations of this conclusion in that the root
system consists of both eigenvectors and root wvectors. In
order to utilize a standard EEM expansion, it is necessary
that there be only eigenvectors and no root vectors in the
root system. His conclusions concerning the root system for

o

K can be extended to apply to the operators Lg and Lé and we
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now focus on Lg. In order that Equation (132) be valid, it is
necessary that the root system of Lg contain only eigenvectors

and no root vectors. Ramm (Ref. 6) gives a set of sufficient
conditions for this to be the case, and shows that all of these
are readily satisfied with the ekception of the condition that

Lg is normal. Ramm points out that whether this sufficient condi-
tion is satisfied depends on the shape of the scatterer. He cites
some of his earlier work which demonstrated for the analogous
Dirichlet problem that a spherical scatterer yielded a normal
operator. Later in this work, we examine whether LE is normal

for both the sphere and spheroid. For the sphere, we conclude
that it is normal while for the spheroid we could only establish
that it is a complex symmetric operator. Despite this, we
conclude that the EEM solution for the spherocid yields the

correct solution that is obtained by the standard separation of

variables procedure.

We now consider Eqguation (132) as applied to a special case
of Equation (131). This special case is Equation (94a) with
o = E and the dummy index changed to i. For this situation
Equation (132) becomes

o0

V=Yg y
bgs (£) = E T (02" rom rgy vom) oE ) (133)
n=1 *pn (Y

We have already shown that for some n, say N,

}\E,S

N (YEi) =0 (134)

In order that the right-hand side remain finite and nonzero
S
(

at vy = Ygy r We conclude that Ag’ Y) has only a simple zero

at YEi'

Referring to Equation (132) for a source Fo(y,z) cor-
responding to an incident field have a Dirac delta time

49



dependence, we make the following observation concerning the
meromorphic function wD(Y,E). The poles of WD(Y,E) corre-
sponding to the zeros of the eigenvalues are simple poles. It
is conjectured that for many surfaces these are the only poles.
For the case where the incident field has a more general time
dependence, we simply convolve the inverse transform of the
Dirac solution wD(Y,E) with the specified time dependence.

We conclude this section by making an important distinc-
tion between the vector and scalar scattering problems. We
have just presented sufficient conditions for the eigenvalues
Ag’s(y) to have simple zeros. Equation (60), which represents
a standard SEM expansion for all cases of interest, vector and

scalar, interior and exterior, is based on the assumption that
a,B
n

tion we have presented sufficient conditions for this to be

all of the eigenvalues A (Y) have simple zeros. In this sec-
the case for AE’S(Y). Identically, the same arguments could
be applied to conclude that Ai’s(y) had only simple poles.

All that would be required would be to use Equation (94a) and
(94b) for o = I to obtain an equation analogous to Eguation
(133) for the interior problem. It now remains to discuss

the vector problem. As mentioned in the Introduction, there
has been work directed at extending the scalar volume approach
to the wvector (electromagnetic) case. We have not pursued
that vector extension to determine whether the vector analogue
of Equation (61l) has been established for the exterior vector
problem. If it has, the arguments presented in this work
would require minimum modification to draw analogous conclu-
sions to the ones drawn for the scalar case. The primary
modifications would be to utilize vector Green's theorems

and the free space dyadic Green's functions. This might be
readily accomplished; however, it is our view that further
insight into SEM can be obtained by continuing the study of
the scalar problem. We have two underlying reasons that led
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us to this view. One is that only sufficient conditions

have been identified that allow desired SEM conclusions to

be drawn. The other is that there are more finite shapes for
which analytic solutions exist for the scalar scattering
problem, the spheroid is only one of them. In this report.,
we have gained some information by examining the scalar
spheroid scattering solution; however, we have not exhausted

the information contained in that solution.



V. PROLATE SPHEROID

In this section we consider an acoustically hard prolate
spheroid and determine the eigenfunctions and eigenvalues of
the surface integral operaior. These eigenfunctions have an
explicit dependence on the Fourier complex variable k (or y
I Laplace transforms are employed) wnereas, as in the vector
case, the eigenfunctions for the special case of a sphere are
independent of k.

The scalar integral equation for an acoustically hard body

is
Z o (x) -f@(g') " - Glz'in) ds' = 077%(x), zes (135)
S
where
ikR
¢ = g s R =l

aG A ' T

'aT_l‘T = n(]_:'_ } < V'G
and 4'r') is the outward unit normal at r'. The corresponding

eigenvalue problem has the form

— 1
L@n KnCDn (136)
where
- (L _
L@n = (E K) @n
Ko =fq'> (x'y 25 as (137)
n n — an
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‘ The prolate spheroidal curvilinear coordinates &, n, ¢ are

related to the Cartesian coordinates x, y, 2z by the transformation

[(52-1) (1-n2)]l/2 cos ¢

b
[}
oj =

= L ar
z = 5 dén

where £ is the "radial" coordinate (1<£<x), n(-1<n<l) and
¢ (0<¢<2m) are the angular coordinates and 4 is the interfocal
distance. The surface of the spheroid is defined by E==£l.

The correspondence with the spherical coordinates r, 6 1is

P

td r, n+cos § as £ +»

N =

i.e., we let the interfocal distance go to zero and keep £d

finite. We also present the formulas for the metric coeffi-

clents hg' hq, h¢ because we will use them shortly:
1/2
[ 2
h, = g_(@ —-N )
5 2 £2_1
1/2
2
L= d (s —n2)
2 2
n 1-n
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The scalar Hermholtz equation
(v2+k2) & =0
has the following solution for outgoing waves

¢ =s__(e,n e, 8

fcosmo)
|sinmé |

where -

c = % kd
and Smntc,w), Réi)(c,i) are the angular and radial functions
respeetively. The equations they satisfy are given in the

monograph by C. Flammer (Ref. 11l). In the limit of a sphere,
Smn(c,n) reduces to the associated Legendre Polynominal P (cosB)
and Rég)(g) to the spherical Bessel Function h(l)(r) The
angular functions Smn(c n) satisfy the followmng orthogonal-

ity relationship

+1
f Smn(crn) Smn.(c,n) dn = Gnn, Nmn (138)
-1

where Nmn is the normalization factor given in Reference 1ll.

In terms of the spheroidal functions the Green's function G

has the following expansion

elkR lk )
4TR E : Z 27rN pg(crn) sz(c,n') cos plo-6")
P

(¢, &) g > g (139)
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(1

where Rpg)(c,i) corresponds to j,(kr), R

éi)(cli) to hél)(kr)

and Npg is the same normalization factor as in Equation (138).
We are now in a position to show that the eigenfunctions
of L defined by Equation (137) are:
F

)Icosm¢1
|sinm¢ |

o
i
n

= S (e, (140)

Eguation (149) shows the explicit dependence of ®mn on k or
y({c=(1/2)kd = (i/2)yd). We begin by noting that the inte-
gral operator involves the normal derivative of the Green's

function G. 1In order to be able to empl?g)the representation

given by Equation (.39) and operate on Rpi (c,&') inside the

sum, we recall that

1 \y 26 4
2 O () ‘f o (1) gpr 98

S
— i - \ 1 ai 1
- an(E) %igl.}f qbmn(£ ) on' s (141)

-
—

where G(El,n',¢';€,n,¢) in the second line has ¢ # gl; i.g.,
its unprimed radius vector corresponds to a point off the
surface. In the first line the limiting process has been:
completed and both r and r' correspond to points on the sur-

face ¢ = £,- In view of Equation (139) we can write
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3G 1l 3G
an' hg' 9g!

£ =g
= ik (2-8 )
= 2(TTN zp Spl(.c,n) Spsz,(c’”') c05p(¢_—¢‘)
=0 1=p P
1 4 (1) (3)
R, dE; Spl (cr2)) Ryp (er) £ > g
1

If we now notice that

ds' = h_,dn'h,,do"

R
1

and take into account the orthogonality relationships of Sm
and of the trigonometric functions, we f£ind that

: - 1y oG '
lim ./rymn(g ) a7 ds

g—*%l >
=]
= ikd (-2 (3) (= d (1) -
2 (”l l) Rmn (c’al) dEl Rmn (C’gl) ‘mn(E)
where @ is given by Equation (140). Combining Eguations
mn

(137), (141), and (l143) we obtain
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n

(143)

(13€),

(144)




where the relationship ¢ = (1/2)kd has been used. 1In order
to simplify Equation (144) we employ the equations satisfied
(3) R(l)(Ref. 11) along with their

mn’ “mn
asymptotic expressions for large £ (also given in Reference 11)

by the radial functions R

to obtain the Wronskian relationship

(1) (3)
(3) ?Rmn _ = (1) “Ron _ i
Ron' @z R aE T 2 (143)
g mn 3 c(i -l)
Combining Equations (144) and (145) we obtain
. 2_ (1) - da  _(3)
‘an T lc<€l l) Roan (C’gl) ag, Rin (c,&l) (146)

If the Laplace transform variable y is used we simply replace

¢ by iyd/2 wherever c appears.

Now that we have determined the eigenfunctions and eigen-
values for Equation (136) by utilizing Equaticn (142), we can go
back and give an explicit expansion of 3G/3n' when both r

and r' are on the surface of the spheroid. The answer is

0 2
1-2 A
a_G__. = __.—p_'q.'. = f (147
on' z : Z Z 2Np'& @pﬁo(g @p%o(?. ) )
2=0 p=0 o} ’

where ¢ stands for odd, even. In Appendix A we show that for
both tihe spheroid and the sphere the adjoint operater L+ is
equal to L* where the asterisk signifies complex conjugation.
For the sphere we also show that L i1s normal. In general, in
order to solve Eguation (135) we need the adjoint eigenfunc-
tions. A formula for the adjoint operator is derived in {
Appendix A.

o
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In the limit of a sphere we easily obtain

_ . fcosmo |
s 2 . (L)'
kn = i(ka) jn(ka) hn (ka) .
= - (va)? i_(ya) k! (ya) (149)
n n
where £'(x) = df/dx. The eigenfunctions given by Equations (140)

and (l148) form complete orthogonal sets in their respective
domains (-1<n<l, 0<¢<2m for the surface of the prolate spheroid
and 0<9<m, 0<0<2m for the sphere) and, consequently, they repre-
sent the complete solutions to the eigenvalue problems. Along
with the eigenvalues they can be used to solve the integral

3, ,8
3 (x) =Z L%Tx_“ 2, , (150)
) ;

where

and @i, ki’ NQ are the eigenfunctions, eigenvalues and normal-
ization factors, respectively. Employing Equations (140) and
(1l46), we can show that the scalar field ¢ evaluated at the
surface of a hard spneroid excited by an incident plane wave

elkz is given by the well-known formula




Z. .n-1 -1
s = § : i d (3)
@ N [d Ron (C’El)j‘ Son(crl) Son(C,ﬂ)

n=0 (151)

JW
I—‘l\)

by noting that on the surface of the spheroid

\ ~ DD
k2 _ Z 2t g (c,1) 5 _(c,n) RD (c,Eq)

N on on on
m on

and that

)

S elkzs dn = 21 SO (c,1) R( (c, Eli

For the sphere it 1s easy to derive the SEM expansion by
first employing Egquations (148) and (149) and assuming an

, , -YZ
incident plane wave e f

COSe) "YZ Ccos

; m¢)
sSln m cOs
: ’{) ZZ ' ) N Pn(COSG)Sinmd)'.
mn

n=0 m=0 ln(Ya)kn va

Following the methods employed in References 1 and 2, we arrive

at the following SEM expansion

- n+1
Sz,y) = th Z E : (2n+l ): __ 1 . P (cost)
"nn ! ‘) (’ Ynn') n

(152)
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where

CF(x) = exxzkr'l(x) , F'(x) = g_}F{.

Yppt &re the roots of ké(ya) = 0 and to(= ~a/c) is the instant
Equation (152)

at which the wavefront first hits the sphere.
corresponds to class 1 coupling coefficients as expected from

the vector case.
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VI. NUMERICAL RESULTS

In this section we present numerical results for the
zero locations corresponding to the vector sphere problem.
These zeros were found by employing the method described
in Reference 1. Figure 2 shows the division of the surface
the sphere into zones, where N is the number of slices

LONG

in the azimuthal direction and NLAT is the number of slices

in the polar direction.

Table 1 presents the numerical results. Notice that the

search routine (Ref. 1) locates clusters of zeros corresponding

to a true single zero. For example, for n = 1 and NLONG = 4,
NLAT = 2, we obtain the three zeros -1.0202+10.0862, =1.1012
-10.0522, ~-0.9408~10.0365, whereas the real zero is S110 ~1+1i0.

The reason for the clustering is that zoning transforms the sur-

face of a sphere into a different surface and the three-fold

= = - | -
degeneracy (n=1, m=-1,0,1l} is resolved. As NLONG ' NLAT —
all three zeros will coalesce into the one zero S11p if we
ignore numerical roundoff error. Also notice that as we increase

the number of zones a) more zeros belonging to a cluster are
found and b} the norm of the error of the average cluster value

for a zero decreases.
The rectangular area we employed is defined by:

Coordinates of the lower right corner: (=1.55, =0.30)

Coordinates of the upper right corner: (0.00, 1.30)
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Figure 2. 2Zoning scheme. For the figure

NLONG = 8(A¢=45"), NLAT 2(48=90").
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TABLE 1.

POLE LOCATIONS AS A FUNCTION OF ZONING

T
Number of zones Zeros
No. of Designation Real Imaginaryr
N ong NLAT zeros of zeros part x(-1) part
1 1 2 $110 0.8787 0
$o11 0.5554 0.8763
2 1 4 $110 0.9763 0
$110 0.9306 0
1 o171 0.5701 0.8663
$o17 0.4525 0.8250
2 2 7 S500 1.3252 0
$110 1.0013 0
$110 0.9620 0
S121 1.4398 0.8410
S121 1.1146 1.0637
517 0.5374 0.8897
So11 0.5128 0.8523
4 2 8 S110 1.0202 0.0862
5110 1.1012 -0.0522
121 1.4621 0.8491
5197 1.4610 0.8483
So11 0.56912 1.912328
So11 0.56913 0.912322
So1 0.4892 0.8586
4 4 9 S500 1.5479 0.0033
5110 0.9813 0.0023
S110 1.0396 0.0103
110 1.0269 -0.0125
S107 1.4957 0.8339
191 1.4588 0.8742
So11 0.5670 0.8737
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TABLE 1. CONCLUDED

Number of zones Zeros
No. of Designation Real Imaginary
! NLONG NLAT Zeros of zeros part x(-1) part :
' S 0.5016 | 0.8648
5911 0.5229 . 0.9242
8 4 8 $110 1.0055 0.01258
s'l'IO 1.0179 -0.0067
5121 1.5063 0.9291
| S101 1.4548 0.8388
? s 0.5600 0.9043
1 211 ’ )
i SZ'['I 0.5071 0.8196
” 79
: 511 0.4651 0.89
sllo = 1, s2ll = -0.5000 + i0.8660, SlZl = ~1,5000 + 1i0.8660
5220 = -1.6%61 + 10.0000
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APPENDIX A. ADJSOINTNESS RELATIONSHIPS

In this appendix we derive an expression for the adjoint
to the scalar integral operator corresponding to an acousti-
cally hard body and we specialize it for the case of the
soheroid and sphere. -

We start with the exterior equation

5 () -f@(_l;')———'——dS' E(E-—K)@EL@ (A1)

where I is the identity operator.

The adjoint is defined through the relationship

(v,Le) = (LYy,o) (32)
where we have used the inner product definition
(£,g) EJ/.f*(E) g(r)ds
S
i.e., we can define
- 1 f
Lt = S - kT (A3)

To find KT we write

(v,KQ) =/

Y ¥ (r) Ko (r)ds



where the penultimate step involved an interchange between ,

r and r'.

Thus, according to Equation (A2)

. 3G *(r x")
T, = - 1 i 1
KTy f b(r') ——o— ds (34)
Sl
where .
3G(r,r') aG(r', r) N
an - sn = n(z) Ve
_YR
_ 1 e .2
= -(i + Y) amn Rn(x)
and
3G (r'; ) ~
= n(£')' V'G
an'
-YR
_ {1 e 2 ;

3G(r';x)
1. = = ¢o= (I - LI
5 #(x) +/©<_r_')— as' z (3 +K) e =L9

T T .
and thus the adjoint operator is (I/2) + K where K 1s given

by Equation (A4). cq




For a spheroid one can use Equation (147) to cast the oper-
ator in the form

1 l—ZKm
Lé = 5 & -/ @(E )Z —71\? @m(_r_) @m(E) d£
m

and employ the procedure outlined in this appendix to show
that

+ *

L =1L

The adjoint eigenfunctions of L+ are then ¢;. For a sphere,
in particular, one can choose real eigenfunctions ¢m and
consequently the adjoint eigenfunctions are identical to
the ¢m's; i.e., the operator L is normal.
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APPENDIX B. SCALAR ANALOGUE OF THE ELECTROMAGNETIC
PSEUDOSYMMETRIC THEORY

We begin this appendix by viewing certain properties of
the eigenvalue for the exterior spheroid scattering problem,
which was derived in Section V. This eigenvalue is repro-
duced here for convenient reference. '

I 2 (1)
xmn(y) = lc(gl-l)Rmn (cfil

d (3)
) EEI Rmn (c:El) (BL)

where

c = vyd (B2)

i
2
and the associated functions and parameters have been defined
in Section V. Our effort in this appendix is motivated by
examining the two ways in which the zeros of Amn(Y) are

obtained. They are

d (3) , _
dg; fmn ©08) 7O (B3)
and
R&’ (c &) = 0 (B4)

An examination of whether Amn had an as yet unexplained zero
at v = 0 was conducted. We found that the multiplicative ¥y
that appears in this eigenvalue is cancelled by an appro-
priate term that is contained within the dRéi)(c,El)/dgl
factor. Equation (B3) is an explicit example of the con-

nection we proved between the significant zeros of the
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eigenvalue and the Lax-Phillips complex eigenvalues. Equa-
tion (B4) is the clue to pursue the results developed in this
appendix. That is, it yields the interior volume eigenvalues

associated with the Dirichlet problem.

We now begin our investigation of this issue by deriving
the interior Dirichlet integral equation. First we combine
Equations (7), (9), and (22), employ the change of variables
previously described in which r' becomes the integration

variable and L, an observation variable in Vv and employ the

II
Dirichlet condition ¢? = 0 on S, to obtain

$2(x,) +‘/”G<£V,£')c1<£')d8' = ¢$nc<gv> (B5)
"8

where we have affixed the superscript D to indicate Dirichlet
boundary conditions are employed and we introduce the

definition

Dy

7 (") (B6)

We now take the gradient of both sides of Egquation ‘B5) to

obtain

7 05(x) +_/erG<£V,£')oI<£')ds' = 7 oI (z,) (B7)
S

Identifying a point r on the surface as the point approached
by r, . and defining A (r) at the point r , we first take
‘ﬁI(E) dotted into the preceding equation and then take the
limit as I, approaches r to obtain
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3G(x,x")
$ ot (o -~/f —5=— o (x") = FL(p) (B8)

where we have used Equation (26) and the definitions

o ‘ _ 96(e,r')
n(E) . VVG(EV'E )}r r = __3—1'1—— (B9)
—V —
and
“A(r) » v _¢iRC(r ). = FL(x) (B10)
= v'I = £v=£ g'=

The sign of the % 0 factor in the described limit is deter=~

mined in the same manner that was described in treating

Egquation (24). We will now write Eguation (B9) as
I _I
Lipd = Fg (B1l1l)

and this equation serves as the definition of L We now

™D’

o+
compare L with LE' given in Appendix A and f£ind that

ID

*
L _ LET

p = e (812)

We now consider the interior Dirichlet eigenvalue equation
ol = 21/8./D51 (B13)

Next, we take the complex conjugate of Equation (B13), substi-
tute Eguation (Bl2) into the result to find
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* * *
Et I* _ ,I,s,D% I

L =
S n n n

(B14)

Comparing Equation (Bl4) and Equation (37), we conclude that

{xi's} = {Ai'S'D} - (B15)
and
o2t b = ol } (816)

Equation (B1l5) is consistent with the spheroid eigenvalue
result expressed in Equation (B4) and in addition, it is very
significant by itself, as discussed in Section II. 1In par-
ticular, it implies the existence of the extraneous zeros of
the external eigenvalue, which we will now argue do not

contribute to the desired SEM expansions.

Specifically, for the external Neumann surface problem,

we want to show that

nE(sErSeEXy oy (B17)
s '“nn
where sié?’EX is an extraneous zero of Ai’s corresponding to

the zero of the interior Dirichlet problem. To accomplish

this, we first employ the identity

B ID ID..E E 2.ID ID_2 . E
7 . - = - (
v [¢incv¢n ,¢n vcbinc] ¢incv ¢n ¢n v ¢inc B18)

This identity is true for general functions ¢Enc and ¢iD, but

we are interested in the case where ¢?nc is the incident field

excited by the source in the exterior region. That is,
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2 2, ,E
(Vo= vy )éinc = fE (B19)
We are interested in the case where ¢iD are interior volume
Dirichlet eigenfunctions satisfying the eguation

5 .
2 .p“, ID _
(v -'YIn)¢n = 0 (B20)

and the Dirichlet condition on the surface
) =0 (B21)

Substituting Equation (B19) and (B20) into Equation (B18),
integrating over the interior volume, applying the divergence

theorem, and the Dirichlet boundary condition, yields

2
E o~ ID .. _ (. D°_ .2 E . ID .. ID_E
J/-mincn1'7$n s = <{In f )~/f ®ine®n 4V ./r Cbn £ av

s VI VI (B22)

Recalling that £E is nonzero only in V we rewrite

E 4
Eguation (B22) as

2
~ . o.IDY E .. _ 2_\D> E _ID
v/ﬂ(— R Vén ) q)inc‘:iS - (Y ‘Tn ./r djinc¢n av (B23)
S VI

In order to draw our desired conclusions from (B23) without
leaving any gaps, we would have to reproduce the results
connecting the surface and volume solutions for Neumann

boundarv conditions contained in Section IV all over again
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for the Dirichlet boundary conditions. At this point we will
not provide these details and we will thus have the indicated
gap; however, we see no difficulty in eliminating this gap.
Assuming the Dirichlet connection vYields the same results as
the Neumann connection, it then follows that the volume eigen-
value Y?n is a zero of the surface eigenvalue Aiﬁs’D.
According to Equation (B1l5), it follows that Y?n is an extra-

neous zero of KE’S which we can formally state as

E,s,EX _ D
*hn' = Y (B24)

where c 1is the acoustic propagation velocity as opposed to

the quantity defined by Equation (B2), and m can represent

a multiple counting index. To proceed with the argument it

is necessary to relate -ﬁI -V¢iD and the oi which satisfy (B13).

A Dirichlet extension of the Neumann arguments presented in

Section IV would be necessary to conclude that Oi(Y?n) =
Anﬁl' V¢iD where Al is just a proportionality constant.

Assuming the described Dirichlet egquivalents of the Neumann

arguments have been established, it follows from (B23) that

I/ E,s,EX\ E E,s,EX
J/ﬂgn(sné,’ )¢. (s ' ds = 0 (B25)
S

This can be written as

I* E,s,EX E E,s,EX ) _
(On (Shn! iz ¢inc(snn' Yy =0 (B26)
and using Eguation (Bl6), we write this as
E+ E,s,EX E E,s,EX ) _
(027 (sE15 Ry, 0B (sE13F%)) = 0 (327)
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The left-hand side of Equation (B27) is the original defini- ‘
E<SE,S,EX
s “nn'

tion N } and we now have our desired result.

Having obtained the desired result, we could end this
appendix. Instead, we will present a number of results that
have some aspects in common with the results that have been
presented. To do this, we summarize the essential forms of

the scalar operators that have already been defined. For

the external Neumann problem, we have
for the internal Neumann problem we have

for the internal Dirichlet problem we have

Lo =% %", (B30)
2
and for the external Dirichlet problem, it can be shown that

T* (B31)

5 - ()

() - {2}
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{657} = {oI) (B34)

FORNES
T
[ )
{o1™} = {oF} (838)
b pre)

as well as Equations (Bl5) and (Bl6), which played a central
role in this appendix. 1In addition, the following eigenvalue

equalities hold.

E,s _
IS 1S = (B40)
ZErSiD oy xi's'D =1 (B41)
AErs EesD oy (B42)
n n
kI’S + kI,s,D =1 (B43)
n n

Finally, for the spheroid, which includes the sphere as a

special case, we have

K' =K (B44)
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and we have the following additional set egualities:

CIRE
CIRNT R
() - {27
() - (o)

For the sphere, the eigenfunctions can be chosen to be real,
thus eliminating the need for the conjugate. This aspect
of the sphere solution is sufficient to show that XK and Kf

commute, thus making K normal.
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APPENDIX C. A USEFUL SCALAR SEM RELATIONSHIP

In this appendix we will present an alternate represen-
tation for aié? which plays a prominent role in the final SEM
expansion given by Equation (60). There are several alter-
nate forms already possible for this quantity, based on
material already presented in this report, and the form we

now choose is

ot o
o, s (¢n (s), Cbinc(S))
a /v = s (Cl)
A _a,s
n s=s_']}
nn

Implied by this form is a normalization of the adjoint eigen-
function that appears in the expression as well as a normal-
ization of eigenfunction ¢i. The normalization that has been

implied so far in the text is

e

ot
(s), ¢n

(6 (s)) =1 (c2)
Such a normalization was always possible because we could

have chosen the unnormalized functions ¢i5 and ¢§Q and formed

the inner product

ot ,a _ AQ
(4007 %n0) = 2n (€3)

The normalized eigenfunction and its adjoint can then be

obtained by dividing each by (Qg)l/z. We are now in a posi-
tion to express Equation (60) in terms of the unnormalized

eigenfunctions as
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o N{(n) a,S

S t
o _ ¢,S a nn'
SS(EIt) - Z Z aany ¢an|(£)e (C4)
=1 n=1
where
o o o, s _
¢an.(£) ¢nQ<snn.,£) (C5)
and
oot o
oS (9007 %5nc (C6)
Qonn' Q% oy UsS
Q7 A _ao,s
n ' n s=s_ '
nn

It is the denominator of the last expression that can be
written in an alternate form. To accomplish this, we write

the original eigenvalue equation

o o _ 10,8, .0
Ls(s)¢nQ(s,£) = A4 (o)¢nQ(s,£)

and take the derivative of both sides with respect to s to

obtain
o o o,S o,
d 7
aLs ¢u + .Y aq)nQ ~ kn ¢a s 2 %S adJnQ (c7)
s "nQ s 3s ds nQ n 38
Next we take the inner product of all terms with ¢gg to obtain
o o o,S 360
'¢a+ aLs o> )+ (¢a+ o a¢nQ - dKn Qa + ka,s(¢u,f énQ)
nQ ' 3s "nQ nQ " “s 3s ds n n nQ ' 9s
(C8)
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The second term can be written as

o & >
(Uu+ X adpl'lQ) = (La+,a+ a¢nQ = \%/8 ¢a+ iig) (C3)
"ng © “s Tas s "ng’ T3s /T 'n nQ * 9s

Substituting Equation (C9) into Equation (C8) and canceling
terms yields

ar%rs 5L
n o (¢u+ s 0 ) (C10)

ds Qn - nQ '’ 3s ¢nQ

The desired expression is obtained by substituting (Cl0) into
(C6) and it is

ke o
o s (%50 * ®1nc)
onn' = 3 (C1l1)
at aLs ¢a s
cI)nQ ' 9s "nQ s=g%’

nn'

We now have a choice of dealing with an explicit normalization
procedure implied by Equation (C6) or the normalization insen-
sitive procedure implied by Equation (Cll). It should be
noted that the electromagnetic SEM equivalent of the material
pPresented in this appendix has long been established using

virtually the same procedure.
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APPENDIX D. A TIME FOR THE EQUIVALENCE OF CLASS 1
AND CLASS 2 COUPLING COEFFICIENTS

In this appendix we show that when a perfectly conducting
body 1is illuminated by an electromagnetic pulse of finite
width T the SEM responses with class 1 and class 2 coupling
coefficients are identical for times t > T + (L/c) + tor
where L is the maximum body dimension in the direction of prop-
agation and t=to corresponds to the instant at which the pulse
wavefront first hits the body.

First we show that this is true for a delta function inci-
dent pulse, i.e., for T=0. The coupling coefficients are
defined as follows

n;l) = Ae(Ya‘Y)ctqj[ilnc(E’Ya). Ea(E)ds (D1)
S
(2 2 inc .
Mg = AQ/.E (£,Y) - & (x)dS (D2)
S

where A is a common factor and ga(g) is a coupling vector.

For a delta function pulse

inc

' (z,v) = plrye”¥? (D3)

where, for simplicity, the direction of propagation has been
chosen along the z axis, with z=0 at the "center" of the body,
ﬁ =n x h, n is the unit normal to the surface of the body and
2 is the pclarization vector for the incident magnetic field.

In view of Equation (D3), Egquation (D2) can be rewritten as

82




where

V(x) = p() 2 (x)

If we Laplace invert the SEM simple-pole expansion

term is

L (2)

(2) . -1 o 1 Y (ct-2)
T = L = = : — ¢(xr) as (D4)
A(Y Yoe) Zﬂl/[ -1,
S C

where CB is the Bromwich path. For times t>(z/c)

Yu(ct-z)
T =fw(£) u(t-z/c) e ds

The pulse wavefront has just passed the body at t=(L/c) + s
and

Y.ct -y 2
{2 = ¢ @ fw(l.’_) e % das t>(L/c) + t (D5)

The corresponding term for class 1 is
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~yct _-v _z+yct
p D o e 1 e - ° (r) dayds
2mi Y=Y, viz) dy
S C

Y. Cct -y 2
e ¢ j{w(g) e ¢ as t>t
.

(1) (2)

and T is identical to T in Eguation (D3).

For a general incident pulse

3UC = £(v) Blx) &VE
and
(2y _ 1 £(y)ey (Ct-2z)
T o= 2wi./J[ Y=Y, v(z) dyds
S CB
Y ct Yit-t_)c
(LY _ 'a’7o 1 ="/ wy 2
T =e T _/[ £(r)e e % y(r) dvds
Y=Y, =
S CB

We see that the above expressions involve the product of £ (y)

with another function of y and, consequently, the convolution

(2)

theorem can be employed. If we rewrite T as

T(z) = E%I‘/.f(y) p(y) eYCt dy

‘s
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e V%
p(y) Eij_Y Y (x) ds

then
t

p(2) =/F(t-"r) P(T) AT (D6)

-0

where F(t) and P(t) are the inverse Laplace transforms of f(y)
and p(y) respectively. Similarly, for T(l) we can write

1
T = %/fm aty) €% ay

Y, Cty e—Yto
d(y) = e v (x) 4as

(1) =/F(t—1) Q(t) 4ar (D7)

The calculation for the delta function pulse showed that P (t)
is equal to Q(t) for t > (L/c) + to. We will now show that

T(2) given by Equation ( 6) is egual to T(l)

given by Equation
D7) for t > (L/c) + T + to where T is the pulse width (Fig. D1).
This is done simply by plotting the products F(t-1) P(T),
FP(t-1) Q(t), and observing with the aid of Figure D1 that

for t > (L/c) + T + to’ T(Z) and T(l) are indeed egual.
Notice that as T+« the SEM responses with class 1 and class 2
coupling coefficients are different for all times as noted

in Reference 1.
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F(t~T)

Figure DI1.

A /
- .
— ( "
////é(T)
e T £
(L/c) + to

The four graphs show how to plot the products
F(t-1) P(1) and F(t-T) Q(T).
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APPENDIX E. MAGNETOSTATIC IMPLICATIONS OF
COUPLING COEFFICIENTS

In this appendix we calculate the static current density
induced on the surface of a perfectly conducting sphere immersed
in a homogeneous magnetic field by calculating the class 2
SEM current density for a step function incident pulse as t-«.
This static response has the correct 6 and ¢ dependence, as
it should, but an incorrect numerical coefficient.

To facilitate the analysis we assume that the direction
. C . . i .
of propagation is in the z direction and that H ne is in the
y direction. This situation corresponds to a polarization

~ ~

index p=2 with el=ez, e2=ex, ez=ey (el=o, ¢l=ﬂ) (Ref. 12). Thus,

following Baum's notation and the results in Reference 12

cl,n,n',l,o,z 0= (—l)n+l H%%E%T P1,n,n'
Cl,n,n',lle,2 (g,m) =0
C2,n,n',1,0,2 (0,m) =0
€2,n,n',1,e,2 (0,m = (-1t 5%%%%? Dy,n,n’

§
t

where o,e stand for odd, even and only the m=1 terms are non-
zero. The class 2 coupling coefficients have been evaluated
in Reference 1.

LR - '
inoad [Yaln(Ya):I /ya

- ,
bt s e va)
n Y=Yn,

nl
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in(Ya)
; 0
ln(Yn,n'a)

Thus the current density induced on the sufface of the sphere

C
2,n,n",m,c,p

is

_ R 1
T = £ D DM o2 — e Eaio
n=1 n' ¥ Yn n'
Q 1
+
nn,n',m,eu’- e *n,1l,e
n' Y Yn,n'
o R a
=> (-pntt 2ol o mim! -
n(n+1l) EE: R '
n=1 n' (Y Yn,n' a
. (a/c) Dy ;i [Yain(“raﬂ 2
{[Yain(Ya)]'/Ya} . va —nrlso
Y=Yn'nv
YQ a (a/c) D
+ Ze n,n' 1 2,n,n'
, _LQ . Q
n' (Y Yn’n!)a ln(Yn,n! )
Xin(ya) Qn,l,e l (E1) .

where £(v) is the Laplace transform of u(t), i.e., Je-

Tec evaluate J(r,t) as t+= we employ the limiting process
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lim sE(s)
S+0

lim £(t)

oo

where f(s) is the Laplace transform of £(t). Thus we should
evaluate cyJ(x,y) as y»o. We have

!
[‘rai (Ya)} i_(va)
n o n _ n+l .
—a =i (va) + Y3 - 141 (va) + ory i, (va)
and
lim i_(vya) = 0 n > 1
Yro P Z
0 n > 1
. +1 .
lim 2= 4 (Ya)<
v>0 Ya n 2_ n =1
3
Thus
lim J(xr,t) = 1lim cYJ(r,Y)
troo YO -
YR a
-(a/c) Dl 1o o 1,0
—_— 14 14 R
R . R R R =1,1,0
T1,0% lz(Yl,oa) " (Z/Yl,oa) ll(Yl,oa)
We have
(a/c) D1 1,0 =1 Y] o2 = -1
il(-l) = -il(l)= -.36788, i2(-l) = iz(l) = ,07156
-cos & &, +cos 6 sin ¢ &

Ri,1,06 F 6

¢
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and

lim J(x,t) = .45568 (- cosrbé6 + cos B sin ¢ é¢)

oo

The correct response has a numerical coefficient equal to
1.5 instead of 0.45568., Since the SEM solution which
employs class 1 coupling coefficients is equivalent to the
Mie solution, the use of class 1 coupling coefficients must

yield the correct magnetostatic solution.
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