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Abstract

In the first few tens of nanoseconds after an HEMP strikes the
transmission and distribution lines of an electric power system, the induced
transients on these lines rise to very high values. During these early times
one cannot in general apply transmission line theory to calculate the
transients. In this report a linear, time-domain scattering theory is
employed to calculate such transients induced on a multi-conductor line above
a finitely conducting ground. The relative importance of various inducing
effects is discussed, which include the incident field, the fields scattered
by neighboring conductprs, and the field reflected from the qround. The
effect of the conductor's resistivity is found to be negligible on the induced
transients, whereas the incident field has the most dominant inducing
effect. A formulation of the HEMP-induced corona on a wire is given with some

introductory remarks,

The linear, time-domain scattering theory is applied to a typical 3¢,
765 kV transmission line and a 3¢, 13.2 kV distribution line. In the first 20
nanoseconds or so, the conductors of the transmission line can have induced
currents of a few kiloamperes and the normal electric fields in the order of
one-half megavolts per meter on the phase conductors and a few tens of
megavolts per meter on the shield conductors. On the distribution line the
induced currents are less by a factor of 5 to 6 but the electric fields are 5
to 6 times greater .than those on the phase conductors of the transmission

Tine.

*This work was prepared for the Zaininger Engineering Company under
subcontract to the Oak Ridge National Laboratory for the Division of Electric
Enerqy Systems of the Department of Energy.
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[. INTRODUCTION

The high-altitude electromagnetic pulse (HEMP) generated from a nuclear
detonation beyond 50 km above the earth surface is known to have a fast rise
and a large amplitude (Fig. 1). It can cover a large ground area, such as the
continent of the United States, with a peak electric field in the order of
40 - 80 kV/m.  When a large network of conductors (e.g., a power grid) is
exposed to such a field, large and fast transients can be induced on the
network.

Although the interaction of HEMP with above-ground power lines has been
studied quite extensively in the past (see, for example, Refs. 1 and 2), there
are few important features that have heretofore been neglected. First, past
studies are invariably based on the transmission line theory, which is
applicable to low frequencies and late times, typically for times greater than
tens of microseconds. Second, above-ground power lines are syétems of
multiconductors and, hence, the mutual interactiagn among the-conductors must
be taken into account. Third, since the HEMP field rises very quickly to a
large amplitude, the induced electric field on the conductors may exceed, in
the first few tens of nanoseconds, the breakdown field of the surrounding air,
thereby causing such nonlinear phenomena as corona and flashover to occur.
Therefore, an accurate early-time calculation is necessary before entering
into the nonlinear region. The present study deals with the early-time
interaction of HEMP with multiconductor line. above ground.

The approach to be adopted is a linear, time-domain scattering
theory which is discussed in Section II. Section III treats the interaction
of HEMP with a single wire in free space. The important result is a

successful derivation of an accurate, simple, analytical expression for the

~/
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induced current, which provides the basic ideas for the subsequent sections.
The effects of neighboring wires, ground reflected field, and the wire
resistivity are calculated in Sections IV - VI. Thevcombined effect is shown
in Section VII, where the time varfations of the total induced current and
radial electric field are given for a two-conductor line above ground.
Section VII is devoted to two example calculations: a typical 3¢ 765 kV
single-circuit transmission line, and a typical 3¢ 13.2 kV single-circuit
distribution line. Some introductory remarks on the effect of corona are

relegated to an appendix.

~



[I. FORMULATION

Figure 2 is thé geometry of the problem, which shows a set of barallel
conductors or wires above a finitely conducting Qround and immersed in an EMP
plane-wave field. The quantities to be calculated are the current and radial
electric field induced on each wire.

The relatively simpler problem of a‘single‘overhead line above ground has
engaged the interest of many investigators [3-6]. An exact treatment of this
problem for the entire frequency spectrum or time regime is very difficult
mainly due to the presence of a conducting grdund. Hence, for reason of
tractability one looks at the problem in different time (or frequén;y) regimes
and employs a different technique in each regime,,as depicted in Figure 3.
For times greater than the diffusion time (T3) in the ground corresponding to
a skin depth of approximately three times the height of the wire above the
ground, one may use the restrictive transmission-line theory in which the
ground is approximated by a simple, although frequency-dependent, inductance
and resistance term. For earlier tjmes (i.e., for T3 >t > T2) or higher
frequencies one may use the transmission-line theory of Carson or King and Wu
[3, 4]. For times less than T, there is no simplified theory except the full-
blown Maxwell's equations with appropriate boundary and initial conditions.
The full-blown theory is labeled as the scattering theory in Figure 3 which
applies from t = 0 when the EMP hits the point of observation on any of the
conductors to t = = when everything has subsided.

For very early times (i.e., for t < Tl) before the ground reflected wave
_ hits the wire, the wire responds to the incident wave alone. Subsequently,
the incident wave upon reflection from the ground comes into play. Next, the

scattered wave of the wire upon reflection from the ground also.enters into



E
#2 M
o Ho ) #2f f
41 #1¢ ¢
] L4 P4
#3
: #3¢ $
. -
k —
7777777 / /7 T rr7rrr oy rrry’y
a,e(=ereo) q,e(=ereo)

Figure 2. An example of three parallel wires above a finitely
conducting ground.
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the picture. As time goes on, more and more terms contribute to the total
induced current and charge on the wire. Carrying out the above idea for the

geometry in Figure 2 one can write down for, say, the induced current on wire

#1,
I (t) = Ipp(t)ult - t) + Io(t)u(t - ty) + Ijp(t)ult - t5)
+ Ilg(t)u(t Sty * ..l ' (1)

where Ij; = current induced on wire #1 by the incident field alone;
112(113) = current induced on wire #1 by the scattered field from wire
#2 (#3); Ilg = current induced on wire #1 by the ground reflected. field.

Furthermore, the time delays in Equation 1 are defined as follows:

ty = (z/c) cos 8 - (al/c) sin 6
= time delay due to oblique incidence and wire thickness with radius 1]
t, = (z/c)lcos o - [(a1 + az)/c] sin 6 + [(h1 - hz)/c] sin’? + (dlz/c) sin @
= time delay due to separation of wire #2 from wire #1, where dyp is the
separation, a; and h; are the radius and height of wire #i.
t3 = same as t, with wire #3 replacing wire #2
tg = (z/c) cos 6 - (a1/c) sin o + (2h1/c) sin @

1)

time delay due to height of wire #1 from ground.

Once Iy is known, the induced radial field E1p on the surface of wire #1
can be obtained from the continuity equation. Thus,

ZoII :
Elp =~?;3; cos © (2)

For wire #2 one simply interchanges the subscripts 1 and 2 in the above

10
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equations.
Equations 1 and 2 are the starting point for the calculations to follow.
The calculations will include terms up to the first scattering, i.e., those

terms explicitly shown in Equation 1.

11



ITII. A SINGLE WIRE IN FREE SPACE

Consider the Iy term in Equation 1, the current induced on wire #1 by the
incident EMP alone. For the time being, let the incident wave be an impulse,

i.e.,
Es = §06 (t - ker/c)

where k is the unit vector in the direction of wave propagation. The

current I6 induced by this impulsive wave is given by [8]

2ncE ST
= o ,.1 e ds o
Ig= Z,sin 8 2nj I K [(sa’c) sin o] ° t=1 (z/c) cos 8
2wcE 1 (x)e-X[CT/(a sin 8)]
=7 sinoe : 7 55 dx (3)
0o 18] XK + LX)
0

where 6 is defined in Figure 2, and I0 and K0 are the modified Bessel function
of the zeroth order of the first and second kind, a is the radius of the wire,
Z, and c are the free-space impedance and speed of Tight. Making use of the

fact that a/c < 0.1 nanoseconds or so, one can approximate Equation 3 by

E

I, = tﬂ u(t*), t* = ¢ + (a/c) sin o

L = —Eg-s1n 6 ¢ ( 2ct* ) (4)
nC Ta sin 6

with u being the unit step function and T = exponential of Euler's

constant = 1.7810....

If the incident wave has the form

ginc = Eﬁf(t - ker/c)

12



then
fT It )f(r - t')dt!

I(t)

- T uft' + (a/c)sine] o
" L t™ + (a/c)sine] f(r - t')dt

= . (t* e t") " [0
= €, | ey fen)de

0o

E t*
ey £ s g
o .

The last step follows from the fact that L is a slowly varying function of
time. For f = exp(-at) - exp(-8t), Equation 5 gives )

E * *
I=’°[l(1-e'°‘t)-—1§(1-e’8t)] (6)

T La
This'épproximate expression is compared in Figure 4 to the highly accurate
result reported in Reference 6, and the agreement is excellent.

Figures 5 and 6 give the time history of Iyy, while Figure 7 shows the
radial electric field for specific values of E;, a and 8, as shown in the
figure captions. It can be concluded that the induced current 111 can rise up
to tens of kiloamperes in a few hundred nanoseconds, whereas the induced
radial electric field (or voltage gradient) can reach the critical field,
which is taken to be 15 kV/cm, in a few nanoseconds. In Figure 8 is plotted
the time t. as a function of the wire radius a at the moment when the induced

radial field Ep on the wire surface reaches the critical field EC.

13
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IV. EFFECT OF NEIGHBORING WIRES

Consider now the term Iy, in Equétion 1, the current on wire #1 induced by
the scattered field from wire #2 alone. .

The scattered field Eiz from wire #2 and evaluated along wire #1 is given
by

(2 (kd sin o) jk(h, - hy) sin 6
S

E., = -E Fsin @ ¢~Jkz cos @ (7)
12 0 Hf)z)(ka2 sin @)

where F is the Fourier transform of the incident waveform f(t), d is the
separation of the wires, hy and hy are the‘heights of wire #1 and #2 from the
ground, azvié the radius of wire #2, and ng) is the Hankel function of zeroth
order of the second kind. The current T&z induced by the field given by

Equation 7 is

4E), 1

= | (8)
12 Z,s1n 8 4 cin g Héz)(kal sin o) |

T

where a; is the radius of wire #1. Converting Equation 8 to the Laplace
domain with s replacing jw and taking the inverse Laplace transform of the

resulting expression, one gets

K,L(s/c)d sin 6] o-(s/c)z cos o

. -1 1 -1
e ,Ko[(s/c)a1 st al(® b

e(s/c)(h2 - hl) sin o -2uch? 1

1 . (9)
Zb sin 6 Ko[(s/c)a2 sin 6]

®L”

where ® denotes the convolution integral, and L-1 the inverse Laplace

transform operator. The second expression in Equation 9 can be evaluated in

19



the same manner that leads one from Equation 3 to Equation 4. Thus, one gets
the following approximate expression for I;,:
t*

12 eiyat (10)
-2

—
—
~nN
o
i
—

o

where t* =t - t,, t, having been defined before, and

z Y4
- _ 0 s 2ct* - _ 0 _: 2ct*
L1 =77 SN O z"(ral sin 9)’ L, Tac 1N 6 4n (ra2 sin e)

M,, = o sin o cash'l ct” +1 (11)
12 ~ 72w d sin @ .

Equation 10 is plotted in Figure 9 in which 3 = a, = 2cm, d =9 m and the
incident field is the same as that given in Figure 5. Note that the scattered
field from wire #2 will induce a current on wire #1, which diminishes the
current induced by the incident field alone. Figures 10 through 12 show the
current and radial electric field induced by the incident and the scattered
field. The effect of a neighboring wire on the induced current and radial
electric field can be readily obtained by comparing these figures with the

corresponding Figures 5 through 7.

20
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V. EFFECT OF GROUND REFLECTED FIELD

The fourth term, Ilq’ of Equation 1 is the current induced on wire #1 due
to the incident HEMP reflected by a conducting ground. Using the same

technique as in Section III one can immediately write down the result for Ilg’

namely,
t*
"o
0
when

YA
- _0 s 2ct*
L(al’t*) = Zwc SN O A <ra1 sin e)
tx =t - tq, tg being defined in Sec. II

g(t) = ground reflected field = -Z—}ITJRfeStds

with F being the Fourier transform of the incident HEMP and R the Fresnel

reflection coefficient for parallel polarization which is given by [9]

* <3 - Jex - 2
er sin 6 er cos 6

R = — (13)
e; sin 6 + e; - cosz ]

and e: =e.t a/(Seo), €, being the ground relative dielectric constant
and o the ground conductivity. |

Figure 13 is the time history of the ground rgf]ectéd field for ground
conductivity 10-2 S/m and 10-3 S/m, when the incident HEMP has the electric
field vector lying in the plane of incidence. Figure 14 is the time history
of the current induced on the wire by the ground reflected field alone,

whereas Figures 15 and 16 give the current and radial electric field induced

25
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by the incident and ground reflected field together. By comparing these
fiqures with Figures 6 and 7 one can get the effect of the ground reflected
field. Again, just like the scattered field from a neighboring wire the

ground reflected field has a tendancy of decreasing the inducing effect of the

incident field.
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VI. EFFECT OF WIRE RESISTIVITY

Up to now, the wire's resistivity has been ignored in all the previous
sections. Let R' be the resistance of the wire per unit length. Then the
boundary condition at the surface of the wire will be

o inc _ o .
Eﬁ + E; = IR | (14)
and the induced current will have an additional term in Equation 3, namely
(10]

2ncE : estdS

- 0 1 |
Is = Zo sin 6 27 s{Ko[(sa/c) sin 8] + p csc o Kj[{sa/c) sin e]} (15)

with p = ZuaR'/Zo, and Ky being the modified Bessel function of the second
kind of the first order. Note that R' has been taken to be the DC resistance
of the wire. If the skin effect is taken into account, p in Equation 15 will

be replaced by [11]

I (saq/c)
P - 7Ts )]10( 7c)
sin 0 [ o,/ (se, pisad/c

(16)

where q = /éinz e+ ow/(seo), oy = wire conductivity, and I is the modified

Bessel function of the first kind of the first order. Neff has computed

T

given by Equation 16 [11]. In his computation, a = 2.03 cm;

5 the frequency-domain version of Equation 15, for p = ZnaR'/Z0 and for p

Oy = 3.54 X 107 S/m; =90, 54,3 , 18, 6 ; and the frequency ranges
from 0.16 Hz to 1.59 GHz. He found practically no difference between the two
expressions except for the case 6 = 6 and the frequency is from a few Hz to a

few kHz, in which case the difference in amplitude is about 5% and in phase

31



angle less than 10°.
Equation 15 can be approximated in the same manner as described in Section ~/
I[IT. Instead of the expression given by Equation 4, it now takes the form
| Eo R

Io == exp (- Ct*)u(t*) (17)
where R = R'/sin 6 and L is given in Equation 4. Equation 17 can be time-
convolved with the incident HEMP double-exponential waveform and the resulting
expression is dotted in Figure 17 alonq with the case of a perfectly
conducting wire. In the figure, R' is chosen for oy = 3.54 X 107 S/m (copper
wire), a = 0.715 cm (0.28"), and the current assumed to flow within a skin
depth, which at 100 MHz is about 0.8 X 10~3 cm (0.31 mi1). Thus, one obtains
R' =8 X 10'2 2/m, about three orders of magnitude larger than the wire's DC
resistance. It can be concluded from the figure fhat the wire‘resistivity has

practically no effect on the induced current and radial electric field.

32
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VII. THE COMBINED EFFECT

In Sections IIT through VI various effects and their relative importance
are discussed regarding their ability in inducing currents and radial electric
fields on a multi-conductor line over a finitely conducting ground. In this
section these various effects will be added up with appropriaté time delays |
for a two-wire system over a around.

Figure 18 is the time history of the total induced current on either
wire #1 or wire #2. The curves were obtained based on a linear, time-domain,
single scattering theory, as has been discussed in Section II. The mark "+"
~on each curve indicates the time when the second scattering contributes
"positively" to the induced current just as the direct incident field. The
curves beyond the marks "+" should be somewhat higher than thosé shown.
Nevertheless, one expects the peak induced current will be somewhere around
2 kA to 6 kA depending on the angle of incidence.

Figure 19 is the time history of the corresponding radial electric
field. Just like the -induced current, the ground conductivﬁéy has a more
pronounced effect for a smaller angle of incidence. The incident HEMP

waveform for both figures is

E = 52.5[exp (-4 X 10%) - exp(-4.78 X 10%)], (kv/m) . (18)

with £ and the wires being parallel to the plane of incidence, which is formed

by the vector K and the vector normal to the air-gqround interface.
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VIII. APPLICATIONS

The tecﬁnidues described in the preéeding sectibns will now be applied to
two typical line configurations: (1) a typical 3¢ 765 kV sing]e-circuit
transmission line, and (2) a typical 3¢ 13.2 kV single-circuit distribution
Tine. The cross-sectional views of these two lines are shown in Figure 20.
The results to be described below correspond to a HEMP waveform given by
Equation 18 with the same polarization and angle of incidence as those of
Figures 18 and 19.

The results of calculation for the peak values of I, i, Ep, ép are
summarized in Table 1. Figures 21 through 32 give the time variations of the
induced current and radial electric field on all thevshield wires and phase
condﬁctors.' In the 765 kV case an equivalent conductor was used to
approximate a group of four conductors using the geometric-meah formula for
the equivalent radius, the value of which is shown in Figure 20. Note fhat
due to symmetry, phase conductors #3 and #5 have the same response, and so do
shield wires #1 and #2. - |

In the case of the 765 kV 1ine Table 1 shows that the peak induced current
is about 2 to 3 kA on each phase conductor and shield wire, whereas the peak
rate of rise of the current is about 1011 A/s, comparable to the most severe
lightning return stroke. Unlike the lightning case where the effect is
relatively localized, the HEMP‘effect is quite widespread, héﬁever. The
induced electric field (voltage gradient) on the shield wire can be a few tens
of MV/m, while on the phase conductors it is only a few tenths of MV/m.

In the case of the 13.2 kV distribution 1iﬁe the peak current is a few
tenths of kA and its peak rate of rise is a few tens of,101° A/s. ‘The radial
electric field is a few MV's per meter. It can be seen that the’proximity of

the phase conductors tends to alleviate the inducing effect of HEMP.
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For both lines the peak rate of rise of the voltagé gradient is quite
large, on thé order of 10° My per meter per second. What effect such a large
value might have on an electric power system need be investigated.

| It should be recalled that the foregoing results were derived from a
linear, time-domain, single scattering theory. Discontinuities such as
stations, towers, etc. along the line have been ignored. Nor have any
nonlinear effects, such as corona and flashover, been included. Furthermore,
it should also be noted that the results presented are for 8 > 18°. When
the angle 6 gets smaller, the effects of multiple scattering from the neigh-
boring wires and the ground will come into play sooner. To account for these

effects will require a greater effort.
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APPENDIX
EFFECT OF CORONA

Consider a wire of radius a at a height h above the ground (Fig. 33a). An

electromagnetic pulse with parallel polarization is incident on this wire.
Current, charges and heﬁce radial electric field on the wire are generated.
If the intensity of the induced field exceeds Ec, the corona onset value, the
corona discharge will take place around the wire. This phenomenon affects the
propagation of the pulse and the scattered wave along the wire and consequent-
1y affects the induced current and voltage gradient on the wire.

'To quantify this phenomenon, one starts with Maxwell's equations for the

fields together with the continuity equations for the charge particles

(Ref. 12):
>
_ af
VXE= -uo—a?
VXA =g -§-E~+ e(K Ny + KN, + KN ) E
_ e
veE = = (N, - N, - N)
0
aN, . R
ﬁ—-: aKeNe| | - aeNe - BNEN+ - V°(NeKe )
aN,
5t = @ KNJIE] - BN N, = W N, - Ve(NKE)
aN_
50 = aN, - WA, - Ve(N K _E)

where

e = electron charge

N, N

or Nps N_ = electron, positive ion and negative ion densities (m’3)

a = Townsend's first ionization coefficient (m'l), which is usually
given by a = Ap exp[-Bp/lﬁl], p is the gas pressure and A and B are
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two parameters

a, = electron attachment rate (sec'l)

B, Y = recombination rates (m3sec'1)

Ke’ K+, K_ = electron, positive ion and negative ion mobilities
(mzvolt'lsec'l)
Near the surface of the wire, E = Epgp and-E% = 0. The above equations
can be simplified as follows:
azEp azEp &
-3:2-— - uoeo ;?—- = M 5t (KeNe + K+Nf + K_N_)eEp]
L2 )= (N -n -n)
[ ap p eo + e -
) \ o
37 (N, =N - N) =0
aNe 1 3
aN :
+ 1 3
'a‘t—* = a KeNe‘E I - BNeN+ - ‘YN_N_'. - B-sp (pN+K+Ep)
aN_ 1 3
O = aeNe - YN_N+ - BTD. (pN_K_E )

Various approximations to the above equations can be made in different
time domains which are shown in Figure 33b. The domains are defined as fol-
Tows:

I. Lfnear domain:

The time interval extends from t = Q to t = tgp ( a few tens of ns), tep

being the time for air breakdown when Ep = Ec' In this domain, the air

surrounding the wire behaves as free-space, i.e. N, N

o> Nys N_=0. The
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ITI.

Iv.

linear HEMP effect on the wire 1s presented in the text.

Avalanche domain:

In this domain, the radial electric field is strong enough to ionize the
air and the avalanche process is the dominant mechanism, meaning that

a,s B, v terms are negligible in the equations. This time interval lasts
until the time tp (the so-called Formative Lag time) when the avalanche
process creates a space charge field of a magnitude comparable to the
applied field (Espace charge * EappHed)'

Electron-Ion transition domain:

In this domain, electron attachment rate is comparable to the avalanche
rate. As a result, electrons attach to neutral atoms and creafé negative
ions. Recombination can still be ignored, i.e., B, y terms are negli-
gible in the equations. The time interval lasts until t = tpp which is
determined by N_/Ne = 100.

Quasi-static domain:

In this domain which is dominated by recombination, the-corona is fully
established, and the radial component of the electric field on the sur-

face of the wire becomes EC. The non-linear transmission line is one of

the models that may be used in this domain.

As can be seen, different time domains must be considered in order to

investigate the effect of corona on responses of transmission and distribution

Tines to HEMP. In each domain the corona equations will be simplified accord-

ing to conditions appropriate for that domain. Different boundary and initial

conditions will apply in each domain. The corona equation together with the

boundary and initial conditions should then be studied, both analytically and

numerically, in each domain, and the theoretical results Shou]d be compared

with

available experimental data.
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