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Abstract

This report extends the previous work on a single-surface shielded
enclosure of arbitrary shape to a multi-surface enclosure with or without
electrical bonding between the shields. It is found that the inductive
mutual interactions among the shields and the bonding straps reduce the
effectiveness of a multi-surface shielded enclosure against the penetration

of external magnetic fields,
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I. INTRODUCTION

One of the most effective methods of protecting a system from undesirable
EMP effects is by use of shielding. Although the basic principles of
shielding for a single-surface énclosure are well understood (Ref. 1), the
extension of these principles to multi-surface enclosures is by no means
straightforward. Unique to multi-surface shielding is the mutual interaction
among the shields, which may degrade the intended shielding performance of
the enclosure. Another unique feature is the bbnding that is often employed
between the shields in order to reduce electrostatic hazards. This bonding
practice may have an adverse effect on the protection of a shielded enclosure
against magnetic-field penetration. The effects of shield-shield interaction

and bonding will be treated in this report.-

Figure 1 shows various topics that will be addressed in this report.

In Section II, the problem of two concentric spherical shields will be solved
using the theory of inductive shielding (Ref.1), and the results will be
generalized to N-surface spherical shields. The corresponding results for
cylindrical shields will be presented in Section III. Equivalent circuits
will be constructed in Section IV to interpret the analytical results for

a two-surface spherical enclosure; the results will be generalized to two-
surface enclosures of arbitrary shape. 1In Section VI the effect of bonding
on magnetic-field penetration into a two-surface enclosure will be discussed.

Finally, the most important results are summarized in Section VII.

The underlying assumptions of inductive shielding are (1) the electric
field is neglected everywhere except in the enclosure's wall where it is
related to the induced current by Ohm's law, and (2) the wall thickness
is much smaller than the typical linear dimension of the enclosure. 1In
addition, this report assumes the wall thickness to be smaller than the

wall's skin depth, except in Section V where this assumption is removed.
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II. SPHERICAL SHIELDS

In this section, the_problem of two concentric spherical shells will
first be treated with explicit simple engineering results given in frequency
and time domains. The results for two shells will then be generalized to N
concentric spherical shells. Discussions of equivalent circuits, generalization
to shields of arbitrary shape, and effects of electrical bonding between the

shells will be relegated to later sections.

1. TWO SPHERICAL SHIELDS

In Figure 2a is shown an enclosure with two concentric spherical shields
immersed in a slowly varying magnetic field Ho(t). Insofar as the penetrant
field'Hi(t) is concerned, one may replace F;gure 2a with Figure 2b with
appropriate boundary conditions that duplicate the shielding properties of
the walls (Ref. 1). The magnetic scalar potential & for the three regions shown

in Figure 2b takes the form

) a)
@l = - Hor cosf + A ;E-cose T Z_al
3
a1
@2 = Brcoss + C ;7 cos8 a;>r>a, @8]
<I>3=Drcose r.<a,

where ﬁo is the Laplace transform of Ho(t). The constants A, B, C and D are

determined by the following boundary conditions (Ref. 1 and Appendix A):

) d
or %1 T or %20 at r=a,
(2)
J _ 9 _
Py ¢2 . ¢3, at r-—a2
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2

Vo (¢,-%,) = su Ao ® at r=a
S

3
27 %1 0°1°1 3r 1° 1
(3)

¢ at r=a

= g A _a_.
Ho%2% Br %20 2

2
v -¢

¢ (25-9))
Equations 2 mean that the normal component of the magnetic field is continuous
across the shield, while Equations 3 state that its tangential component is
discontinuous by the amount of the current induced in the shield. From

Equations 1 through 3 one finds that

H
i 1
—+ = 3 5 (4)
Ho (ld-Tls)(li-Tzs) - (az/al) T 7,8
with
= 1 a A
173 H®191%
(5)
=1 a A
T2 T 3 Ho22%2%)

If no interaction between the shields is assumed, Equation 4 becomes

i

2 - : (6)
(l+rl®(l+12®

ja o]

o .
no inc

as one would expect, since Equation 6 is the product of the transfer function

of each individual shield. Equations 4 and 6 are plotted in Figure 3.

The time-domain solution of Equation 4 is

Hi(t) 1 < —t/Tl —t/T2>
= e - e
3

(7)

H - -
) 2
. /QTl-TZ) + QTltza

10
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where

21112(1-a3)
Tl,z = (8)

2 3
114-12 s /(Tl-rz) + 4T1T2a

and o = az/al, while the time-domain solution of Equation 6 is

H. (t) 1 -t/Tl -t/T2
L —— le - e

B, 1T

(9)

no int

Here, Ho is the impulse strength of the external fields, and for most
applications can be taken to be the time-integral of the magnetic field of

a typical high-altitude EMP (Ref. 1).

Equations 7 and 9 are plotted in Figure 4 where one may see that for the
case a2/al = 0.9, the neglect of shield-shield interaction amounts to 20%

underestimate of the penetrant field.

From the viewpoint of the EMP hardness designer the currents induced
in each enclosure's shield are important, since they are the only means to
prevent the external field from penetrating into the interior of the enclosure.
Let il¢ and ﬁ2¢ denote the induced sheet currents in first and second shields

of Figure 2. Then, from Equations 1 through 3 one obtains

od 3
~ 1 2 1 1
Ky == - == (at r=a,)
14 " a 3 a 20 1
3 2
_ 3 . Tls(l4-Tzs)-a T,T,8 _
= -+>H sinb (10)
2o (1+1t,8)(Q+1,.8) - a3T T s2
1 2 12
0% ad
~ 1 3 1
K = - = - = (at r=a.)
2¢ a, 36 a, 36 2
- T.8
- - % i 2 : 5 sing (11)
(14’T15)(1*‘T25) - AT T,s

12
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These expressions for the currents will give a clue to construct equivalent

circuits in Section 1IV.

2. N SPHERICAL SHIELDS
SR IS - 1
i i i

into a two-surface, three-surface, -.. N-surface spherical enclosure.

Let H denote, respectively, the field that penetrates

.o

For a two-surface enclosure Equation 4 gives

3
a
ﬁo/ﬁiz) = (l+'rls)(l+‘rzs) -(g-i-) 'rl'rzs2
=1+ + + [1 (a,/ )3] 2 12
= (Tl Tz)s i- a,/a; T1T,8 (12)

For a three-surface shielded enclosure (Fig. 5a) one uses the same,

although more complicated, procedure for the two-surface enclosure and finds

2

ﬁo/ﬁ§3) =1 + (114-124-13)5 +-[1 - (az/al)3 ]rlrzsz~+ [1-—(a3/a2)3]rzr3s

3 2 3 3 2
-+[ 1- (aB/al) ]13119 4‘[1-(a2/a1) ] [l-(a3/a2) ]1112135 (13)

The poles of ﬁi(s) in the complex s-plane for two and three spherical
shields are given in Table 1. These poles will immediately enable one to
plot the frequency spectrum of the penetrant field, since they are the
"break points" in the log-log scale plot (Fig. 6). From the table it is
clear that as the second and/or the third shield get closer to the outer
shield, the pole corresponding to the outermost shield moves toward the jw-
axis away from its unperturbed value -1, while the pole corresponding to the
second (third) shield (the second (third) column of Table 1) moves away from

its unperturbed value -1/a (—l/az) further away from the juw-axis.

For an N-surface spherical enclosure (Fig. 5b) one can write down, on

a close examination of Equations 12 and 13,

14
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TABLE 1. s-PLANE POLES FOR TWO- SURFACE AND THREE-SURFACE SPHERICAL
ENCLOSURES. THE VALUES ARE FOR s = TlS WITH
a = a2/al = a3/a2 AND Tz/Tl = T3/T = q

2
Two Shields Three -Shields

* El gé Ei gé Eé

0.1 - 1.00 -10.01 - 1.00 -10.01 -100.11
0.2 - 1.00 - 5.05 - 1.00 - 5.04 - 25.25
0.3 - 0.99 - 3.46 - 0.99 ~ 3.43 - 11.55
0.4 - 0.96 - 2.77 - 0.96 - 2.67 - 6.96
0.5 - 0.91 - 2.52 - 0;90 - 2.29 - 5.10
0.6 - 0.83 - 2.57 - 0.79 - 2.13 - 4.49
0.7 - 0.73 - 2.96 - 0.66 - 2.17 - 4,72
0.8 - 0.65 - 3.96 - 0.53 - 2.56 - 6.03
0.9 - 0.57 - 7.22 - 0.42 - 4.10 ~ 10.81

(o]
()
~

LR BALLAL

IHi(w) Hglan |

i

w,

|
|
|
|
|
|
|
!
w

Figure 6. Frequency spectrum asymptotes and break points where w

9

Wy ES are given in Table 1 (@, = IEil, w, = [Eél, etc.).
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H /ﬁgN) =1+s z T4 + 52 i [l - (ai/a.)B} ;T + ...
o i=1 i>] J J
N
N 3 :
. +s izl'[l.— (ai/ai-l) ] T4 (14)

where a = . As expected, ﬁiN) has N poles lying on the negative real axis
of the s-plane.

17



I11. CYLINDRICAL SHIELDS

The procedure of solving the problem of a multi-surface cylindrical shield

where the external magnetic field is perpendicular to the axis of the shield

follows exactly that of the spherical shield described in Section II.

The

other polarization where the external magnetic field is parallel to the axis of

the shield is treated in Reference 2.

7a,d one can immediately write down

@l =

o
f

o
il

Applying at p = bl and

= A
- + =
Hoo cos¢ 5 cos¢ p > bl
Bp cos¢ + 9>cos¢ b, >
p o 1 P
Dp cosd p < b2

p = b2 the boundary conditions (Ref.l)

9 3
b )
50 P2 T %3 P =Dy
vi(e, - 0,) = st, >0 p=b
1 1op 1 1
vV (¢, - ¢,) = st 9 ¢ p=b
2 2 9p 2 2
to Equations 15 one gets
Hi(s) 1
o / _ 2 2
Ho(s) \l+stl)(l+st2) (bz/bl) tltZS

where

18

From the geometry depicted in Figures

(15)

(16)

(17)
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HoP10718

'_4
N

(18)

Hobydahy

N
N

Similarly, for a three-surface cylindrical shield (Fig. 7b) one has

ﬁo(s)/ﬁf')(s) = 1+ (£ 4,0t )s + [1- (b, /b,) ]t t252+ [1- (b3/b2)2]t2t352

+ [1 - (by/b)° ] £y s + [1 . .(bz/bl)z][l - (by/b,) ]tltztBSB
(19

and for an N-surface cylindrical shield (Fig. 7¢) one has

Il o~

ﬁo(s)/ﬁ?‘)(s) =1+s

it s2 2 [1 - (bi/b.)z] LI P
i l i>j ] J

Z

[1 - o, P e (20)

+
0
==

i=1
where bo = @. A comparison of Equations 17 through 20 with Equations 4, 5, 13
and 14 reveals that the results for spherical shields obtained in the last

section can be directly used for cylindrical shields if one replaces

spherical shields cylindrical shields
3 2
(ai/aj) by (bi/bj)
T by ti

Therefore, in the following two sections on equivalent-circuit representation
and effects of bonding,discussions will be restricted only to the case of

spherical shields.

Table 2 gives the s-plane poles for ﬁ for two and three cylindrical

shields, while Figure 8 shows the ftequency spectrum asymptotes and break
points for IH /H |.

20



N TABLE 2. s—-PLANE POLES FOR TWO-SURFACE AND THREE- SURFACE CYLINDRICAL
SHIELDS. THE VALUES ARE FOR s = stl WITH B = b2/b1=

b,/b, AND tz/tl = ty/t, =B
Two Shields Three Shields
’ s, s, s, s, s,
0.1 - 1.00 -10.11 - 1.00 -10.10 -101.12
0.2 - .99 - 5.26 - .99 - 5.21 - 26.30
0.3 - .96 - 3.80 -~ .96 - 3.66 - 12.68
0.4 - .92 - 3.25 - .91 - 2.98 - 8.20
0.5 - .85 - 3.15 - .82 - 2.67 - 6.51
0.6 - .77 - 3.40 - .71 - 2.60 - 6.13
0.7 - .69 - 4.07 - .59 - 2.80 - 6.74
0.8 - .62 - 5.63 - .49 - 3.47 - 8.85
N )
0.9 - .55 -10.56 - .40 - 5.85 - 16.09
0|
10 E
2 I
B I
= | I
3 |
= I
= |
3L
=T |
| I
| |
| 11 L1
w, wa w3
Figure 8. Frequency spectrum asymptotes and break points given in Table 2.
S
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IV. EQUIVALENT CIRCUIT REPRESENTATION - GENERALIZATION
TO SHIELDS OF ARBITRARY SHAPE

The results obtained in the last two sections will be interpreted in
terms of equivalent circuits in this section. The advantages of equivalent
circuit representation of mathematical results are two-fold: (1) it is useful
for interpreting results and understanding physical mechanism involved, and
(2) it is a quick way to generalize the results for specific shapes of en-

closure to arbitrary shapes of enclosure.

To gain more familiarity with what follows one starts with one-surface
spherical shielded enclosure (Fig. 9a) whose low-frequency transfer function

is (Ref. 1)

Hi(s) o1 oD
ﬁ (s) 1+1s
with
T = L acAh (22)
3 uo

where Hys 05 @ and A are defined in Figure 9a. Equation 21 can be represented

by either the equivalent circuit of Figure 9b or Figure 9c where

1
L=3Fuz2, R=—>= (23)
The induyctance L can be expressed in terms of the volume V and the surface S
of the enclosure as

L =y v/8 (24)

which also applies directly to cylindrical as well as two-parallel-plate
enclosures (Ref.l). Equation 21 can thus be used as the transfer function
of a single-surface shielded enclosure of arbitrary shape if 1 is interpreted

as

22
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with L given by Equation 24 and R by (oA)‘l.

The extension of the equivalent circuit given in either Figure 9b or 9¢
for a single-surface enclosure to a two-surface enclosure turns out to be a
nontrivial matter. In principle, one may start with the transfer function
given in Equation 4 and constructs an equivalent circuit for it using the
techniques known in circuit synthesis (Ref. 3). This approach, however, does
not easily lead to a circuit which represents the actual physical phenomenon
of the problem. To derive the desirable circuit one returns to the induced
currents in the shields given by Equations 10 and 11. The total induced

current in each shield is obtained by integrating Equations 10 and 11. Thus,

Tls(14-Tzs) - a31 T 52

~ m ~ 12
I, = K, a,dg = - 3H a (26)
1 I 1971 o1 3
0 (14-115)(14-Tzs) - (az/al) T TS
. fﬂ . - TZS
I, = K. a.d8 = - 3H a (27)
2 0 2¢ 2 02 (l-%tls)(14-125) - a3111252

To generalize Equations 26 and 27 to two- surface enclosures of arbitrary

shape one simply sets

hooo ok
9 ]
1 Rl 2 R

3 2
5 @ T Ty = M /(RlRZ) (28)

where the self-inductances Ll’LZ’ the mutual inductance M,and the resistances

Rl,Rz are given by

N T\ T T S
’ > -
1 Sl 2 82 Vl 172
(29)
1 1
R = R R =
1 olAl 2 02A2

24



Here, Vl and V2 are the volumes enclosed respectively by the surfaces Sl and S,

of the first and second shield. Equations 26 and 27 can be written in the

general form

9
sL, (sL,+R )-sZM“ .
1772 2
Il = 55 IO (30)
(ﬂ1+Rﬁ(ﬂ?+R?-sM

-~ S 1 ~
I, = I (31)
2 2.2 "o
(sLl+-Rl)(sL24~R2) - s M

with
I =- 3H a (32)

It can be easily verified that the equivalent circuit shown in Figure 10 leads

to Equations 30 and 31.

It remains to show how il and iz are related to the penetrant field ﬁi

given by Equation 4, which can be expressed in the generalized form

Hi RlR2
- = ) (33)
Ho (sLl4-Rl)(st-kR2) - sM
From Equations 30 and 31 one gets
L R.R
1—%~<i1+-ﬁ2—i2>= L 2 = (34)
Io (sLl4-Rl)(sL2+‘R2) - s M

The scaling factor LZ/M can be expressed in terms of the geometric parameters

of the two shields with Equations 29 and is given by

= /35 (35)
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Hence, one has on comparing Equations 33 and 34
l -~

=1-=11, + /—1 (36)
1

which is to say, one can first calculate il and i2 from the equivalent circuit
of Figure 10 from which the penetrant field ﬁi is directly deduced from

Equation 36.

A final point should be made about the scaling factor VSl752 in Equation
36. This factor comes about because the magnetic field H is proportional to

current density K rather than the total current I.

27



V. TWO SPHERICAL SHIELDS OF ARBITRARY ELECTRICAL THICKNESS

In the previous sections the thickness of the shield's wall was assumed
to be electrically thin. This assumption holds true for low frequencies
and/or poorly conducting shields. 1In this section this assumption will be

removed and the shield's wall can be of arbitrary electrical thickness.

As in Equation 1 let the scalar potential ¢ for the three regions shown

in Figure 2b take the form

: 2y
= - v._=
@l Horcose + A 5 cosf r z_al
T
3
!
= [} T 4
@2 B'rcost + C 5 Ccosd ay2r2a, (37)
T
= v
®3 D'r cos® r 5_32

Instead of the boundary conditions given by Equations 2 and 3, the boundary

conditions are now given by (Ref. 1)

3 _ 2 _
5;-(®2-F¢1) = ale(Qz-Ql) at r=a;
(38)
—a—-(tb —<I>)=BV2(<I> +0.) at r=a
or 2 1 1's*2 1 1
2 (e, +0.) = a.9%(0.-0.) atr=a
ar 3 "2 2'sV 37 72 2
(39)
2 (e.-0) = B,V (6, +0.) -
sr 37 720 T Palst3T ) atrea,
where
.- Hiby 1
i u,p; tanh(p,/2)
Hiby
B; = N tanh(p,/2) (40)
2 2
Py = Su;0;A;

28



and i =1,2. The constants A', B', C' and D' can be found by substituting
Equation 37 into Equations 38, 39 and 40, and are given in Appendix A. The

penetrant field ﬁi is obtained from —V@B and given by

B 1
~ . . 3 . .
H, (coshp1+-K1p151nhpl)(coshp2-+K2p251nhpz)—(azlal) Klle2p251nhp151nhp2
(41)

with a

K, = 0% K, = 122 (42)

, =
1 3ulAl 2 3u2A2

Just like Equation 4 the combined transfer function of two shields is the
reciprocal of the product of the transfer functions of individual shields

minus an interaction term.

For electrical thin shield's walls (i.e., P1sP,y << 1), Equation 41
reduces to Equation 4, as it should. On the other hand, if the shield's

walls are electrically thick (i.e., p,,p, >> 1), then Equation 41 gives
1°F2

—(p1+p2)
. be 43)

3
(1+K;p) (1 +Kyp,) = (a,/a))7K;piKop,

[

= o]
(o]

in which one may drop the ones in comparison with K.lpl and KZPZ' However,
Equation 43 is preferable since it is similar in form to Equation 4 for the

case of an electrically thin shield.

Equation 43 is plotted in Figure 11 with and without the interaction
term (a2/a1)3Klle2p2. It can be concluded that for az/al = 0.9 and m12:>100
(which corresponds to f > 16 kHz for T, = 1 ms), the shield-shield inter-

action reduces the shielding effectiveness by at least a factor of 3 or 10 dB.

29
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VI. EFFECT OF BONDING

Although bonding is often employed between shields in engineering
practice to reduce electrostatic hazards, there is no quantitative information
on its possible effect on the shielding performance of a shielded enclosure
against the low-frequency magnetic-field penetration. This section is
devoted to calculating this effect for twe electrically-thin spherical
shields.

In Figure 12 are shown various connection arrangements of bonding
straps between the two surfaces of a spherical enclosure. Later in this
section it will become clear that the bonding strap arrangements (a) through
(d) have no effect on the magnetic-field shielding performance of the
enclosure, while the arrangement (e) has a significant adverse effect.
Before proceeding it is appropriate to remark that the low-frequency electric
field within a conducting enclosure comes mainly from the eddy currents
in the enclosure's wall induced by the time rate of change of the external
magnetic field. It is this electric field that is affected by the bonding

straps in the inductive shielding approximation.

Return now to Figure 12e (which is redrawn in Figure 13) and calculate
the current induced in the bonding straps. Let the unprimed quantities
be the quantities in the absence of the bonding straps, and the primed
quantities the quantities due to the presence of the bonding straps. Then,

integrating the equation
-5
VxE = - sy H (44)

over the area enclosed and traced out counter clockwise by the loop BCDAB

of Figure 13, one gets

+ ] - _V' —_ + TR}
Vge *Vae ~Vap ~Vap = S¥ascpa T ®¥acpa (43)
where V is the voltage drop and ¢ is the magnetic flux. In deriving
Equation 45 the bonding straps have been assumed to be good conductors;

otherwise, a term for the voltage drop along AB and CD has to be added to

the left hand side of the equation.

31



*SPTOTIYS TBOTID
uyds om
7 Surpuoq sdeays Jur3ionpuod Jo sjuaul g
o8ueile JUDIBIIT
5¢!

g1 2an314

(@)
(P) (9)

Q) (D)

32



.om PISTI dTIj9uleuw TeUIIIXD 2Y3l 03 aeynorpuadiad suerd

Tetioienbs ay3j ur BurdT sdeils Burpuoq om3 YITM 3INSOTIUS proTys Teotasuds-oml y €T 2an3rj

doajs Buipuoq

‘H®

doJys Buipuoq

33



Let ib = current in bonding strap, Lb = jinductance of one bonding strap,
RBc or RDA = resistance between B,C of the outer shield, or D,A of the inner

shield. It is obvious from Equation 44 that

1]

vV, . +V

Ly Ry + Ry +25Ly) = s¥)pon = Vet Vap

Y

s¥,pcpa ~ SYorco T 5¥0ano

(46)

- +
sMoas T Yocp’

- 2¥0am
The second step of the right hand side follows from repeated applications of
Equation 44. It has been assumed for simpiicity that the two bonding straps

are identical. Hence, the triangle OAB is equivalent to the triangle OCD.

Similarly, an application of Equation 44 to the area enclosed by the
loop BADCB going counter clockwise in Figure 13 gives Equation 46, as it
should.

Solving Equation 46 for ib and using the expression in Appendix B for

tai
WOAB one obtains

- ZSWOAB

b RBC—+RDAf+25Lb

=2
1}

FH s(1+sT )
= -0 2 47)
R, (L+sT) (1+sT)(1+sT,) ¢

where RS:=RBC-+RDA, Tb==2Lb/RS, Tl and T2 are given in Equation 8, F and T0
are given in Appendix B. It can be shown that for practical cases To is
small compared to the decay time constant T, of the inner shield. Hence

for low frequencies one may use the approximation

Ib srz

-0 = - (l-+sTb)(l+-sTl)(1-+sT2) (48)
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with Go = Fﬁo/rz, where Fﬁo is identically equal to the external magnetic

flux linking the two triangles shown in Figure 13.

The magnitude of Equation 48 is plotted in Figure 14 against wTy with
Tb/'r2 as a parameter. The time histories of Ib and ib are shown in
Figures 15 and 16 for an impulsive external magnetic field Hoé(t), which
is a valid representation of any pulsed external field whose pulse width is
less than the diffusion time through the shield's wall. The diffusion time
of a typical metallic enclosure is on the order of tens of microseconds. The
parameter Tb/T2 is roughly equal to the ratio of the inductance of the two
bonding straps to the inductance of the inner enclosure, the latter being

given by uoa2/3; that is to say

= (49)
12 L a

where Lb can be estimated from the approximate formula

e

~ 9
Lb = o en(e/1) (50)

with £ = length of one bonding strap, r = effective cross-sectional radius
of the strap. It can be seen from Equations 49 and 50 that Tb/-r2 is usually
less than unity. The smaller is this parameter the more current will be
induced in the bonding straps, as can be observed in Figures 14 through 16.
0f course, the more current there is in the bonding straps the more
penetration there is into the enclosure. Table 3 summarizes the peak

values for Ib(t) and ib(t) for various values of Tb/Tz. In the table it

. -1
is assumed that 32/a1==0“9’ Rs = (oA) ~, and the two shields have the same
thickness, conductivity and permeability.

To get some rough estimate on the field due to the bonding strap

current Ib one may divide Ib by Znaz. From Table 3 and for the case

Tb/'r2 = 0.01 the peak penetrant fields due to Ib are
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TABLE 3. PEAK VALUES FOR I, AND I

b b
Tb/T2 0.01 0.1 0.2 0.5 1 >5
TZIb(peak) 0.43 12
Ha sind 3.1 1.57 1.11 0.61 0.36 —r
o 2 o b
2.
Tzlb(peak) 3.7 T,y
m 370 37.0 19.0 7.4 3.7 —_—
o 2 o ‘ Tb
(L) L1 .
Hi (peak) = §¥; H 51n¢0
(51)
- (1) _60 . .
Hi (peak) = > H051n¢0
2

That part due to direct field penetration can be read off from Figure 4 for

a2/al = 0.9 and is given by

.. {0) . 0.4
di (peak) = i;;—Ho
(52)
1(0) . 3.5
Hi (peak) = > HO
T2

The total peak penetrant fields,H, (peak) and ﬁi(peak), with bonding straps
are the sum of Equations 51 and 52. It can be seen that the bonding straps

will increase Hi(peak) by a factor of two and ﬁi(peak) by as much as an

order of magnitude.
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VII. CONCLUSIONS <

1t is found that the inductive interactions among the shields and the
presence of conducting straps bonding the shields reduce the effectiveness
of a multi-surface shielded enclosure against the penetration of external N

magnetic fields.

For a two-surface spherical shielded enclosure the important findings

can be summarized as follows. Let

Hi p - peak interior (penetrant) field
3
ﬁi P = peak time rate of change of Hi(t) = peak electromotance force
(emf) density
lﬁi‘ = frequency spectrum of Hi(t)

and let the ratio of radii of imner to outer shield =0.9.

1. Neglect of interaction of electrically thin shields under-estimates

e H. by 20%
o ' ~
i, D by a factor of 4

L 4
s

. ‘ﬁil by one order of magnitude for f > 100 kHz and enclosures

with L/R time constant = 100 us.
2. Neglect of interaction of electrically thick shields under-estimates

. lﬁi| by a factor of 3 for f > 160 kHz and enclosures with L/R

time constant = 100 us.

3. Two bonding straps, each subtending a 22.5° angle at the center
and with inductance 2Lb = 0.01 L2 (L2 = (0,2 uH for an enclosure

of one-meter diameter), increase

» H, by a factor of 2
i,p

U ﬁi p by one order of magnitude

40



[1]

(2]

(3]

REFERENCES

Lee, K.S.H., ed., EMP Interaction: Principles, Techniques and Reference

Data, (A Compleat Concatenation of Technology From The EMP Interaction

Notes), EMP Interaction 2-1, December 1980.

Baum, C.E., "Conducting Shields for Electrically Small Cylindrical

Loops," Sensor and Simulation Notes, Note 40, May 1967.

Guillemin, E.A., Synthesis of Passive Networks, John Wiley & Soms, Inc.,

New York, 1957.

41



APPENDIX A
THE CONSTANTS

The constants A, B, C and D that appear in Equation 1 are given by

3 2
s(Tl+-a Tz) + s 1112(1-a )

éo
A=—_§— 3
(1+-STl)(l+-STz) - S T T,0
- l1+st
B=- Ho 2 3
(14-ST1)(14-812) - 8 1T 0
i I
0 2
¢C=-73 3
(14'srl)(l+-512) = 8 T T,0
D=- ﬁo : 3
(l+-srl)(l+-512) - 5 T T,0
= u03202A2/3

where o = azlal, Ty = uoalolAl/B, T,
The constants A', B', C' and D' that appear in Equation 37 are given by

: py -~=—— ) sinh cosh po +{Kop, +——2— | si
1P1 79K p, ) 1T Pr| €S8R Pa T\ RoPa Mo g, sinh py | +

v _ %
A 2F
+\— K,p., == |sinh cosh - | K +— i
2 P P < P sinh
a; 2 9K2p 2 1 171 9K1pl> Pl]

EQ cosh + /” +-—#é—— i
F P2 K“zpz 9Kp, ) 5T P2

B':.—
ﬁo <aQ )3 4
c' = -5\ ( K,p, - -————-)sinh
2F 2 P
ay 2 9K2p2 2

- HO/F
42



where

2 2

Py = SH191875 Py = SHp0ply

K. = uoal K. = )
b

1 3u1Al 2 3p2A2

- _2 ) 2 .
F = [cosh Py + (Klp1 + 9K1p1 )31nh pl] [cosh Py + (szz + §E;E;->51nh pz] -

3 .
_<2> (————l—— —Kp>(———4-———Kp>sinhpsinhp
ay 9Klp1 171 9K2p2 272 1 2

Unless Kl and K2 are much smaller than unity one may neglect terms invelving
the reciprocal of Klpl and szz and obtains for F the following accurate

expression

F = (cosh p; t+ Klplsinh pl)(cosh P, + sz sinh pz) -

2

3 . .
- (az/al) Klle2p251nh p151nh P,
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APPENDIX B ‘ ~/

CALCULATION OF wOAB

The magnetic field at the equatorial plane (8 = 7/2) can be found from

Equation 1, namely,

jas]
|

3,3
=B+ C al/r R a, <r<a

=D a, >r

The magnetic flux wOAB can then be calculated via (Fig. Bl)

YoaB = " ¥o JJ Hgds
OAB
=-u {5 D+J JO B+Cr—3 rd¢dr
)
~/
2 a . 3
= - u ¢ 22% D + ' sin 1 i B+C o1 rdr
B Yo 2 r Y r3
a, J
a2¢ a a2 1
= - 205 43 : si -2
- 2 n o4, 2 ¢oj
3[ ¢o cosy - cos(y~+¢o)
+ C al _ - -
a, a,siny
1+sT FH
= o (o}
(1+s1,)(1+s7t )—a3sz'r T
1 2 12
where
F = uoalazsin¢o
To =1, [(l-a) + a tan(¢o/2)(cos¢°—a)/sin¢o] )
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equatorial (6 = 77/2) plane

Figure Bl. Geometry for calculating the flux v
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