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: : This paper applies a simple breakdown model of the corona around a wire
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Abstract

This paper applies a simple breakdown model of the corona around a wire
to calculate the response of the corona and wire (charge per unit length and
current) to an incident transient electromagnetic plane wave, This wire is
assumed to be perfectly conducting and of infinite length. It may be in free
space or parallel to a ground plane, A transmission-line approximation is
used for these calculations,
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I. Introduction

The coupling of incident electromagnetic waves to wires is a subject of
long-standing interest. Usually one considers this as a linear electromag-
netic scattering problem. However, there are situations in which the result-
ing fields near the wire(s) are so large that electrical breakdown can occur
in the surrounding air, This makes the problem in general nonlinear. In this
note, we consider an approximate solution to this problem for the case that
there is a wire which can be considered infinite in length, at least for times
before signals can reach the observer from the wire ends.

The model is based first on some experimental work concerning the propa-
gation of a pulse on a wire above a ground plane [6,7]. For this purpose this
author proposed a model involving an equivalent corona radius discussed in
[6,7,10,11]. For this case of nonlinear propagation on a wire in corona a
solution was found in general form by Chen [12,13]. This solution has been
applied to the lightning leader by Baum [8], and to the 1lightning return
strike by Baum and Baker [9].

This paper applies the equivalent-corona-radius model in a different
type of situation, Here the forced solution is considered instead of the
previously considered free solution., A uniform plane wave (or two planes
waves, including the reflection from a perfectly conducting plane parallel to
the wire) is incident on the wire, For an effectively infinite length wire

this leads to a closed-form solution for the wire response in the presence of
corona, This gives a canonical solution applicable (approximately) to the
interaction of pulsed plane waves, such as the high altitude EMP, with wires
of interest such as power or communication lines or long-wire antennas.




II. Infinite Wire in Free Space
. Consider first the geometry of an infinite straight wire in free

space. As illustrated in fig. 2.1 there is a wire (perfectly conducting) of
radius Y, with the z axis aligned along the center of this wire., As will be
used later there is an effectivg corona radius ¢.. There is also an effective
reference conductor of radius ¥ which gives a characteristic impedance
(without corona) of

ZC = f 7 (characteristic impedance)
0 %
1, te
fgo - §;‘2n(ggﬁ (2.1)
/ Ho
Zy =/ —~ (wave impedance of free space)

0

Associated with this we have the parameters (without corona)

L' = u f_  (inductapce per unit 1en§th)
0 0 go .’T;‘..,. »
[
C; = fo (capacitance per unit length)
%
L
z, =/ v (2.2)
0 0
My S permeability of free space
€y = permittivity of free space
c = 1 =z wave speed in free space
/uoso
Now the incident plane wave takes the form
. i, . F
(inc) _ 1
E = E f(t - ——) Ip

‘II' F o= (X,Y,2) (2.3)



E(mc)

(Tnc)'/ S

effective reference

conductor
b4
X0
corona radius

Fig. 2.1. Corona Model of Infinite Wire in Free Space
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Tp = polarization unit vector
With a right-handed set of unit vectors for the incident wave related as

the incident electric-field vector is taken with a constant polarization (not
essential) with unit vector Tp as a linear combination of TZ and T3. Special-
izing 7 to the z axis and noting

Tl . Tz = cos{a) (2.5)
_ ¢
Yp = Cosla)

we have the incident tangential electric field as

g, = B0 L1 =g f(t - S

E,f(t - %—;) sin(a) (2.6)

For more general cases that E(1nc)

is not parallel to TZ the form Tp . TZ can
be used. If one defines § as the angle of rotation of Tp from TZ we have an
additional factor of cos(s) so that

E E_f( --%—) cos(s) sin(a) (2.7)

t o) p
For a given direction of incidence this is maximized in magnitude for 6 = 0O,n.
It is this tangential component of the incident electric field that we will
need for later analysis. Note that any component of the incident field paral-
lel to T3 does not contribute to the incident tangential electric field.

For later use we have for this problem

‘L'Et--‘:'/——
p



g(c) = [ f(z') dr! (2.8)
T
f.m Et(r') dt' = Eog(t) Tp . Tz = Elg(t)

E, =BT <1 =E_ cos(s) sin(a)

This integral of the incident tangential electric field is a key parameter in
our solution to the transmission-1ine problem,

For comparison the reader is referred to the exact wave solution to the
perfectly conducting wire in free space [5]. Note that in the transmission-
line approximation the parameter ¥ (the radius of the effective reference

conductor) and hence ZC must be assumed as some approximate number of meters,
0
say based on some time of interest (after the initial wave arrival), Fortun-

ately ¥ _ only enters logarithmically as in (2.1).




. III. Infinite Wire Above Ground Plane

Now let the perfectly conducting wire be above at he1ght h and parallel
to a perfectly conducting ground plane as illustrated in fig. 3.1. In this
case we have a characteristic impedance (without corona) of [1]

= f _Z (charactéristic impedance)

Z =
<o 9 0
(3.1)
fgo = 5-arc COSh(WO) o 2”[(wo) + ((wo) )77
Y b4
1 2h 042 o
= > zn[\yo (L+0o((FI))] as =0
y ¥
1 2h 042 0
= ?‘f—f- 9.”(%) + O(('h_') ) as E— + 0

This result can be used to define an equivalent outer radius for a coax by

. comparison to (2.1) giving
' ¥ h

™ h 2 1/2
vt ((K) - 1)
b4 ¥
- %.;. (1 + o((h_O)Z)) as =2+ 0 (3.2)
b4 ¥
¥, = 20(1 + 0((59%)) as ;2 0

Note that the concept of a characteristic impedance for this configuration is
accurate provided h is electrically small.,

Let the z axis as before be along the wire axis, As shown in fig. 3.1,
let there be an 7' coordinate system with

Fos (x',y',2')

x'" = ¥' cos(4') = r' sin(e') cos(e')
. | (3.3)




Fig.” 3.1. Corona Model of Infinite Wire Parallel to Ground Plane




y ¥' sin(e') = r' sin(s') sin(¢')

z' = r' cos(e')

with the x' axis paraliel to the z axis (i.e., the wire).

of unit vectors for the incident wave as in (2.4). Here T

Again define a set

is tHe direction

of propagation of the 1nc1dent wave, and T and T are po]ar1zat1on unit

vectors, In the 7' coordinate system we have

I

sin(el) TW' + cos(el) Tz.

= sin(e,) cos(¢,) Tx' + sin(s;) sin(g,) Ty. + cos(e,) Tz'

i = -cos(el) Tw. + sin(el) Tz‘

(3.4)

= -cos(o;) cos(4,) Tx. - cos(o;) sin(e) I&. + sin(o;) Tz'

-I = ‘1¢|

= sin(¢1) Tx. - cos(¢1) T&.

Let the incident field consist of the sum of a wave coming down to the

ground plane plus one reflected from the ground plane as

glinc) _ #(1) , g(2)

with

Now the polarization vector can be written as a linear
and T3 as

(3.5)

(3.6)

combination of 1‘2




Tp = cos(g) TZ + sin{g) T3 (3.7) .

so that g is the angle of rotation in the TZ’T3 plane in the direction from TZ
toward T3.

The tangential component of the polarization vector (x' component or z
component) is

Lotu=1 -1,

-cos(B) cos(el) cos(¢1) + sin(g) sin(¢1) (3.8)

This can be used for the tangential component of E(l) in (3.5)., The tangen-
tial component of the direction of incidence is

ot =1, -1,

sin(el) cos(¢1) (3.9)

For convenience now place r' = { on the perfectly conducting ground
plane, The wire is now centered on (y',z') = (0,h). The ground plane can be
considered as a plane of symmetry and the resulting e]ecfromagnetic fields are
antisymmetric with respect to this plane [4]. An antisymmetric electric field
has the form

B (Ft) = 3 [EFLe) - B (F,1))
Em(F',t) =R . E(F&,t) (mirror electric field)
(3.10)
1 ¢ O
R = ( 010 ) (reflection matrix)
0 0 -1

> b-q > .
rl =R «r' (mirror position)

10




\ LIRS - (3.11)
let us construct

tine) e by o e W by DR ALRACINS (3.12)

m

as the equivalent antisymmetric incident field. Then

I, « &

) = g r(e - L) g t, (3.13)
The tangential component is found from
(R . Tp) -1.=@®. Tp) - 1,
= ~cos(B) cos(el) cos(¢1) + sin(g) sin(¢1)
"II’ "L
Tl-?n'ﬁil.ﬁ.?
=1, . & 3.14
Pt f (3.14)
I, =1 .%
1m 1
Loote=1 -1,
= -Il d le

siﬁ(el) cos(¢1)

S0 now we have the x' (or z) component of the incident electric field as
I, . 5 .F
- 1 m
‘ E, = E, {f(t - )-f(t--————)}Ip-’I

(3.15)

c ¥4

11




Setting
7= (x',0,h) Fé = (x',0,-h) (3.16)

on the center of the wire, we have

I, « %' = sin(s;) cos(s))x' + cos(e;) h (3.17)

I %= Il . ﬁ% = sin(el) cos(¢1)x‘ - cos(el) h

For convenience, and comparison to the results of section 2, let us
choose the origin of the F' coordinates by our choice of x' = 0 such that
(3.15) has its first term in time domain the same as in (2.6)., This makes the
early part of the time-domain response the same with the effect of the reflec-
tion from the ground plane appearing later., Note that /2 % el < 7w (i.e., the
wave is incident from above); then set at z = 0

I, % =0= sin(9;) cos(¢;)x' + cos(e,) n (3.18)

giving

b=y
.
R
]

: sin(el) cos(¢1)x' - cos(el) h
-2 coé(el) h ‘ (3.19)

As in section 2 we have a phase velocity

Cc c , -1
v = = = c[sin(e,) cos(¢,)] (3.20)
ST T AN . . .
z 1 X
and a time variable
Tzt - %; (3.21)

The tangential component of the incident electric field (at the wire center)
is then of the form

By = Ey {F(x) - f(x + 2 cos (o)) D} L1 (3.22)

cos(el) <0

12




‘ For later use we have
. T

(3.23)

m
—

]
e}
[ g
[ ]
—

Thus the problem of a wire over a ground plane (in this section) has the same
form for the tangential electric field as. the problem of a wire in free space
(in the previous section) provided the incident waveform is appropriately
interpreted in the two cases (comparing (2.8) and (3.23))

13




IV, Telegrapher Equations in Corona Model

As discussed in [8] the telegrapher equations take the form

3V 31
=l sy

9z at s (4.1)
1

AR (RN

as in fig. 4.1 where the capacitance per unit length C' is included in the
time derivative since it is time varying and of the form

c' =¢! Q__= capac{tance per unit length

Q' = charge per unit length

L' = inductance per unit length (4.2)
V; = longitudinal voltage source per unit length

Ié = transverse current source per unit length

These equations are related to a physical model illustrated in fig.
4,1, Here there is a corona of some conductivity (small compared to that of
the wire) so that the current is primarily in the wire. The corona conduc-
tivity also has to be small enough that the skin depth (of diffusion depth) in
the corona is large compared to ¥.. In this case L' does not depend on the
corona and we have

L' =f_ 7 = Lé (4.3)

with fg chosen as in sections 2 or 3 as appropriate,
)
On the other hand the corona conductivity is assumed to be high enough

that G' dominates C' and that the voltage between ¥, (the wire) and ¥, (the
corona boundary) is sma11 compared to the voltage across C' Then the per-
unit length equivalent circuit in fig, 4.2A reduces to that in fig., 4.2B.
This is the form used for the telegrapher equations (4.1),.

14




v (for case of wire
in free space)

h (for case of wire
above ground)

Fig. 4.1. Equivalent-Corona-Radius Model
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C'—

O L L O
A. General case with uniform corona

Vs

L' ()

o————— T

\_/ ?- t ©

o=

@' @ o— —0

B. Case with sufficiently large corona conductivity

Fig. 4.2. Per-Unit-Length Transmission-Line Equivalent-Circuit
Representation
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This leads to a corona model of the wire in which the important term is
the capacitance per unit length between the corona, which is assumed to be of
radius wc centered on the wire, and the reference conductor, whether the
ground plane as in section 3, or some equivalent coaxial cylinder of
radius v as in section 2. In the corona model Q' is assumed to reside on the
outer boundary of the corona based on a breakdown electric field as

]
¥ = —le—L— = corona radius

(4.4)

Eb effective breakdown electric field

provided ¥, > ¥ For ¥, < ¥ then Y, is used for the capacitance per unit

length, This gives

[ '1
C' = ¢, {smaller of [f O,fgc]} (4.5)

where fg is the same as fg except that ¥, is EepTaced by Yo, i.e.,

c 0
1, e o
7;-2n(¥20 for wire in free space
fg = (4.6)
c Y. 2 Y
1 2h c c
S ZH(FC-) + 0((h—-) ) as o + 0
for wire above ground plane
Identifying 2h = ¥ _ we have
| Q
fgc ='§;zn('_c') "é;zn('Q")
I =
Q. = 2me ¥,

In this form we have the capacitance per unit length in (4.5) as a function of
the charge per unit length in (4.7).

The incident tangential electric field Ey has been considered in
sections 2 (see (2.7)) and 3 (see (3.23)) for the two problems of interest,
This needs to be related to the per-unit-length voltage and current
sources V; and I;.

17




For the wire in free space I; is related to the transverse component of
the electric field incident on the wire as in fig, 2.1. However, one does not
know how to define the voltage related to this term, Voltage is a 1ine inte-
gral [3]. One might take such an integral along a path normal to the wire
toward the effective outer reference conductor. However, this path might have
any azimuth (¢ in cylindrical or spherical coordinates based on the z axis),
Adding m to the azimuth reverses the sign of the radial electric field (in
cylindrical sense),

The wire next to a ground plane is a more appropriate case to consider
since the voltage can be defined as a potential difference between the wire
and ground plane. Of course, one should be careful how this voltage is
defined since voltage is dependent on the contour on which the line integral
of the electric field is defined [3]. For present purposes let us define
voltage via

V(z) = - [ E, dz'
(4.8)

i.e., the contour is taken (for any z, or equivalently x') as a vertical line
between the ground plane and the center of the wire, Af low frequencies the
incident electric field has a vertical (or z') component which is uniform;
this contributes to the voltage in the form -Ez|h. However, the electric
field associated with the charge on the wire or corona is not uniform with
respect to z' even at low frequencies.,

Referring to fig. 4.3 consider some incremental length of the transmis-
sion line. The voltage source per unit length is indicated in fig. 4.3A by a
contour integral (around the contour C) as

lin - 1 glinc) | g3
Az+0 C

vi(2)

lim - [ 8linc) g
Az>0 s ¥

18




A.

h l E 1nC
|
|
|
|

C

A ¥y
} ro——— ¢ % — =5 — 9 ire
T T
| ft }
- (0) (inc) | (1nc)
(z) heq @ By. E (z+az)

|
TV T T T ST

Computation of voltage source per unit length

- 7 7

v

corona

B.

Fig. 4.3.

S S S S S S SSSSSS

Above a Ground Plane
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Computation of current source per unit length

The Per-Unit-Length Voltage and Current Sources for a Wire




1 (0)
.1 Z¥hz €4 (inc),»
= 1im == E.dz = EXe 7/ (F")
Az+0 A% U’z t J.o [ z F'=(x'+az;0,2")
('iI"IC) >y '
+ B}y (f' dz
2 F'=(X',0,Z‘)] }
) n(0) (inc)
= E, -2 [ €1 glInC)xey dz' (4.9)
t oz fo z y'=0

Note that the wire diameter ¢, is small for this resuit. 1In general if one

defines h(o) as the equivalent height of the wire for magnetic-flux purposes

eq
(in the low-frequency or quasi-static 1imit) then one has an approximation as
h(0) (ne)
. d eq inc),z '
V! = B, - =~ EX, (r*) dz
. (0) 3 (inc)
= Et - heq 7 Ez‘ (4.10)

Considered from a circuit viewpoint what we are doing is considering an
incremental length of the transmission line as a two-port network. The per-
unit-length voltage source . as above is the difference of the voltages at the
two open-circuited ports, The per-unit-length current source is the sum of
the currents at the two short-circuited ports.

The current source per unit length is illustrated in fig, 4.38. To
express this first consider the open-circuit voltage of an incremental length
of line with respect to the ground plane, This is

n{c)

V. = - foeq elinc) () mo dz’ (4.11)

where for symmetry the open circuit voltage is defined at the center of our
incremental section. Note that hé:) is the equivalent height of the corona
surrounded wire, This equivalent height” accounts for the induced charge
distribution around the corona boundary, The capacitance per unit length of
this corona surrounded wire is C' giving VO.C.C' as an equivalent charge per
unit length on our section of open-circuited line, The short-circuit current
source per unit length which provides this charge per unit length is

20
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v 9 '
P Is =3¢ (Vo.c.C )
| n(c)

-2 qcr pea gline) iz dz" (4.12
= fo ; (r)y'=0 z'} )

Now change variables in the telegrapher equations as
Q" he (inc)
V(z) =&r - [ ST ELTC gp (4.13)
o A

where heq is approximately h and can be compared to h(o) and h(c) as

eq eq
desired, Then (4.1) become
& fheq glinc) dz'} = -10 &L 4y
3z \C 0 z' ot s
(4.14)
h . h .
R G e I ke s
. 0 . 0
. Selecting heq as hé;) to simplify the second of (4.14) gives
\
. plc) (inc)
Q5 . 8L v+ 8 reg inc '
3z [%T] L st T Vst 3z fo Eg dz
(4.15)
al . _2Q'
z ot

$0 that the second of the equations reduces to a continuity equation,

The first of (4.15) is simplified by noting that

h(c) (1n¢)
3 e inc
Verard e e
n ) n) i)
- 8 _req (inc) ., . 3 ,eq (inc
=E -35 ] E dz' + [ E dz'
n{c) (inc)
= 9 eq inc '
=B + 32 h(o) Eo dz
. eq
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< g, + [0S - n{0)) & gfne) | (4.16) '

Let us assume that the corona radius ¢, is sufficiently small so that we can

set
(c) . ,(0)
naq’ = hig (4.17)
giving h(c) .
vy v 2 ped gline) g g, (4.18)
(o]

Note that the use of an equivalent height is most appropriate for the case
that h is electrically small. For h electrically large a quasi-static esti-
mate of heq is 1inappropriate. However, it does show the difference between
the coupling terms associated with magnetic fields (or current) and electric
fields (or charge).

With our selection in (4.17) now the telegrapher equations are trans-

formed to
3 ! 91
T Alca IR
3z T 5t

Note that E; has been computed in sections 2 and 3, This form of the tele-
grapher equations has Q' and I as the response variables instead of V and I,
In order to convert Q' to V one can use (4.13) which brings in an extra term,
the incident vertical electric field (used either in integral form or multi-
plied by the equivalent height),

22




V. Form of Solution for Plane-Wave Excitation

As discussed in sections 2 and 3 the source term Et is a function of

‘rEt-—z—

Yp (5.1)

V. > C
P

For an infinite uniform transmission line we also expect a solution which
combines time and space via t. Let us then change our derivatives as

a__ 3 d.
8z 3z t const, d
=L d
vpd'r (5.2)
3 _ bt 4
8t 3t |, const. 9T
=4

The telegrapher equations are now
(5.3)

and we wish to solve for I(<) and Q' (). Assuming zero initial conditions the
second of (5.3) can be directly integrated to give

1 _ At
V;I = Q (5.4)

This may in turn be substituted in the first of (5.3) to give
1 a ] IAQ_._
-W—a-;(%r) + Vp L 3T - Et (5'5)

Again assuming zero initial conditions this equation can be integrated to give

23




<|w—t

[ T
; %—,—-4- Vp L'Qt = f-w Et(r') dt' '

(5.6)

u
m
-
[{e]
—
~
—

where the results of (2.8) and (3.23) are included. This is quite a simple

result., The source term is just the time integral of the component of the
incident field parallel to the wire.

24




VI. Solution with No Corona
If there is no corona then
Ct = ;il- s L' =y f (6.1)
9 09, .

and (5.6) takes the form

f
g
1 0 -1
Q' () = {-==—+v_uf }T"E g(1)
vp € p "o 9% 1
u v u -1
=& /0. p /0 -1
{ Vp €0 * c €, } fgo Elg(T)

f
p 0 90
v

= - =+ A z'l—Elg(r) (6.2)

p Co

This can be converted to current via

v

I(r) = v Q'(x) = (&) c'(2) (6.3)

Note that as v_ + c then Tl is becoming parallel to the wire. In that
case we have from (3.20) and (2.5)

;R = [sin(el) cos(¢1)]'1 = cos(e;)'1 (6.4)
Also from (3.8) and (3.23) we have
E1 = [-cos(B) cos(el) cos(¢1) + sin(g) sin(¢1)] Eo (6.5)

for the case of a wire parallel to a ground plane, If we regard o as the
angle of Tl with respect to the wire and § as the angle of T from the plane
of Tl and the wire (as in section 2), then from (2.7) and (2.8) we have

E, = cos(8) sin(a) E (6.6)

1 0

25




This can also be applied to a wire above a ground plane for which we note
that, for fixed «, E1 is maximized in magnitude for § = 0,r.

Substituting from (6.4) and (6.6) in (6.2) gives

Q' (1) = {- cos(a) + coi(a)}-l Zi cos(8) sin(a) Eog(r)
E o
0
= cot(a) cos(8) y— g(1) (6.7)
o
Note that the current behaves as
21 v _cos(8) ¢
I{7) = Tos(aY cQ' (r) *'gﬂﬁcgy'zz— Ey9(7)
0
E E
_cos{(8) "o _ cos(8) "o
T sin(a) pofg g() = siﬁ%g%'fr 9(x) (6.8)
0

As a » 0, if g(r) is not also a function of «, then Q'(r) and I(t) blow up, as
is well known for the case of an infinitely Tong perfectly conducting wire in
free space [5]. As we can see this behavior even applies in the transmission-
Tine approximation., One can also compare the present results to those in [5]
to see the degree of approximation present in the transmission-line formalism
as appiied to a wire in free space. Of course, as « + 0 a finite length wire
will have a signal propagate to the observer from one end, arriving a very
short time after the "direct" signal and having an effect of reducing the peak
signal,

Another case of interest is a = n/2, or broadside incidence. Then we
have

Q'(z) =0
(6.9)
; E
I(z) = cos(8) == g(x) = cos(s) = g(x)

0 go

E c
= cos(s) 79— g(7)
c
0

26




In this case since Q' is zero for all time, then no corona will develop and
the solution for the case of no corona will apply for all time (or until the
presence of actual wire ends can propagate a signal to the observer),

Turning to the case of a wire above a ground plane (3.23) indicates the
dependence of g(z) as ;

fT {f(') - f(x' + 2 cos(s,)

-0

ol

g9(7) )} de!

(6.10)

/2 < 61 <7
Note that for 6, = n/2 then g(t) = 0. So let us expand the second term in the
integrand for small cos(el) as

f(x' =2 cos(e,) %ﬂ = flz') + 2 cos(o)) T =+

250
+ 0((2 cos(el) %JZ Q—IX%—J- as 8; » %- (6.11)
d'
where f(t') is assumed to have a first derivative, and a second derivative as
well if the order symbol is to apply. Substituting (6,11) into (6.10) with

zero initial conditions on f(t') and its first and second derivatives gives

(6.12)

(g =y

g(r) = -2 cos(e,) L £(<) + o((2 cos (s)

This result can also be obtained by expanding the time integral of f{t) in
(6.10) in a manner similar to (6.11),
Noting as in (6.4) that

cos(a) = sin(el) cos(¢1) (6.13)
then (6.6) can be written

E, = cos(s) |1 - sinz(el) cosz(¢1)]1/2 E

1 (6.14)

o

This allows us to consider the response of the wire above a ground plane as a
function of § and either « or 8, and ¢y
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Now express (6.2) and (6.3) as

N ®

Q'(t) = {- cos(a) + coi(a) 7— cos(8) sin(a) E g(1)
c
£ 0
= cot{a) cos(s) 79— g(t)
o
= cos($§) EQ—-{- 2-rl cos(e,) cot(a) f(1)
Zc c 1
0
+ 0((2 cos(ey) 2)° cot(a) dgif) )}
8, > =
07 (6.15)
(%) = gaay <0 (x)
E cos(se,)
2h 1
= cos(§) z‘g-;- - E—mr‘ f(x)
+ 0((2 COS(el) %)2 51}1(“) dgir) )} .

w
as 91 +?

Since « is a function of 8, and 41 as in (6.13) then making « small requires
both el near n/2 and 61 near zero (or w). If 61 is bounded away from 0
and = then o cannot approach zero where singular behavior has been noticed for
the case of a wire in free space as in (6.7) and (6.8). Let us then choose a
special case of cpl = 0 for which

cos{a) = sin(el) . cos(el) = «sin{a) (6.16)

The wire-above-ground-plane result in (6,15) then becomes

E

Q' (t) = cos(s) —9—-{§H-cos(a) f(r)
c
0

2 df(z)

+ 0(2 cos(a) sin(a) (29 T
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as o + 0

1

. (6.17)
I{t) = Cos(ay cQ' (1)

= cos(8) 7y {1 £(x) + 0(4 sin(a)()? s1(5))
C

0
as a + 0

Note that this result is bounded as q + 0 and the response is proportional to
f(t), not to its time integral., Also note that the wire Tength is taken to be
infinite before the limit o » 0 is taker, In this way the termination impe-
dance at the wire end in the direction toward the source of the incident wave
does not enter into the present result.

Thus while the formulation of the two cases (both without corona) is
similar, the practical results are somewhat different, The presence of the
reflection from the perfectly conducting ground plane significantly reduces
and alters the shape of the wire response.
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VII. Solution with Corona

If there is corona then

1 so
= to_
C' = 7 s L uofg
9 Y
(7.1)
Q‘
=1 ”
fgc = 5= ln(l-Q—rl')
There is a threshold for corona given by
o
Qo = 21reoEb (7.2)

If || > Qy then (7.1) applies. For [Q'] < Qy then (6.1) applies. Our
general solution in (5.6) then applies to both cases where

?él— for [Q'] < Q)
c'(Q') = (7.3)
for Q'] » o

noting that C' is continuous through Q'.

Rewriting (5.6) as

. .
{- 3—pg-1c—- # e’} Q' (x) = Ejq(x) (7.4)
we have B
{~ cos(a) fo. * i o b Q') = Ea(x)
fos s .
5.~ 2 )
(7.5)
¢ ol
go - 2 g'n(ag)
Note that
Q'] > Q= f < f (7.6)




This last result shows that in the presence of corona then as o + 0 the
coefficient of Q' in (7.5) remains positive away from zero, This prevents the
blowup of Q' as o » 0,

Since Qé is the corona threshold let us normalize our results to this
and rewrite (7.5) as

gC]} Q' (1) _ E19<T)
% L q

{- cos(a) +-EE%C;Y + cos(a) [1 - fg
0 0 (7.7)

E1 = cos(8) sin(a) EO

In this form there is a correction term, the third term in the braces, which
accounts for the corona., For the case of no corona this correction term is
zero. Using the expressions in (7.5) for the geometric factors we have

|Q'(1:)l

1 zn( Qo J '(7) Elg(T>
{- cos(a) t syt cos(a) -———Ti:——-— }.95;__ = 7::—Tx;
2”(5T) 0
applying for —I—%,(—T—)—I > 1 7.8
o L]
I{t) cos(a) _ Q'(1)

Solving for Q'(r)/Qé note that one has I(r) appropriately normalized as
well, * One might define then

cQ'
IO =z Ecmozy (7-9)
giving
I(z) _ Q' (x)
Io Qé ' (7.10)

Consider the special case as before in which a » 0. Now we have

Wm&;ﬁ”i) 9;5? o
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0 if g(z) =0

Q' ()1 _

B | 1ifge) 20 _—
11

I =cQq

Note that this simple result indicates that the charge per unit Tength (and
hence the current as well) does not blow up as q + 0; the corona limits it,
This applies irrespective of g(t), whether for a wire in free space or a wire
above a ground plane, Before the incident wave reaches the observer the
solution is zero (by causality). After the wave arrives Q' immediately rises
to $Qy. If g(r) is unipolar (for constant polarization §) and we adjust the
zero-time reference so that

=0 fort <0

g(r) (7.12)
#0 fort>0

then we have

lQéLElL = u(z) (7.13)
0

with polarity depending on the polarity of the incident field,

These results are graphed in figs. 7.1 through 7.7. FEach of these
figures is for a particular value of féo (as in (2.1), (3.1), and (7.5)).
This is a geometrical impedance factor and can be related to the characteris-
tic impedance (without corona) in the transmission-line model by multiplica-
tion by the free-space wave impedance Z, (= 377 Q).

Each of the figures has two parts, Part A plots ‘Q'(r)I/Qé as a func-
tion of Elg(r)/(zC Qé) as in (7.8) and (7.11) for the case of corona, and for
comparison the norfialized solution in (6.2) is plotted as dashed lines. Note
that for |Q'| > Qy the response is significantly reduced. Various choices
of a between 0° and 90° are given, Note that for « = 90° the charge per unit
length is zero, but the current is nonzero and can be found from (6.9) since
there is no corona in this case.

Part B puts these results in terms of a corona reduction factor. The
response under corona conditions is divided by the linear response {(no

32




8.2

33

0

i 36°
-n-oz=0°
L H 1 1
g 4 E-,[g(“r)l 8 8 {8
' ZCo Q6
Fig. 7.7. Normalized Response: fg = 0.1




QO
8 2 4 E1|g(f)|s 8 18
A. | Iy O
! T T T T
e ——————
72°
a.8 - -
54° \
8.6 [ :
1.8° 36°
Q' (t)! 2.4 K -
IQl T l » =0° \
nog corona p-0i=0
8.2 |l . B
2 - 1 2 t $
2 2 ¢ £ g(r)| 8 8 g
B. —7%0 %

Fig. 7.2. Normalized Response: f 0.2

9%

34




Q" (x)!
QO
o
{
2.8 -
10 (1) 2.6 | -
Q' (t ll'
no corona
g.4 L -
4—-0,=0°
8.2 i -~
B L L i 1 1

8
. B. * E]IQ(T)I
' ' Zco Qé
Fig. 7.3. Normalized Response: f_ = 0.5

35




19* ()] 2.6 i 36° ‘*“‘—————_______________ -

()T °
lno corona 1.8
8.4 l. -
8.2 4 -
+-0,=0° '
g Lo e L L L
BB 2 4 E119(T)l 6 8 18

Zco Qé

Fig. 7.4. Normalized Response: f_ =1

36




I — A A i = = S wie T LD S e

Q' (1)
%
! T ———— T =T 720)
54°
8.8 |. -
36°
[Q' (1) | 8.5 L. -
107 (1)
Ino corona |1.8°
8.4 1L -
B.2 4-0=0°
8 L 2 4 ? 3
a 2 4 E]Ig(T)[ 6 8 18

B. —_—
‘ Zeo o

Fig. 7.5. Normalized Response: f_ = 2
0

37




5 L4
4 w—
Q' (7)! 3 g
R 728
0 >
2 |l ﬂ
OO
{ ~
8 W ! 1 L
¥ ? § 8 10
A. E;Ig(*r)]
. ZCQ Qé
1 —— X
\‘\ —W 720/3:]
36°
8.8 L i
19 (1) | 8.5 |- |
12" ()] .
‘ no corona 1.8
8.4 L. i
Le-0=0°
8.2 4 1
e Li . .
8 2 RO 8 Ie
> o
Co o
Fig. 7.6. Normalized Response: fg =5
0
38 -




Q' ()| g
Q
72°~>
0°\
1 t
A e 4E]IQ(T)I 8 8 i8
' ZCo Qo
I 1
S ‘ 54° 705
36°
8.8 L. |
Q' (7)1 2.5 {L |
Q' (t II
no corona
8.4 LL |
1.8°
8.2 |
1"’(!=0°
g l— 1 .
g 2 4 E]lg<T)l 8§ 8 19
- oY
Fig. 7.7. Normalized Response: fg = 10
0

39




corona). Before onset of corona this form of the normalized response is
1.0. After corona onset a significant reduction is noted due to corona.

In these plots various choices of « are taken, At ¢ = §0° there is no
corona and the linear result applies. At a = 0 the case of no corona gives an
infinite response for a nonzero source term Elg(r)/(ZC Qé). However, as in

(7.13) the corona limits the response. For intermediate « there is some
reduction of the charge per unit length due to corona., The charge per unit
length increases for small o until ¢ is quite near 0°, in which case it
decreases again toward its limiting value.
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VIII. Experiments

As mentioned before, the corona model used in the telegrapher equations
developed from some experimental results in which a high-voltage pulser
launched a wave on one end of a wire above a ground plane [6,7]. However,
instead of the "free" solution appropriate to that case, this paper considers
the "forced" solution appropriate to the case of a plane wave incident on a
wire, either in free space or above a ground plane,

This solution comes from the same nonlinear transmission-line equations,
but with different sources. As such one might construct one or more experi-
ments based upon such plane-wave i1lumination which test to what degree the
present formulas model reality.

One type of experiment is indicated in fig. 8.1 in which a transient
electromagnetic field, an approximate plane wave, is incident on a wire. To
obtain large fields which induce air breakdown around a wire, a guided TEM
wave, such as propagated between parallel conducting sheets, or in a region of
conical conducting sheets of small angle of divergence would be appropriate
[2]. The approximately uniform fields between the planar conducting sheets in
turn approximate an incident uniform plane wave over a finite region of space,

In this parallel-plate region let us introduce a wire at an ang]e.v with
respect to the direction of incidence Tl and in the plane of Tl and g(1nc) as
indicated in fig. 8.1, Let us define

w = plate spacing

%2 = wire length

W . (8.1)
- sin(v)

Let us consider an observation position on the wire (wire axis for
simplicity) at a distance W, from the "bottom" plate and a corresponding slant
distance zo along the wire with

o

2—O-= S'in(\)) (8.2)
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Fig. 8.1. A Wire and Possible Ground Plane Introduced into a
Parallel-Plate Region
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In designing an experiment like this we need to consider the time for which
the results are applicable, Specifically, let us at least initially design
the experiment to apply to the case of an infinite Tength wire, For the case
of v = n/2 for which the wire is orthogonal to the parallel plates, then one
can consider the wire to include an infinite set of images in both directions
making an infinite straight wiré. However, in practice the plates have finite
width (say 2a). Then the scattered field from the wire will propagate to the
plate edge and return to the wire in a time 2a/c if the wire is centered
between the plate edges. If the observer is in the middle of the w1ra (w =
w/2) the signal from the edge of the plates arrives at la + /32 + w 1/c after
the first signal reaches the observer, If there is a ground p]ane placed a
distance h behind the wire (see fig. 8.1) then the signal from the edge of
this plate to the observer also needs to be considered, These considerations
Tead to a concept of clear time for which the experimental results apply.

Note that our reference to "top" and "bottom" plates of the parallel-
plate waveguide is arbitrary. The plates could as well as "sides" depending
on the orientatior of the waveguide in space,

By varying the amplitude of the incident pulse one can in principle
drive the wire into corona, However, the case of v = m/2 is not of much
interest in this regard since our results (and symmetry) indicate that corona
is not produced in this case.

Varying v over the range 0 < v < n/2, corona can in general be generated
around the wire, This requires a more careful consideration of the clear time
for the experimental result to apply.

Consider first the signals from the wire ends which reach the obser-
ver. Several ray paths are indicated in fig. 8.1. The incident field of
interest travels on path (1). The field from the top of the wire travels on
path (:); it arrives at the observer at a time

4 -2
t, == [4 - 2,101 - cos(v)] = 2 2 sin® (3) (8.3)

after the field on path (:). The field from the bottom of the wire travels on
path (:); it arrives at the observer at a time
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%-zo[l + cos(v)]

£
2 C—O cos2(2) : (8.4) '

2

ot
1}

after the field on path (:). Equating these two results gives

2[1 - cos(v)] = 2222’3)

J(2,3) (2,3)
0 . 1- ;osw) = sin? ¥) (8.5)
(2,3)

So as v + 0 then We + 0 and the optimum observer position moves toward the
bottom plate, Note that we have superscripts to designate which t, and t;, are
used for this choice of Wy OF 2, as an optimum measurement location., Substi-
tuting (8.5) into (8.3) or (8.4) then gives the corresponding clear time

. 2

=-%—é"—s1n (v) =%%s1‘n(v) (8.6) .

So as v + 0 the clear time gets less and less at the optimum measurement

location,

However, there are other disturbances to consider. As v becomes smaller
consider the arrival of a scattered field from some other part of the wire
reflecting from the ground plane and subsequently reaching the observer, This
is conveniently considered by means of an image wire below the lower plate and
path (:) for the field scattered to the observer. As indicated in fig. 8.1
this path makes an angle v for both incident and scattered field with respect
to the image wire,

Considering the triangle ABC we have the length Al of the ray AB
diffracted from the image wire related to the wire length 2, of the wire from
the lower conducting plate (BC) by the law'of sines as

sin{v)

A ; '
o

44




l‘ll

v e R A
PSS USSP DSOS S U

Furthermore the projected length A, of the ray (@) through the image wire to a

position under the observer is

W 2

T cos(2v) =1 - 2 sin(v) (8.8)

1

The extra transit time along the ray @ is then
£ A A )2
=1 o1 2y _.,_0 -
Ly =y -] = T T, 11 - AIJ = 2 = cos(v)|1 - cos(2v)]
L W

= 42 sin’(v) = 4 2 sin(y) (8.9)

Now the experimental design problem for any particular v is to maximize

the minimum clear time from all undesired scattering Tlocations, Let us

compare t, with t3. Equating the two gives

3,4) ‘sinz(v)

cos(v)=%
(8.10)
v = arc cos(%0 = 41,30 = 72 radians
W(3:4)

t,o=t, =L,(3:4)7 _ 1% 7

4 "3 "¢ 4 " ¢ sin(v) 4

Wé3’4)
= /7 <

This shows a critical angle. If v is smaller than this angle then ty is less
than ty and then ty is the clear time to be considered,

Assuming that v is smaller than this critical angle then tg is less than
t3 and ty should be compared instead to ty. Equating ty and ty gives

(2,4) (2,4)
L £ - 2
t4 = t2 =4 -2 z sinz(v) = —-——Yfl———— [1 - cos(v)]
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z(2,4) . 2(2,4)
4 02 £l + cos(v)I[1 - cos(v)] = |1 - 02 J[1 -cos(v)] .
2(2:4) | (8.11)
°z (5 + 4 cos(v)] = 1
1(2,4) (2,4) .
0 0 -
Z = — =[5 + 4 cos(v)]
w(2,4) .
ty = t, =4 °C sin(v) = 4 g : +S;”£;Q(VT
Note that :
(2,4)
Wo " ~-91— as v+~ 0
(8.12)
t4=t2~g-%v as v » 0

so that the clear time becomes small for small v establishing some practical
Timit to the allowable range of v in the experiment, ‘

As illustrated in fig. 8,1 we can also have a ground plane placed behind
the wire parllel to it and separated from the wire by a distance h. Also
indicated is the appropriate image ground plane, In general this ground plane
is not of infinite width and so the incident wave can be scattered from the
ground-plane edge. This suggests that the ground plane be sufficiently wide
that this scattering does not reach the observer before the scattering from
the wire ends and image wire discussed previously.

Having selected an appropriate observer position on the wire for
selected values of v then measurements can be made. Measurement of the
current should not be too difficult if the wire is really a coax or other kind
of shielded cable with sufficient shielding to conduct the signal from the
sensor through the "bottom" plate to the recording instruments. By varying

the intensity of the incident pulse one should observe the differences between
a case of no corona (low amplitude) and of significant corona (high ampTi-
tude). Note that the current model is a transmission-line model, which is
itself an approximation, particularly for the case of the wire in free space
(no ground plane). Such an approximation should be allowed for when consider-
ing the effect of the corona.




IX.  Summary

We now have a simple result for the effect of corona on the response of
an infinite wire (in free space or parallel to a ground plane) to an incident
transient plane wave., Essentially the corona reduces the charge per unit
length and current once a certain corona threshold Qé is exceeded-in magni-
tude. For directions of incidence orthogonal to the wire axis there is no
corona. For directions of incidence nearly parallel to the wire the corona
can prevent the response from becoming very large (for the wire in free
space),

Since the present theory is based on a simplified model of the corona it
would be good to compare these results with more detailed calculations involv-
ing various air chemistry parameters, In addition, one might compare the
present results to the result of appropriate experiments involving the assumed
incident-wave and geometric conditions., By this means one could see how well
the model works for various regimes of times, amplitudes, etc. In addition,
one could determine what choice is best made for the-breakdown electric field

Epe
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