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Abstract

In this paper we analyze the numerical aspects of the various methods that
have been utilized to analyze thin wire antennas. First we derive the
properties of the operators for Pocklington's and Hallen's integral
equations. Based on these properties we discuss the various iterative
methods used to find current distribution on thin wire structures. An
attempt has been made to resolve the question of numerical stability
associated with various entire domain and subdomain expansion functions in
Galerkin's method. It has been shown that the sequence of solutions
generated by the iterative methods monotonically approaches the exact
solution provided the excitations chosen for these problems are in the
range of the operator. Such a statement may not hold for Galerkin's
methods if the inverse operator is unbounded. Moreover if the excitation
function is not in the range of the operator, then the sequence of
solutions form an asymptotitc series. Examples have been presented to
illustrate this point.



1. INTRODUCTION

Over the past few years several methods have been developed by
many researchers [Gray (1966), Harrington (1968), King et al. (1946),
Schelkunoff (1952), Siegel et al. (1934) and Wu (1969)] to analyze scat-
tering and radiation from thin wire structures. In this presentation we
investigate the properties of the integro-differential equations that
arise for the various techniques developed so far. The motivation for
this work is to study the causes of the numerical instabilities that
sometimes arise in the solution of the current distribution on thin wire
structures. The numerical instabilities may be either due to an incorrect
application of the numerical techniques or due to the operator equation

being actually ill-posed. 1In a recent note Jones [1981] has claimed that

the Hallen's integral equation is a well posed problem and that the sources
of numerical instabilities lie with the particular numerical technique used
to solve an operator equation. As we shall presently aemonstrate that the
proof presented by Jones is not complete. Jones did not consider all the
aspects of a well posed problem. For a problem to be well-posed, three con-
ditions have to be met by the operator equations. According to Stakgold
[1979, p. 58] the three conditions are defined as follows:

"When dealing with boundary value problems we shall still be faced
with these three questions:

(1) Is there at least one solution (existence)?

(2) 1Is there at most one solution (uniqueness)?

(3) Does the solution depend continuously on the data?

If the answer to this trio of questions is affirmative the problems is said




to be well-posed (otherwise ill-posed). Until recently it was sound dogma
to require that every real physical problem be well posed. However it is
now understood that ill-posed problems occur frequently in practice but
that their physical interpretation and mathematical solution are somewhat
more delicate."

Jones, in his paper, addresses only the first two questions. In
his note he did not check whether the inverse operator in Hallen's inte-
gral equation is bounded or not! It is based on the third statement of
Stakgold that the Hallen's integral equation is ill-posed. We prove later
that the operator involved in Hallen's integral equation is compact, and
hence its inverse is unbounded. Therefore, by definition, Hallen's inte-
gral equation is an ill-posed problem. Tikhonov and Dimitriev [1968] were
the first to recognize that Hallen's integral equation is ill-posed and
developed a '"self-regularization' procedure to solve that integral equation.
In summary, if any numerical instability is observed for Hallen's integral
equation, one cannot put the blame entirely on the numerical procedure
utilized to obtain a solution.

In this paper, we investigate the properties of the Pocklington's
integro~differential operator and the Hallen's integral operator. We also
discuss the advangates of an iterative method and the direct method
(Galerkin's method) of solving the two operator equations and the numerical
stabilities of the various order of the solutions given by the two tech-
niques. Finally, we investigate the convergence properties of the approxi-

mate solutions when the excitation is not in the range of the operator.



2. PROPERTY OF THE POCKLINGTON E-FIELD OPERATOR

The Pocklington integral equation for the current on the surface of
an antenna can be written by equating the total tangential electric field

on the conductor surface to be zero, i.e.
i s
EE _+E =0 (1)

where the subscript represents the tangential component of the electric
field and the superscripts i and s stand for the incident and scattered
fields, respectively. By assuming a time variation of the form exp(jwt)

equation (1) can be rewritten for the tubular antenna of length L and

radius a as [1]

+L/2 9 +L/2
k2 dz' I(z') G(z,z') + jii- j dz' 1(z') G(z,z') = ijWEEzan(z)
-L/2 02" 172
L L
-2« =
for - 5 <2z <+3 (2)
where,
2m
G(z,z') = Green's function =r§? J Eﬁﬂiilkgl do (3)
0
R =\f (z-—z')2 + Aazsin2 % (&)
and k = %F .

In the terms of an operator equation (1) can be written as

2
PI = kP;I + P,I =V (5)

where Pl and P2 represents the operators in the first and second parts
of the integral in (2), respectively. First, we would like to investi-

gate the properties of the operator P in (5) as the method of solution for

I(z') in (2) is dependent on whether P is bounded or unbounded.



If a constant C [independent of I(z')] exist such that the follow-
ing inequality is always satisfied

2| = max Uﬁl s Ip1|| < c 6)

Il =1

then the operator P is said to be bounded [2. p. 296]. If such a constant
C exists, which is the maximum of all possible ||P1|| with the constraint
|| 1]l = 1, then we say that the operator P is bounded with respect to the

The two norms that we shall be dealing with are the .tz norm

norm

and the Chebyshev norm. The x,z norm is defined as

+L/2

9 1/2
i, - J 11(2)]? ax )
-L/2
and the Chebyshev norm is defined as
]l = max |1(2)| (8)

When no subscripts are used then it could be either of the two norms. If
we are using theat2 norm then we are restricting the domain of the oper-
ator P to elements which are inat? (or square integrable). This does not
imply that I(z') cannot be infinite within the range - %-f_z' < + % .
However only those type of singularities are permitted in I(z') which are
square integrable. Any function which is not square integrable is ex-
cluded from the domain of P (as they are not in,{?). On the other hand,
if we use the Chebyshev norm then the function has to be bounded. Under

the Chebyshev norm any unbounded function cannot be in the domain of the

operator. Thus the function log z is in:t? as it is square integrable



[see definition (7)] but not in the domain of functions satisfying the : .
Chebyshev norm. Physically then convergence of a sequence of functions
under the ;t? norm yields least squares convergence whereas convergence

under the Chebyshev norm yields pointwise convergence.

Examination of the Green's function reveals that the kernel has a

singularity. The singularity can be observed by rewriting the kernel

as [Schelkunoff (1952), p. 141].

2m 2 .
G(z,2') =— | +ap -L | L=-e” eI do 9
’ 27 R 2 R
0] 0

The first term in equation (9) can be transformed to a complete elliptic

integral of the first kind. Thus we find

1 - e—jk]z—z'|

'y =P 2 -
G(z,z'") Ta F(2, p) Toz'] + termszog the order
of ka (10)
where
2a
P = (11)
[4a2 + (z-z')z]l/2

As z » z', the Green's function behaves as

2 2.1/2
+ 4a”]
7] + G2 (12)

G(Z,Z') _,_F];a_logzt [(Z‘z'?

z_l

where G2 contains terms which are bounded and hence square integrable.

In the immediate vicinity of z = 2z’

1
' - ot
G(z,z') ~» wa log ]z z l + G3 (13)

where G, contains terms which are bounded. So the singularity of the

’ o



kernel is manifested through the log function in (13). Since log func-

tions are square integrable, we find

+L/2 +L/2 /2
IlPlHdﬁ? f.#%‘ dz J dz' {log |z-z'| + G3} =C < ®
-L/2 -L/2

(14)

where C is a constant. Hence P, is bounded under the &LZ norm. Therefore

1

Pl is a Hilbert Schmidt operator as it has a square integrable kernel

{2, p. 352]. 1t can also be shown that a Hilbert Schmidt operator is

compact operator [2, p. 353]. Under the Chebyshév norm

+L/2 +L/2
IIPHI‘_E L max o #; J dz' log|z~z'||+ ’ J dz' G3
"2%%23 -1/2 -L/2

ﬂ-l; {(Z+-121)10g(z+%) + (%— z)log(-lzi—z)—L}

| A
3
o
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+ constant

I A
N

M(a constant) for all - 5 < z <

Hence the operator Pl is also bounded under the Chebyshev norm.

Next consider the second integral in (2). We have

+L/2
. 9 91(z") 1
P,T 2 52 dz' T {- p— log |z-z'| + G3]
~L/2
L/2
= ' o____aI(z') . _3_ ,_L L
dz e oy {- = log lz—z l + G3}
-L/2

a

(15)

(16)



where the bar over the second integral represents a principal value. It
is clear that the operator P2 in (16) is unbounded under the Chebyshev
norm because %%T-is unbounded as z -+ + %u Thus there exist no constant C

for all - %'S.z.i + % (because the chapge §57-+ w at the edges)

Pyl pcc<e

Also the operator P2 is unbounded under‘){? norm as %%T and g%—{log |z-z"]}

are not square integrable.
However if the antenna has no edges (and the effect of end caps is

neglected) then g%T-is everywhere bounded and square integrable. Even then

we show that P2 is unbounded.

Sneddon has shown through Theorem 8 [10,p. 234] that if £(z) is square

integrable over - —121_<_ z < + -121 and zero everywhere else then the formula .
+o0
=y ol t -z
fH(z) = pre [ f(t) log i—TET—i dt 17)
-—00

defines almost everywhere a function fH(z) which is also square integrable

and
@l g, = 5@,
Hence
e, Il == [I52]
Even though %%-is always bounded, the ratio l}?i/az is not bounded and
hence P = P1 + P2 is an unbounded operator.
Therefore even if the antenna has no sharp edges, the operator P is
unbounded under the xz norm. Hence the Pocklington E-field operator, .




P = Pl + P2 is unbounded both under the >Q? and the Chebyshev norm.

Since it is numerically difficult to solve an unbounded operator equation,

perhaps that is why Hallen considered the potential equation. The oper-
ator for Hallen's integral equation is a bounded operator and hence easy

to solve numerically. This we show next.

3. PROPERTY OF THE HALLEN OPERATOR

Hallen transformed Pocklington's equation as given by (2) into the

following integral equation

+L/2 A
dz' I(z') G(z,2'") = D cos kz + F sin kz + %% j Eian(z')sin k{(z~z') dz'
-L/2 -L/2
(18)
where D and F are obtained from the boundary conditions [i.e. I(+ %) = 0].
‘ We define the Hallen operator as
+L/2
HI = dz' 1(z') G(z,2') = Pll [from (2)] (19)
-L/2

Hence the operator H is bounded both under theckgg and the Chebyshev norm.
; Jg 2
Also H is a compact operator under the norme.
It is important to note however, that the unknown I(z') in (18) is
hidden in D and F. To illustrate this further, if we consider a delta
gap excitation for the antenna then (18) becomes [Wu (1969), p. 325].

+L/2
dz' 1(z') G(z,z') = A sin k |z] + D cos kz
-L/2



where A is known and D is unknown. Observe at z = 0

+L/2
D = J dz' 1(z') G(0, z").
-L/2

If the operator H is bounded then D will be finite. If one wishes then
perhaps one can transfer D to the left hand side of the equation and thus
form an additional part of the operator H. But since D is a part of the
operator H, whatever bound holds for H also holds for D.

Next we estimate a bound for ”Hll both under the ’t? and Chebyshev
norm.

We observe

+L/2 27
W]l .. < max L dz' | d¢ exp (-JkR)
T—_L gl 2m R

2 — - 2 -L/2 0

+L/2 2m
1 ' 1l _ L
< i £.<m:x< LL 2 dz d$ g = " (20)
2 - - 2 -L/2 0

Schelkunoff has obtained a similar estimate for (16) but utilizing the

reduced kernel. By utilizing the reduced kernel {3, p. 144] one obtains

IN

I|H|]T max [2 log %3 log %%] + terms of the order of a2

2 log = if §>> 1 (21)

N

Under the&tﬂz norm we obtain
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+L/2 +L/2 27

, -jkR) ,2.1/2
lallgp < 0] ez | axt ap SXRLIRR) 4241/
-L/2 -L/2 0
+L/2 +L/2 2T
' d¢ ,2,1/2 | L
< [ J dz dz {j 7R 31 ® 3 (22)
-L/2 -L/2 0

An estimate similar to (17) can be obtained for the reduced kernel.

In our analysis, we do not consider the reduced kernel, because
Schelkunoff [3, p. 149] has shown that an integral equation with the
reduced kernel mathematically has no solutions (i.e. the excitation is
not in the range of the operator). However if one solves such problems
numerically, one does indeed get a numerical solution. In section five we
discuss the convergence properties of the numerical solutions in which the
excitation is not in the range of the operator.

As the Hallen integral operator H is a bounded operator, unlike the
Pocklington E-field operator (which is unbounded), it may be computationally

much easier to solve Hallen's integral equation than Pocklington's equation.

4. SOLUTION OF BALLEN'S INTEGRAL EQUATION

4.1. By Iterative Methods

It is well known that if H is a compact invertible operator (under
a£—2 norm) on an infinite dimensional space then its inverse is often
unbounded [3, p. 353]. Hence the problem of the solution of (18) in the
;t:Z norm is ill-posed. If a problem is ill-posed under theJ:2 norm then
it is definitely ill-posed under the Chebyshev norm. However it can be

regularized in the following way. We take (18) and cast it in the form

HI = Q (23)

11



+1Q (24)

o]
]

fu -1 H] In_1

with a starting guess of I = Q and U is the identity operator. The
sequence In generated by (24) converges to a solution I which satisfies

HI = Q for all Q in the range of H [1, p. 196]. The sequence generated

by (24) always converge to I provided
v -tH]] < 1

>~ el 1l = [t u-v+ull< [ju-cul+ [ <2

or
W%T > lLU’; (25)

In (25) IlHll could be either the JQF or the Chebyshev norm depending on

llﬂll—and Q in

the type of convergence desired.. For all values of T%T—> 2

the range of the operator H, the iterative process defined by (24) will
always converge monotonically to a solution I(z'), if it exists. This has
been shown in Theorem 2 (in the appendix). By the terms of Theorems 1 and
2, the iterative process will converge for any starting value Io if

2

i 4 1 -
2 or T?T 27
R

(26)

® |

1 >
S
. . . 2 .
when convergence is desired in the ;{V norm. For the convergence in the

Chebyshev norm it is required that

15 |Iu]] or L L for the exact
Tlr 2 yernel (27a)
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For the reduced kernel however, we have

1

Hallen in his classic iterative scheme chose the value of T as given
by (27.b) [3, 4]. A detailed description on how D is solved for at each
iteration is described in detail {4, p. 326]. Observe that if %}>JJ%;LL
or ]IU —'rHl| < 1 then the iterations defined by (8.149) and (8.150) of
[4] would always converge for any starting Io.

Other researchers have chosen different values of T. For example
Gray [5] chose
jkL

= Real [2 log %-— 2y - 2 log kL _ jm + 2Ei(+ 59)] (28)

1
T 2 2

where Y is Euler's constant and Ei is the exponential integral. King and

Middleton [6] decided to make

L/2
%.= J G(%‘— %3 z') sin k(% - z")dz'= g—lgg—li-(for the exact (29)
L/2 kernel)

Whereas Siegel and Labus [7] chose

sin kL
kL

A=

=210g§— Cin (kL) - 1 -

Where Cin is the special form of the cosine integral. Finally Schelkunoff

13
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T?T& log 5 or T¥T; 2 log ” (27 b)}

(30)



[3] after a careful analysis decided.

1 L sin kL . Qu . l1-cos kL
= = = o cq -] - Sin XL _ S i=cos XL
T = 2 log 3 Cin(kL) - 1 L j Si(kL) + j oL (31)

In general, it really does not make any difference whatsoever,
what value of T one chooses, one is guaranteed to have pointwise con-
vergence or convergence in the mean depending on whether one chooses T
according to (27) or (26). This of course assumes that a solution to the
problem exist, i.e. Q is in the range of H.

In summary, the iterative method converts HI=Q, a Fredholm equa-
tion of the first kind to In =B In-l +T1Q, a Fredholm equation of the
second kind. The advantage of the equation of the second kind is that not
only is ||[[U - B1|| bounded but also its inverse [|[U - B]llis
bounded, provided unity is not an eigenvalue of B and |lBl| is bounded.
Mathematically one has regularized the problem by the introduction of
the parameter T. With this regularization scheme the convergence of the
sequence In is monotonic. The method converges as long as T < %n

Finally, we conclude by noting that as the iterative process con-

tinues the unknown D and F in (18) are determined as outlined in [4].

4,2. By Galerkin's Method

The next generation of the methods were developed primarily by
Harrington [8] under the generic name of '"moment methods.'" This very
popular versatile method has been excellently documented in [8]. 1In

Galerkin's method, the unknown function I is expressed as

14




. _
I1(z) = § o, ¥ (2) (32)
N i=1 i1

<z< + or

(] [
N

where Yi(z) are known functions which may.extend from -
could span only a partial portion of the domain of z, i.e.

- %’< 01 f_zj_cz < + -% « In the former case Wi 's become entire domain

functions whereas in the latter Wi 's are called sub domain basis functions.
We solve for In(z) by solving for the unknowns ai in (32). Ve also
convert the infinite dimensional problem HI = Q to a finite dimensional

problem by replacing I with I i.e. we solve the following equation

N

Z ai HWi = Q in the finite dimensional space spanned by the basis

i=1

functions Wi, i=1, 2, ..., N. We next find a unique solution in finite

N ’

N
dimensional space by weighting the residual z o, HWi - Q to zero in
i=1
the following way
3 (33)
Z o, <HY, .\yj> = <Q, ¥;> for j=1,2, ...., N
i=1
In a matrix form
[G] [a] = [V] (34)
where [G] = [<HWi, Wj>]
[vl = [<q, ‘Pj>]
and the inner product is defined as
}L/Z
<p s ¢.> = dz ¢.(z) ¢ (2)
173 -L/2 * ]
The unknown o 's in (34) are obtained as
- -1 (35)
[a] = (6] ™ [V]

15



The next question that normally arises in whether the sequence IN defined

in (32) approaches any 1limit I as N + =, And secondly whether I satisfies .
the equation HI = Q. We cannot talk about convergence in the Chebyshev

metric [as defined in (8)] because a Chebyshev norm cannot be derived

from an inner product [2. p. 272]. 1In other words in an inner product -

space we cannot define a Chebyshe; norm. Hence we shall be talking about

only thegff norm for Galerkin's method. So we shall be discussing about

convergence in the mean. Galerkin's method guarantees the weak conver-

gence of the residuals Ifrom (33)1, i.e.

Lt <HIL - Q, ¥>+0 forj=1,2,...., N (36)
I 3

However if H is a bounded operator (i.e. ||H|L£2 < a constant < «) then

(36) implies strong convergence of the residuals, i.e.

Lt
Now |[Eg-all, >0 G7) o
This has been proved by Mikhlin [9]. Physically, (37) implies that as

N + =, the total potential on the surface of the conductor for Hallen's method

converges to zero in a least squares fashion.

Unfortunately in Galerkin's method the ccnvergence of the residuals
to zero in (37) does not imply the convergence of IN to a solution I of
HIL = Q. The convergence of IN + I in the dowain of H is possible-if and

only if ||H Y]] . is bounded, as

L2

-1
3= 3L, < 873, -l - all, (38)
So if IIH-IIL!Z is unbounded, even though the residuals go to zero, the

sequence of solutions IN may not converge to I, This is in contrast to

16



the iterative methods where monotonic convergence to I is guaranteed if

T and Q are chosen as prescribed.

1
[
L2

Galerkin's method to HI = Q may not guarantee that ||IN - I||y, * 0 as N + o,

L2

In other words, there is no quantitative way to describe the convergence

Since |[H_ is unbounded in this case, the application of

of IN + I as various expansion functions are chosen for Wi. Hence we
address the question: For a fixed order of approximation N, how should
one choose a set of expansion functions Wi such that the round-off and
the truncation error in the numerical computation of a in (32) is a
minimum?

Suppose the Gram matrix E is generated by the basis functions

[Eij = <Wi, Wj >] then we show in the appendix (Theorem 2) that

cond [G] < cond [ﬁ]. cond [E] (39)
i.e. the condition number of the Galerkin matrix G in (34) is bounded
by the condition number of the operator H in the finite N dimensional
space and the Gram matrix E. Equation (39) is valid only in the finite
N dimensional space spanned by Wi. It is important to note that even
though H may not have any eigenvalues in an infinite dimensional space,
it has at least an eigenvalue on a finite dimensional space [2, p. 332].
If the homogeneous equation HI = O has only the trivial solution I = 0 and
llH[|gf2 is bounded then cond [H] < ® and the inequality in (39) has
meaning because the right hand side of (39) can never be infinity.

So (39) directly implies the following: i) Use of an orthonormal

set of basis functions Wi for the current implies

cond [G) < cond [ﬁ] (40)

17



i.e. the problem would not be worse conditioned than the original problem.

Note that cond [E] = 1 for subdomain basis functions like pulses or entire .
domain orthonormal basis functions 1ike1(g sin (mz) form = 1,2,..., N.
Equation (40) also implies that the solution of HI = Q by Galerkin's
method in a finite dimensional space may be a better conditioned problem
than the original problem posed in the finite dimensional space N,

Also from (40) there is no way to tell whether the Galerkin matrix
G associated with the entire domain basis functions would be more ill-~
conditioned than the Galerkin matrix associated with the pulse functions.

(ii) Use of subdomain basis functions like triangles or piecewise

sinusoids may deteriorate the condition number of the Galerkin matrix

[G] from than that of the original problem. This is because cond [E] > 1

for these cases.

For the case when Wi 's are chosen as piecewise triangles, then E

is a tridiagonal matrix of the form

PQO.
QP Q.
0QP.
_ 2Az - Az . _L . .
where P = 3 and Q = 3 and Az N Since the jth eigenvalue

of a tridiagonéi matrix is given by [1, p. 70]

- Jm_
Aj P + 2Q cos (N+l)

we have

cond [E] < Al +2 ol _, (41)

triangles |P| - 2 |Q]

18



Hence for all values of N the Galerkin matrix due to piecewise triangle
expansion functions may have a condition number which at most can be three

times as that of the original problem, i.e.
cond [G] < 3 cond [H]

For the piecewise sinusoids however,

P = 2k Az - sin 2k Az and Q = sink A z-k A zcosk Az (42)

2k sin? k Az 2k sin2 k Az

In this case cond [E] is bounded by

cond [E] < |2k A z - sin 2k A z] +2 |sink Az - k A z cos k A z]

sinusoids |2k A z - sin 2k A z| - 2 |sink Az -k A z cos k A z]

In the limit A z > O

cond [E] < 3 (44)
sinusoids

Thus (44) implies that as the dimension of the problem becomes large the
Galerkin matrix due to piecewise sinusoids is no less numerically ill-
conditioned than the matrix produced by piecewise triangles. It may be
quite possible that for a particular value of N the Galerkin matrix due
to piecewise sinusoidal functions may be better conditioned than that of
the piecewise triangles or even than that of the pulse functions.

In the above analysis an attempt has been made to provide a worst
case theoretical bound for the condition number of the various matrices
of interest.

It is important to stress that the problem we have addressed here is

19



not which set of basis functions would provide the best approximation
for the current, but which type of expansion functions would give rise to
a well conditioned Galerkin matrix G which will be easy to invert numerically.

This is because truncation and round-off error associated with the solution

of (34) is directly related to cond [G].

5. IS A SOLUTION POSSIBLE IF THE EXCITATION IS NOT IN THE RANGE OF THE
OPERATOR?
We discuss the question of existence of a solution for the current
on the amtenna structure when we try to excite it with a source which is
not in the range of the operator H., Clearly, if the excitation is not in

the range of the operator then mathematically a solution does not exist.

But numerically one could always find a solution to the integral equation. '
This numerical solution has some very interesting properties'as outlined
in Theorems 4 and 5 (in the appendix). If we try to numerically solve

an integral equation HI = Q with Q¢ range of H, then the sequence of.
solutions IN diverges even though the residuals HIN - Q associated with

HI = Q may approach zero monotonically. This has been proved in Theorem 4
of the appendix. In theorem 5, we develop further properties of the
solutioﬁ IN' There we prove that the sequence IN indeed form an asymptotic
series. The asymptotic series has the property that it converges at

first and then as more and more terns are included in the series, the
series actually diverges. Even though the theorems 4 and 5 have been

proved for the iterative methods, they are also valid for Galerkin's

method. We now present some examples to illustrate when Q is in the

range of operator and when it 1is not.
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As an example consider the radiation problem where an antenna of
length L and radius a is excited by a delta gap at the center. If we
consider Pocklington's equation, then clearly the delta function exci-
tation is not in the range of the operator. Since the delta function is
not square integrable, it is not in the range of the operator under both
the aiz norm and the Chebyshev norm. Hence if one attempts to solve
Pocklington's equation for a delta function excitation, then accord-
ing to Theorems 4 and 5 the sequence of solutions diverges and Lim

N+ o
||IN|| + o, This is indeed true, because the admittance approaches
infinity as the capacitance of a delta gap is infinity.

Hallen's integral equation for a delta function excitation is
given by [4, p. 321]

+L/2

dz' I(z') G(z,z') = A sin klzl + D cos kz (45)

-L/2
where A is a known constant and D is unknown. It is seen that the right
hand side of (45) has a discontinuous derivative with respect to z,
whereas the left hand side has a continuous derivative with respect to z.
Hence the delta function excitation is not in the range of the operator.
Perhaps this is the reason, why the solution yielded by the iterative
methods of Hallen [3] and King-Middleton [6] seemed to diverge as the
solution progressed. Whether an arbitrary excitation is in the range of
the operator is difficult to verify both theoretically and numerically.
When the excitation is not in the range of the operator we obtain a solu-
tion which diverges in an asymptotic sense, i.e. the solution seems to

converge at first and then diverges. However this postulate may be

21



difficult to verify numerically for certain problems. As an example

consider the partial sum of the series

KIS
+
+

2=

1 1
sy=1+3+3+

The partial sum SN diverges as N » «, This is because if we look at the

following M terms of the series we find

1 1 1 1.1 .1 1 1 1
e s e o T TR
Wl T ez T s tom T o m Tt T * oM 2

Hence

However if we program the series on the computer and ask the computer to
give us a result when the addition of the N+1 term does not change the
partial sum by 10_10 (say) we would get a convergent result!

In conclusion, we must try to learn theoretically, as much about
the problem as possible. Numerical methods may be applied as a last
resort as it may be the only way to obtain a solution easily. The con-
vergence of the numerically computed results is determined to a large ex-
tent by the theoretical analysis of the problem rather than apparent con-

vergences in numerical computations.

6. CONCLUSIONS

In summary, we have brought out the following features.
1) The thin wire E-field Pocklington integral operator is unbounded
whereas the Hallen E-field operator is bounded.

2) The inverse operator for Hallen's equation is unbounded.
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3) A discussion of the various iterative methods showing how
the Fredholm equation of the first kind has been converted to a
Fredholm equation of the second kind is presented.

4) The conditions under which the iterative methods converge
both for the xZ norm and the Chebyshev norm has been presented.

5) The monotonic rate of convergence of the sequence of solutions
associated with iterative methods have been established for certain
values of T and for Qe R(H).

6) The numerical stability in the solution of the matrix equations
for Galerkin's method for various expansion functions is examined, and

7) The sequence of solutions IN forms an asymptotic series for both
the iterative and Galerkin's method when the éxcitation is not in the range

of the operator.
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8. APPENDIX

Theorem 1l: For all Q € Range of H, the sequence In generated by the '
recursion
= - - + Q' (46)
Ia [U- TH] I -0 ABI +4Q .

where U is the identity matrix and lIT H||<2) with the initial guess IOL= Q'
converges to Ie (the exact solution, if it exists) in the norm, i.e.

1im ||I - I ]] + 0 and the convergence is strictly monotone increasing,
- n e

4 .
i.e., Ik Ie

Proof: The iterative process (46) converges as long as the norm of
B is less than one. It is clear that if* |1|+||H|| < 2 then

[1B]] =llU-'TH[[ < 1. Now we have

- = - - ' —3 -
-1, =I -BL -Q B[I, - 1] (47)

By taking the norm of both sides and simplifying

n+l
1, - T Il < (B[} - [l1, - T[] (48)

N, - 1, |1 < (il

Since |lB|| < 1, as n»*® we have

m {1 -1 .|l =0 (49)
oo e n+l
and thus In+1 converges to the exact solution.
(o S i
That Ik o is seen easily as
el 21 " Thn (50)
and
€, A=Ie - In (51)
are related by
1 = B €y (52)
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and so

< |8l

epq ] le Il < [le (53)

and with equality if and only if €, 0. It follows that if n is the

smallest integer for which ||e = Ilenll then

n+1H

€ =0, for n > n and ||e

n | < lle Il for n < n_, i.e.

n+1l I

In 4 Ie and theorem 2 is proved.

Theorem 2: Consider the operator equation HI = Q in a finite dimensional

space N. Let the unknown I be expandedAin terms of the normalized basis

Amax[H ]

A ()

min

A
functions wi. Define cond[H] = in the given N dimensional
space.

Let cond[G] and cond[E] be the condition numbers of the Galerkin matrix

A
G,. = <HY, . > i L. = <P, . > .
[ 13 le,wJ ] and of the Gram matrix [Elj wl,wJ ], respectively

Then
cond[G] < cond [ﬁ]. cond [E] (54)
N
Proof: Let I = Z ai wi, then from [2, p. 341]
i=1
N
N N ; A
A - A A 2
drol=1 ) Jo & <, upl < AN T e wll?= (alls <o
i=1 g=1 - 4 J i=1
A 2
< Rl A (&1 ]| (55)
since <I,I> = [Iallz we have

A

A
Lar, o] el A, [E] (56)

<I,I>
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from which it follows that

A
Apax[61 < T8I« A, [E] | (575
Also since N
sin 2 w
= : [E]l+| |
|<HI | > _l;-l il - <§f:11> > min |a]]? (58)
15| B [[H72]

50

| ~ | A . (E]
<HI I> > min (59 )

<, 1>~ ||EY]

from which it follows

A_. [E]
A L [6] > min (60)

min had llﬁ—lll

Hence we have

Amax[G] < » —lll Amax[E] (61)
A_._[G] - A_. [E]
min min

cond[G] cond[ﬁ]' cond [E].

}A

Theorem 3: If Q ¢ R(H) then the sequence of approximations In generated

by
= ' 62
L4 =B +0Q (62)
with the initialization Io = Q' yields the following relationships
. : _ - = - 63
i) 1lim HRn+1 Rn|| 0, where R.n HI - Q (63)
n-co
and
(64)

ii) 1lim j[In]J =

n->-<xe
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Proof: (1) We have

Rn+1 - Rn - H[In+l - In) (65)
Since
= \J
Io =Q
= v =
I, =BI_+Q (B + Wq'
in =B+ B 4 L 4B+ uQ
then
_ pntl
In+l - In =B 0
Since the operator H is bounded [i.e. [|H|| < M] we have [Ir -Ir_|| =
n+l n
+1 +
HE™ Q< w[IB™ Q< - BT -l
. _ n
Hence lim IIRn+1 - Rn|| =0 as lim {||B"|]} = 0.
n+o n+x
ii) If 1im ||I_]| = = does not hold, then we have 1lim ||I_|| <=
n+wo n n-x n

(i.e a bounded sequence). Thus there is a subsequence I; which is
bounded in norm. Now if we put the operator equation in a Hilbert space
setting (now we can only talk about the 32?2 norm) and since a

Hilbert space is weakly compact [2] one can always extract from I; another
sequence I; which converges weakly to some element I of the Hilbert
space, i.e. I; ® 1. Also we have from i) 1im H In 3 Q (strong

"]—)'m
convergence in norm). However as H is a bounded operator we have

lim HI" ¥ HI (66)
n+eo n

and also S
lim HI > Q (67)
11—)(!)

Since the weak and strong limits of a sequence must concide, H I; = Q.

This means Q € R(H), a contradiction.

Theorem 4: The sequence In as derived in ii) of Theorem 3 indeed
forms an asymptotic series (i.e. for obtaining a meaningful solution
the series has to be truncated after a finite number of terms otherwise

the results may be worse). 29



Proof: To demonstrate the source of divergence in In we assume

HI = Q with I, = Q +4Q

then
- _ n

In I° (B] I0 + en—l forn > 1 (68)

where n-1
i

8 .= ) [B] AQ (69)

n-1 i=o
if Q° + AQ ¢ R(H) then by theorem 4, lim llen_lll = o  gince

nr>o

lim [B}n Io = (. Observe that this holds irrespective of the size of
n>o

|AQ]. Now the error in the iterates is obtained as

n
= = - 70
€ =1 I [B] 1 8 1 (70)

Note that the norm of the first term is monotonically decreasing and
thus it is evident that the algorithm should be terminated after a
certain optimum number of steps. Unfortunately the exact number of

iterations depends on the particular Q under consideration and the

growth rate of |]6n_l|| versus the decay rate of ||[B]n Iol
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