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ABSTRACT

This paper presents a parametric study of the current responses
on a long horizontal wire over the ground with frequencies
ranging from 10 kHz to 100 MHz, earth conductivities of 10-1,
10-2, and 10-3 S/m, and wire heights of 10, 5, and 1 m. These
current responses for typical wire lengths are given for a
grazing incident plane wave and an incident lateral wave.




1. Introduction ‘

The determination of the electromagnetic response of a
horizontal wire over the ground has been a subject of great interest.
Numerous authors [1]-[3] have treated different aspects of this
problem. Carson [1] in his classic paper solved the transmission
line mode for an infinite wire extended in both ends. More
recently, King, Wu and Shen [3] derived the transmission line
mode wave number and its characteristic impedance by taking an
appropriate limit for anm eccentric insulated antenna [4]. Although
these important transmission line parameters, k and Z,, are not
intrinsically different from those obtained by Carson, King et
al did derive them rigorously and express these quantities in
terms of tabulated functions, and thus facilitate the computation.
Furthermore, they observed that im order for a transmission line .
mode to be a good approxihation to the total solution of Maxwell's
equations, the following two conditions must be met:

lk4|2 > > |k0|2 (1)
and

lkod| < < 1 (2)

where kg and k4 are the wave numbers for the air and ground,
respectively and d is the height above the ground. From (1), they
[3] pointed out that the theory is applicable to high frequencies
when the ground behaves more like a di;lectric than a good conductor,
which is more general than Carson has assumed.
The starting point of this paper is King et gllgfrigorous
@

theory. It is important to point out that that theory is valid
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for the transmission line mode for all values of |kgd|. This is
because the transmission line mode satisfies a transverse Laplace
equation in the air (where the wave number is kp). To obtain a
complete solution to the Maxwell's equations, one has to find all
other discrete modes and the branch cut contribution. Although a
complete solution-is not given here, it is worthwhile to show how
to obtain the transmission line mode for'all [kod|. One can argue
that under the excitation of an incident wave, the transmission
line mode is likely to dominate the total solution. However,
when the excitation is localized, the solution near the source is
likely to be mostly transmission line mode, and the solution far
away from—the SOufce is likely to be dominated.by the branch cut
con;ribution; A complete solution of the overhead wire problem
requires Wiener-Hopf solutions of an integral equation with the
interface kernel and the various excitation conditions, which is
not the purpose of this paper. Our purpose here is to use the
transmission line solution to solve the following important problem:
the time harmonic solutions for-a finite horizontal wire over the
ground with grazing incidence. During the completion of this
paper, an interesting paper by King and Shen [5] appeared.
Although general formulas for transmission line theory given in
this paper are similar to theirs, applications of these formulas
.are completely different. King et al's principal objective is to
obtain the current and the fields scattered by a short thin wire

over a material half-space. Our objective here is to determine the



induced current on a long wire over the ground under grazing
incidence.

Previous results on a horizontal wire under a grazing incidence
{6](7] are limited to wires with an infinite length extended in
both directions. The new findings reported in this paper are:
one, the.gumerical results of wire currents for both infinite and
finite wires with grazing incident plane waves and incident ‘lateral
waves; two, the wire length required for a finite wire to attain
a maximum grazing current; three, the current distribution on a
finite wire with various loads under a grazing incidence plane
.wave and an incident lateral wave; and finally, the tranmsition of
current respenses from a finite wire to an infinite wire. Although
this study is based on King et al's [3] theory, it is important ‘ '
to point out that, since the transmission line wave number is
very close to kg, it is necessary to galculate the transmission
line parameters to much greater accuracy than that provided'by
the small argument formula. Thus, the numerical determination of
these parameters for all ranges is important. Furthermore, under
conditions (1) and (2), it is possible to have [k4| d > > 1 such
that the large argument approximation becomes relevant to the
analysis.

In summary, Section 2 discusses the transmission line theory
for the wire over the ground with specihl emphasis on the different
limiting cases for the transmission line parameters. Section 3
gives an elementary account of how to determine the transmission

line current and voltage from the Green's function of transmission
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line equations and discusses their applications to calculating the
grazing currents on the wires. The most significant contribution
of this paper is the collectiqn of the numerical results, which
show the currént responses ofxwires over the ground under
grazing incidence. They are also given in Section 3.
The Wave Number and Characteristic Impedance for the Transmission
Line Mode.

Formulas [3] for the wave number and characteristic impedance

are given as (e~1vt time dependence)

k= (-zp) (3)
and )

ze = z/vyt/? | %)
with

Y = -iuC,

C = wire capacitance to the ground per meter

= Zweo , ® = arccosh(d/a), a = wire radius
and d = wire height,
and

Z = -juwlL,
L =1L + 1L

L; = wire inductance in air per meter = ul
w

Ly = inductance in the ground per meter

= UA
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Here &4 is given by

1 Ky (A) inIq(A) ix ) 2

a=2)L - + - ix fE (1a) - 2 5
%Az A ZA 24 [ 1(24) v} ()
with

. 3 5 7

irfp, (1a)- 2| = 1|A+ AD 4 A0 A& . 6
ZA[ 1(28) n] 1[3 45 1575 = 99425 (&)

I] and K] are the modified Bessel .functions of the first
and second kind, respectively, and the first order. Ej is the

Weber function of the first order, and finally A is given by

A = 2k4d, k4 =+ou(ioy + msoef@) (7)

Equaticn.T§)—is given explicitly by King et al. However, since I3
and E} both diverge for large values of A, it is necessary to obtain .

an alternate formula for 4 . Appendix A shows for [kgqd] > > 1,

A ~2 +2i)1 4 1 . 3 4 45 _ 1575 4+ .. .
aZ K (1a)2 (1A% (1A% (ia)°

4Ky (A)

A (8)
Notice (8) differs from (A20) given in Reference 3 in the

numerical coefficient of the last term.

The leading term in the expansicn for (5) is

kzd’

and its corresponding impedance is )
‘ i ipw 1 {wp 1/2
Zg = ~iwL,) = =22 A ~ = [2E 1-1
2 “h2 T =% Td (204) (1-1) (9)
for a4 > > weEQELrL
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It is interesting to note that this term is the same as would
be obtained in a coax with the outer coaxial conductor of radius
d [4]. This fact has never been noted before. The ratio of the

wave number to the free space wave number can now be calculated as

o = Ea = (1 + %) 1/2 . : (10)
The characteristic impedance is

, Q /u 1/2

c ¥ 3, (;) iL = ZotL (11)

where Zg ii_gpe characteristic impedance for a wire over a perfectly
conducting ground plane with the same configuration.

In order to determine the ranges of validity for Equations (5)
and (8), we plotted (5) for small values of A and (8) for large .
values of A. Furthermore, we compared these values to those
calculated from the numerical integration of A given in (A-1),

that is

1/2 ZKl(A)

. 1
- -2 -x2 ] ;
b= a(a0) = 24 zijo' (1-x2) " exp (-Ax) dx - 21 (12)

In Figure 1, the value of 4 calculated from these three equationms
are compared for real A, which is relevant for a dielectric half
space, such as lake water. 1In Figure 2, the values of A calculated
from these three equations are compared for Arg(A) = 45°, which is -
relevant for a conducting ground. It is interesting to note that

for |A|l < 3.5 Equation (5) gives a fairly accurate result. On the
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Figure 1. Comparison of Three Different Ways of Calculating A for

Real A. The small argument formula for the real part of
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other hand, for |A| > 3.5 Equation (8) is quite accurate numerically.
When |A| > 10, the leading term i% gives better than 10 percent
accuracy. For |A| < 0.3, a small argument approximation to Equation

(5) which is

so = -1n(4) - v+ 1+ i3 - 24) - (13)

gives befter than 10 percent accuracy. Notice when ﬁsing (6) for
power lines at a frequency of 60Hz, one needs to calculate the
Bessel functions to 12 figures to give two figures accuracy in 4.
In this case, (13) is more accuracte and convenient to use.
Time Harmonic Solutions for Grazing Incidence

Induced currents on a thin infinite wire near the ground have
been calcula;ed in the past [6][7]. The transmission line theory
developed is useful for describing the current induced on a finite
length thin wire near the earth with grazing incidence (Figure 3).
Advantages of this simple transmission line theory include kl) only
simple and standard transmission line theory is required, so that
parametric studies can be made easily; (2) it is possible to determine
the minimum wire lengtﬁ when the maximum grazing current occurs; (3)
the effects of wire termination at both ends can be incorporated;
and (4) the difference between finite and infinite wire responses
can be determined. Let us define Ky and Ky as the Green's functions
for the following transmission line equations:

3K
—V + ZK. = §(z - z2'
8z I (2 z")

1+ w 0 14)
3z W (
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@
for,
-h <z < h,

and the boundary conditions,

Ky (=h) Ky (h)
—— = 7y N4 ——— = Z
Ki(-h) 1 Kp(hy 2
Then A » '
2%— 1 - Plelzk(h+z ) [eik(z‘z') - PzeiZk(h_zt) - ik(Z'Z')]
c [ 1 - pypyettkn
t
K1(z,z")={ : . ' for z >z
A 1 - pyei2k(h-z') [eik(ez ) . p ot2i(hiz’) + ik(z-2")|
Ze [1 - p.p.eitKkR
{ 1v2 ] for z < z! (15)
'z -z
o wher& Py , = £1,2 " “c ,
. 71,2 * Zc

and Z, and k are given in Equations'(S) and (4).

The electric field exciting the wire current is given by

ikoz cos Y (16)

Ez(z) = Egsin ¢ (1 - Rh)e
where Ry is the reflection coefficient for the magnetic field

parallel to the interface, ie

/2
Z

- N2sin v - (N2 - coszw)1

7 (17)
N2sin ¢ + (N2 - cos?y)

Ry

and Eg is the incident electric field.
The discussion is limited to the H-polarized case here, because
. the total horizontal electric field available for excitation is

about a factor of 5 smaller for the E-polarized case than that for
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the H-polarized case. One can easily see this by comparing l1-Ryg to
1-Rg.

The induced wire current is given by

I(Ky ¢0s ¥ - KJ

h
I(z) = J[ Ki(z,2')Ez(2') dz'
=h
- Eosin Y(1 - Rh) [éikgz cos ¥ eik(h + z) - ikgh cos ¢

2Z_(1 - PP,el KRy

ik(h - z) + ikgh cos ¢ ikgz cos
e - e

+
1(kg cos ¢ 4+ K)
ik(h + z) - ikgh cos ¢ ik(3h + z) + ikgh cos y
+P1€1- - €
i(kg cos ¢ + k)
ik(h = z) - ikgh cos ¥ ik(3h - z) - ikgh cos v
+ P2 e - & :
i(kg cos ¢ - k)
ik(3h + z) + ikgh cos ¢ i4kh + ikgz cos ¢
+ P1Py 3° - &
i(kg cos v = k)
ik(3h -« z) + ikgh cos ¥ i4kh - ikgz cos ¢
- e ' - e (18)
i(kg cos ¢ + k)

Equation (18) differs from Equation (24) of Reference [5]
in that it includes arbitrary terminating impedances.

In principle, Equation (18) can be plotted to give any
physical ﬁarameters of interest. In this paper Equation (18) is

examined numerically in great detail. First, let us note that

by letting h + =, we obtain the induced current for an infinite

wire.
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_ Egsin ¢ (1 - Rh) eikoz cos ¢ ) eikgz cos ¢ (19)

I, -
2Z¢ [l(ko cos ¢ - k) i(kg cos v + k)

In Figures 4 through 12 are shown [I,}for v < 30°; 104 < £ <
107 Hz; and 04‘= iO'l, 10'2, 103 S/m, ep4 = 20. The wire
parameters chosen are the wire gadius a = 1.75 cm and wire heights:
d =10, 5, and 1 m.

It is interesting to note that for d = 10 m and £ = 500 kHz.
Figure 7 shows a maximum current of about 0.2 Amp for 1 V/m of
. incident wave. This corresponds to a case given in Figure 3 of
[7] for.the infinite wire where d = 10 m and the wire radius =
1 cm. Iq_shgir graph the current is normalized by kg and given
for 1 Amp/m of incident magnetic field. The agreement of their
maximum curreﬁt and our result on this vaiue is very good. A
close examination of these figures reveals three numerical trends:
(1) The induced wire current is not proportional to the height.
It decreases by less than a factor of 2 as the wire height is
reduced by a decade. (2) As the frequency increases, the induced
current decreases by about a factor of 2 per decade increase in
frequency. (3) In the low frequency conduétivity dominating
situation, the induced current reduces by about a factor of 2 per
decade increase in conductivity.

In order to determine how the finite wires respond differently
from the infinite wires, let us graph Equation (18) for a typical

length defined by
(20)

w
Re(k) - ko
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The significance of this length is that it gives the typical length ‘
when the grazing would result in a maximum current response.

Figures 13 through 19 give the magnitude of wire current for
a grazing angle, matched load, and for £ = 10 kHz, 30 kHz, 100 kHz,
300 kHz, 1 MHz, 3 MHz, 10 MHz, 30 MHz, and 100 MHz,

¢ = 10~2 S/m

d = 10 and the wire radius a = 1.75 cm. Notice the maximum
grazing current for the finite wire with h given by (18) can be 50
percent higher in magnitude than the infinite wire.

It is important to interpret Equation (18) physically. Basically,
a finite wire subject to an incident plane wave generates three waves
with wave ™ Tumbers k, k-kg cos ¢, and k + kg coéw, which causes the
ripples, Figufes 13 - 19, near the right hand termination. We
expect the higher order modes can introduce similar ripples. .

" Let us define "graziﬁg length'" as the wire length required

for the wire current to reach a maximum current. Table 1 shows
the grazing lengths for ¢ = 10"} S/m and d = 10, 5, and 1 m.
Notice the grazing lengths are proportional to the wire heights
at high frequencies. Grazing lengths for other conductivities
are found to decrease by about a factor of 2 as the conductivity
decreases by a decade.

Let us summafize the difference between the current responses
of an infinite wire and that of a finite wire. First, when the
wire is shorter than that shown in Table 1 for the particular
frequency of excitation, current responses for the shorter wire,

except for the ripples, are the same as shown on the left end of .

14




the trunéated long wire of equal length. Second, as the wire
approaches the grazing length, the wire current becomes somewhat
higher than that of the infinite wire. Then, as the wire length
increases further, it gradually oscillates, and finally converges

to the value for the infinite wire case.
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TABLE I

Grazing Lengths for Three Different Wire
Heights 4 = 10, 5, and 1 m, for Frequencies
From 10 kHz up to 100 MHz, and_a Ground

Conductivity of ¢ = 101 S/m

f 10 k 30 k 100 k 300 k 1M 3 M
Grazing ' . .
Length 100 k 60 k 30 k 12 k 6 k 3k
(m)

(a) d=10m

£ 10 k 30 k 100 k 300 k 1M I M 10 M
Grazing
Length 80 k 40 k 15 k . 8k 4 k 2 k 1k
(m) - -
(b) d=5nm .
£ 10 k 30k . 100 k 300 k 1M 3 M 10 M 30 M
Grazing 50 k 20 k 6 k 2 k 1 k 400 200 100
Length
(m)
16




The cases when both ends are open circuited are studied
numeriéally. As the incident wave comes in from the left,
typical graphs (Figures 20 through 23) show reflection from the
right and the beating associafed with the incident current and
reflected current. The current waveform for the open circuited
case can be deduced from that for the matched load by observing
the standing wave of the transmission line having wave number k.

The above calculations assumed an incident plane wave with
an angle of incidence, ¥. They are relevant calculations, since
for this freQuency range the time harmonic signals are radiated
by dipoles on the earth surface and bounced back to the ground
by the ionosphere; However, it is important to point out that

‘. when the angle of incidence is less than arcsin lkg/k4 !, the

plane wave iﬁcidence on a horizontal wire is an ill-posed problem.
Because of the ground loss, the electric field is tilted at an
angle x = arcsin |kg/k4|. Therefore, the results shown in Figures
4 through 12 for y < x are not valid, since the ratio of the total
horizontal electric field to the total vertical electric field is
given by sin x = |kg/k4l. To put it another way, when the incident
wave with an angle of incidence y as defined in Equation (16) is
less than y the horizontal electric field component is dominated
by the horizontal electric field component of a lateral wave
whenever such a wave exists.  Under such a circumstance, the
induced wire current can be calculated by éssuming a horizontal

electric field as follows:

. ko ikpz cos y

E,(z) = 2E5 — e
2 % 0%y (21)



I(z) is given as Equation (18) with Eg sin ¢(1 - Rp)
replaced by Equation (21) and ¢ = 0. As a result, Equation (18)

can be simplified, when Ej = 1 V/m, to

Max {!I(Z)[} ~ i:o G } 55 (22)
for Eg = 1 V/m.

Figures 24 through 35 show the current responses for a horizontal
wire with wire length given by (20) for the following parameters:

s =10-1, 10-2, and 10-3 S/m, d = 10 m, and £ = 30 kHz, 100 kHz,

300 kHz, and 1 MHz.

Equation (20) is found to be a slowly varying functiom of £,
o, and d. Let d = 10 m, £ = 300 kHz and above, Max |I(z)| tends
to a constant, which can be shown easily from the large argument
formula for k or 4. Thét'constant value is 0.09 Amp for o = 10-3
S/m. At lower frequencies, the maximum current becomes slightly
higher for ¢ = 10~2 S/m at 100 kHz and 0.19 Amp for ¢ = 102 S/m at
30 kHz; it becomes 0.25 Amp for ¢ = 1073 S/m at 100 kHz, and 0.35
Amp for ¢ = 103 S/m at 30 kHz.

The grazing length and the dependence of the maximum wire
current on d are about the same as that for an incident plane
wave.

Finally, to determine whether the lateral wave is excited
on the ground surface, it is necessary-to know the source
characteristics, which includes the location of the source with
respect to the receiving horizoﬁtal wire and the interface. A

complete current response characterization with these parameters

18
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4.

can be obtained by using the famous lateral wa?e field expression [8]
as the incident field. Furthermore, to obtain a realistic current
response for a long wire over. the earth due to a dipole soﬁrce,

it is necessary to use the field expression near the earth first
obtained by Van der Pol and Bremmer [9]. Finally, the induced
voltages on the vertical elements must be included. However,

this equivalent Thevenin voltage is independent of angle of
incidence and the ground conductivity and is proportional to

wire height for grazing incidence. They can be easily included.

Conclusions

A simgig procedure has been described for calculating the
important transmission line parameter, k and Z., for all frequencies.
This simple procedure has been applied to # parametric study of
the long horizontal wire responses with grazing plane waves and a

lateral wave.
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APPENDIX A

Derivation of Asymptotic Formulas for
lk4ld > 1

derived the -transmission line wave number and the

King et al,
in terms of the following

axial electric fiéld at the interface

important integral:

| /2
‘A(A,B) = 2’ J/J {x + 1 (1 - xz) J e Ax cos Bxdx
0

—_h@
. + / [x - (x2 - l)l’/2 e-Ax cos Bxdx ; (A-1)
1

where
A= 2k4d, B = k4L

Similar integrals were obtained by others.[l}{g}Equation (A-1) 1is

evaluated for real k4 in [3] and then extended to complex k4 by

an analytical continuation argument.

It is instructive to show the same answer emerges when (A-1)

is evaluated for complex k4. Let us rewrite (A-l) as follows:

-«
A(A,B) = 2 / xe ®* cos Bxdx
0

‘ . fl 5 172 + (iB - A)x ! 5 /2 + (-iB -A)x]
+ 1 (1L - x%) e dx + (1 - x°) e dx

0 0




5 1/2 -(A - iB)x 2 " 1/2 -(A + iB)x
(x° = 1) e dx + (x© - 1) e dx
L (A-2)

The integrals in (A-2) can be identified,po]and (A-2) reduces to

2{52 2 o ]
. _\A" - B in/2 ; —
t T ETE [Il(J.B-A) + L, (iB - A)

ir/2 . . .
+ (...A - I.B) [Il(-lB - A) + Ll(‘ls - l\ﬂ

Kl(A - iB) Kl(A + iB)
(A - 1B - (& + LB)

is a modified Struve function[ld

Here Ll
When B = 0,
... 2K, (A)
= 2_ _ _in - “A) Jo e
a(A,0) = AZ A [Il( A) + Ll( A)] 2

Here, Il(A) is an odd function and LI(A) is an even function.

Therefore,
. 2K, (A)
_ 2 ir “*1
a(A,0Q) = —Az + A [II(A) - Ll(A)} - ™A (A-3)
Next, on using the identity[12]
L(a) = - Hya) = Eia) - 2,

(A-3) is reduced to

22




: 2 i 2] 2K (A)
a(a0) = = 4 [Il(A) - E, (iA) +7]- — (A-4)
A . :

Equation (A-4) is in agreement with Equation (A~14) of King et al.

In order to derive A for |k4{d > > 1, we invoke the following.

formulas:
2 1 1%. 3
(A) = - H,(iA) ~ - Yy (i) - 2 |1 + g
! 1 1 m [ (ia) % (imy?
. 1%+ 32 5 ) 120 32 52 5 P ] ,IArg(id) ] < 7« (A-5)
(ia)® (ia)®
and ——— _

. I (A) = -iJ, (ia) . | (A-6)

Equations (A-5), (A=6) and (a-3) give

_ 2 T . . .
Aa(A,0) = ; + 3 [Jl(lA) + J.-Yl(lA)]
Y. [1+ L 1% 3,12 325 2. ;2. 5% 7,
a (ia)2  (ia)4 (ia)® (ia)8
2K, (A)
- a
4K, (A) 2. 2. 2.
_ 2 1 i2 1 14 3 12 32. ¢
= - + 1 + - +
a2 A R (ia)?  (ia) % (ia)°
2. 2. _2.
1 3% 577, ] (-7,

®. ..0
is is the equation given in (6) except A(A,0) is denoted as A
there.
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Induced Current in Amps for an Infinite Wire Over the
Ground for a CW With Frequency and Grazing Angle Shown as

Parameters. a = 1.7 ¢cm, d in meters. The incident
electric field is 1 V/m.
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Figure 7. 1Induced Current in Amps for an Infinite Wire Over the
Ground . for a CW With Frequency and Grazing Angle Shown as
—Parameters. a =1.7 cm, d 1in meters. The 1incident

. electric field is 1 V/m.
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Figure 8. 1Induced Current in 2Amps for an Infinite Wire Over the

Ground for a CW With Frequency and Grazing Angle Shown as
. Parameters. a = 1.7 cm, 4@ in meters. The 1incident
electric field is 1 V/m.
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Figure 9. 1Induced Current in Amps for an Infinite Wire Over the

Ground for a CW With Frequency and Grazing Angle Shown as

—=Parameters. a =1.75 ¢m, d in mnmeters. The 1incident
electric field is 1 V/m.
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Figure 10. 1Induced Current in Amps for an Infinite Wire Over the
Ground for a CW With Frequency and Grazing Angle Shown
as Parameters. a = 1.75 cm, 4 in meters. The incident

electric field is 1 V/m. .
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Figure 11. 1Induced Current in Amps for an Infinite Wire Over the
Ground for a CW With Frequency and Grazing Angle Shown

—- a8 Parameters. a =1.75 cm, 4 in meters. The incident
‘ electric field is 1 V/m.
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Figure 12. 1Induced Current in Amps for an Infinite Wire Over the

Ground for a CW With PFrequency and Grazing 2Angle Shown
. as Parameters. a = 1.75 cm, d in meters. The incident

electric field is 1 V/m.



Figure 13.
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Induced Current (in Amps)

Is Shown as the Vertical Axis

and the Position on the Wire (in Meters) Is Shown as the
= Horizontal Axis. The current 1is calculated for a
grazing angle denoted as ¥.. matched lead, and a
frequency denoted as £. ‘
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Figqure 1l4.

Induced Current (in Amps) Is Shown as the Vertical Axis
and the Position on the Wire (in Meters) Is Shown as the

Horizontal Axis. The
grazing angle denoted
frequency denoted as f.
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Figure 15. 1Induced Current (in Amps) Is Shown as the Vertical Axis
and the Position on the Wire (in Meters) Is Shown as the
—= Horizontal Axis. The current is calculated for a
grazing angle denoted as ¢, matched 1load, and a
‘ frequency denoted as £.
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Figure 16. 1Induced Current (in Amps) Is Shown as the Vertical Axis

and the Position on the Wire (in Meters) Is Shown as the

: Horizontal Axis. The current 1is calculated for a

. grazing angle denoted as ¥, matched 1load, and a
frequency denoted as £.
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Figure 17.
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Induced Current (in Amps) Is Shown as the Vertical Axis
and the Position on the Wire (in Meters) Is Shown as the -

— Horizontal Axis. The current is calculated £for a

Figure 18.

grazing angle denoted as ¥, matched 1load, and a

frequency denoted as £. , '
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Induced Current (in Amps) Is Shown as the Vertical Axis
and the Position on the Wire (in Meters) Is Shown as the
Horizontal Axis. The current is calculated for a

grazing angle denoted as ¥, matched 1load, and a
frequency denoted as £. .
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Figure 19. Induced Current (in Amps) Is Shown as the Vertical Axis

Figure

and the Position on the Wire (in Meters) Is Shown as the

-—= Horizontal Axis. The current 1is calculated €£for a

20.

grazing angle denoted as ¥, matched 1load, and a
frequency denoted as £.
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Induced Current (in Amps) Is Shown as the Vertical Axis
and the Position on the Wire (in Meters) Is Shown as the
Horizontal Axis. The current is calculated €for a
grazing angle denoted as ¥, a frequency denoted as £,
and open-circuited at both ends.
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Figure 21.
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Induced Current (in Amps) Is Shown as the Vertical Axis i
and the Position on the Wire (in Meters) Is Shown as the -

—- Horizontal Axis. The current 1is calculated for a

Figure 22.

grazing angle denoted as ¥, a fregquency denoted as £,
and open-circuited at both ends. .
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Induced Current (in Amps) Is Shown as the Vertical 2Axis
and the Position on the Wire (in Meters) Is Shown as the
Horizontal Axis. The current 1is calculated for a

grazing angle denoted as ¥, a frequency denoted as f,
and open-circuited at both ends.
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Induced Current (in Amps) Is Sho
and the Position on the Wire (in
— Horizontal Axis. The current
grazing angle denoted as ¥, a
and open-circuited at both ends.
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Figure 24.
Shown as the Vertical Axis and

(in Meters) Is shown as the

current is calculated for a frequency denoted as £,

matched load at both ends.
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Figure 25. 1Induced Current (in Amps) Caused by a Lateral Wave Is
Shown as the Vertical Axis and the Position on the Wire
—= (in Meters) 1Is sShown ag the Horizontal Axis. The
current is calculated for a frequency denoted as £, and

matched load at both ends. '
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Figure 26. 1Induced Current (in Amps) Caused by a Lateral Wave Is
Shown as the Vertical Axis and the Position on the Wire
(in Meters) 1Is Shown as the Horizontal Axis. The
current is calculated for a frequency denoted as £, and
matched load at both ends. .
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Figure 27.

Figure 28.

¢ =.1000,d=10
FREQ =1MHz

0.10 T T T Y

CURRENT

[
20k

.
3
o
x
o}l

Induced Current (in Amps) Caused by a Lateral Wave Is
Shown as the Vertical Axis and the Position on the Wire
(in Meters) 1Is Shown as the Horizontal Axis. The
current is calculated for a frequency denoted as £, and
matched locad at both ends.
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Induced Current (in Amps) Caused by a Lateral Wave Is
Shown as the Vertical Axis and the Position on the Wire
(in Meters) 1Is Shown as the Horlzontal Axis. The
current is calculated for a frequency denoted as £, and
matched load at both ends.
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Figure 29. 1Induced Current (in Amps) Caused by a Lateral Wave 1s

Shown as the Vertical Axis and the Position on the Wire

(in Meters) 1Is Shown as the Horizontal Baxis. The

- current is calculated for a frequency denoted as £, and
matched load at both ends.
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Figure 30. 1Induced Current (in Amps) Caused by a Lateral Wave 1Is
Shown as the Vertical Axis and the Position on the Wire
» (in Meters) 1Is Shown as the Horizontal Axis. The
current is calculated for a frequency denoted as f, and
matched load at both ends.
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Figure 31. 1Induced Current (in Amps) Caused by a Lateral Wave Is
Shown as the Vertical Axis and the Position on the Wire
- (in Meters) 1Is Shown as the Horizontal Axis. The
current is calculated for a frequency denoted as £, and
matched load at both ends. '
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Figure 32. 1Induced Curreant (in Amps) Caused by a Lateral Wave Is
Shown as the Vertical Axis and the Position on the Wire
(in Meters) Is Shown as the Horizontal Axis. The
"eurrent is calculated for a frequency denoted as £, and
matched load at both ends.
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FPigure 33.

Figqure 24.
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1nduced Current (in Amps) Caused by a Lateral Wave 1Is
Shown as the Vertical Axis and the Position on the Wire
(in Meters) 1Is Shown as the Horizontal Axis. The
current is calculated for a f{requency denoted as £, and
matched load at both ends. ‘
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fnduced current (in Amps) Caused by a Lateral Wave 1Is
Shown as the Vertical Axis and the Position on the Wire
(in Metaers) Iz Shown as the Horizontal Axis. The
current is calculated for a frequency denoted as £, and

matchad load at both ends. ‘

38



Figure 35.

cs.0010,ds10
FREQ 2 1MHz
0.12| 1 T T 1

0.10
0.08 -
0.08 L

|
b
0.0¢ }-

N
0.02 L

CURRENT

0.00 l
-5k 2.5k ) 2.5k Sk

induced Current (in Amps) Caused by a Lateral Wave Is
Shown as the Vertical Axis and the Position on the Wire
(in Meters) Is Shown as the Horizontal Axis. The
current is calculated for a frequency denoted as £, and
matched load at both ends.
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