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Abstract

Currents on a buried wire due to both a localized voltage
source and a normal incident wave from above an air-ground
interface are calculated using a theory developed earlier.
The diffusion limit is carried out to give the following:
(1) universal curves for numerical applications, and (2) the
effect of an air-ground interface.
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Section 1. Introduction and Summary

The determination of the transient response of an infinite wire
in a dissipative medium is significant in numeroﬁs applications.
Sundel in his wearly 1investigation 1is most <concerned \with the
attachment of a 1lightning stroke on a buried wire. He used a
diffusion approximation to obtain the current propagation function
to calculate the wire current as a function of distance from the
transmission point. More recent applications are the calculation of
the current on a buried wire due to an incident time domain wave or
a localized voltage source. The incident electromagnetic field can
be due to an indirect lightning source, a High Altitude Burst (HAB)
and a Surface Bu;st (SB) Electromagnetic Pulse (NEMP). The buried
wire can be a telephone 1line, or a powef line, or a VLF antenna.
The problem can also arise from the need to determine the transient

antenna current on a long dipole buried in the earth or submerged in

water.

To give a more specific example, consider the problem of a
surface nuclear burst. When a nuclear device detonates low enough
in altitude as to cause the fireball to attach electrica}ly to a
buried power 1line, the gamma ray khocks electrons off the atmos-
pheric molecules and thus creates the Compton current. This
current, 1in turn, generates the electric field along the power
line. In general, the electric field falls off in distance away
from the fireball: most of the voltage drop occurs approximately

200 meters from the fireball. Therefore, when <calculating the




induced line current at a distance greater than 200 meters, it is
reasonable to assume an input voltage applied at a delta gap of an
infinite wire. Furthermore, the air conductivity due to radiation

drops off so quickly, it is negligible.

The above example typifies how the transient solution of an
infinite wire in a dissipative medium can be useful. Recently a
theory for the transient response of an infinite cylindrical antenna
in a dissipative medium was developed.2 This new theory gives a
very accurate description of the transient response. Our principal
objective here is to show the use of this theory in applications.
In particular: (1) the accuracy of the conventional diffusion
approximation is determined, (2) under the diffusion approximation
the effect of the air-ground interface 1is included, and (3) uni-

versal curves for numerical applications are given. During the

course of this investigation results obtained are

1. cClarification of an important discrepancy in the early-time

solution for the wire current in free space (Appendix A).

2. The time-harmonic solutions for an 1infinite wire in a

dissipative medium (Appendix B).

3. A simple integral formula for the wire current due to a

double exponential input voltage (Section 2).

ot e s e T — = -




All

current

The effect of the air-ground. interface under the diffusion

approximation (Section 3).

A numerical example to treat a realistic case where the

relative dielectric constant is a function of frequency

(Section 4).

The current on a buried wire under a normally incident wave-

form above an air-ground interface (Section 5).

physical quantities are given in the M.K.S. System; i.e.,

in Amps and voltages in Volts.




Section 2. An Integral Formula for Obtaining the Wire Current
Due to a Double Exponential Input Voltage

When the input voltage is

| —t/tg
o(t) = e u(t) (1)

where u(t) 1is the unit step function, the method of superposition

can be applied to calculate the corresponding current:

o 3 . —(t—t')/to
.VO(Z,t) = f (at' + ;) I(z.,t)}e u(t - t') dt! . (2)

Normalizing the wvariables in (2) to the unit of wire radius
= = ¢t ., and z_ = z/a, and evaluati i
tn ct/a, ton c o/a n / ' ting the resulting

integral by parts, yields

1 Lo —(rmei /e
,70 = I(z,t) + (Zcx - ton )[ I(z',t) e dtr'1 . (3)

Notice I(z.t) 1s given by Reference 1, Equations (2) or (3) or (6).
1

One special case 1is of great interest. Let ton = (2a) ~, then
ﬂg = I(z.t). This is the wire current due to an input voltage of
—-2atn
Zz(t) = e u(t) . (4)

In free space, the input voltage reduces to a unit step function.

This is the case discussed extensively in the literature.3'4'5




The input voltage, Egquation (4), contains a discontinuity at

t = o. This gives rise to the singularity in the current I(z,t) at
ct - z = o (Appendix A). In applications, the input voltage does
not contain a discontinuity. In the following, a construction of

the solution is shown for this case. Begin with Equation (3), which
is the current due to an input voltage of Equation (1). The first
term on the right-hand side has been shown to be the response
current to the voltage given by Equation (4). Therefore the second
term on the right-hand side of Equation (3) is the current due to

the input voltage of
[ -t/t —t_/t ~2at
7 (t) = (e ° - e_dt/c) u(t) = (e noon e n) u(t ) . (%)

The corresponding current response is

_ t ~(t-t')/t
Flz, L) = (% - tol)j' I(z,t') e ° gt
o
T 22
1 —(tn— T +zn)/ton tdr!
= (2a -t - ) e 1(z,t") * (6)
on
1‘2 + 22
e} n
where tﬁ = 1'2 + zi .

The wavefront singularity of 1I(z,t') 1is shown to be of 1l/T' in
Appendix A. Since it is multiplied by <T' in the integrand, it
contributes negligibly to the integ;al. Therefore, Reference 2
Equation (6) can be used for determining the numerical wvalues of the

wire current.




[y

To obtain the current response for a double exponential input

voltage, e.g..

-t/t ~t/t :
7 (L) = (e Lo [) u(t) (7)

.

write Equation (7) as

-t/t -t/t
7 (t) = (e £ e_dt/c) u(t) - (e L_ e—ct/c) u(t) . (8)

As a result, the corresponding current response can be constructed
easily from Equation (6). A simple computer program using
Equation (6) can be written to generate the wire current for any
input voltage at the gap. However, the diffusion limiting case of
Equation (6) plays an important role 1in applications. Universal
curves for obtaining the current waveformé for this important case

will be given.

The diffusion 1imit of Reference 2 Equation (6) for I(z,t)
vields accurate numerical results when two conditions are met. The
first is that IO(QT) be replaced by its leading asymptotic term.
When the argument at = 5, the asymptote deviates less than 1 percent
from I5(at). The second condition is that t »>> z/c, when t = 3 z/c,
(t - 22/2c2t) deviates less than 0.5 percent from VvVt~ - 22/c2. The
arctangent function can also be replaced by 1its argﬁment with

minimum errors introduced. The diffusion approximation obtained is

(%)

2%n 6/a + 2n 2-y

2 2
1/2 e-z /28
uot

I(z,t) ~ 25( Lt




where § = J2t/on (10)

and Euler's constant = 0.57721

<
i}

Next, evaluate Equation (6) with I(z,t) approximated by Eguation (9):

t

2
z ou \
-1 1/2 e A(r-th) - £ %o at’ (L)
Sg(z, vy ~ (G/C - to ) 2e(m/1uc) 173 STEoE )]
A (t-t') ¢n cuaz + n 2-¥

The second factor in the denominator of the above integrand is the
impedance factor that is slowly varying and can be taken out of the

integral. Thus,

( _1) (wto)l/z
,O‘/C - to 4¢ Tho g(z.t) . .

22n (g) + %n 2-v

= Z(t .t) g(z.t) (12)
t/t
-t/t ) 2 .2
where g(z_t) = e Of e_A/u +u du B (13)
]
2
A zch z2 zn
at, 4(Cto)(0tre2) 2t a—l
on
. Trey = £/0 = the relaxation time of the medium

10




4/T(ty ~ tray)

Z{t _,t)y = =
o 1/2 8 ,
co(totrel) [ZQn P ¢n 2-y}

Notice Z(to,t) can be explained as the admittance factor, and
g(z.,t) is a normalized admittance function. When ¢t  >> t

Z(to,t) 1s approximately proportional to /?;.

Notice that the last expression for A is in a normalized nota-

tion defined in Reference 2, and A 1is a function of to' In
Figqure 1, g(z.t) is shown as a function of t/tO for A = 10"4, 10_2,
10—1, 1, 10, and 100. Similar curves were given by Sundel when

he ccnsidered the propagation function for the surge current in a
buriel wire. Our excitation is an input voltage at the delta gap.
Another important-difference is that the input voltage considered is
Equation (5), instead of the more conventional e—t/tou(t) . This

stretches the applicability of the diffusion approximation by

removing the discontinuity in the input voltage.

In order to determine the accuracy of Figure 1 in applications,

it is necessary to investigate the numerical errors introduced by

the various approximations. Extensive numerical investigations have

bren made on this. The parameters chosen for this discussion

are: for o = 0.01 S/m, and ¢_ = 40, t_ = 2t_, 5t , 10t ., and 40t .
r o e e e e

Comparison of various approximations are shown in Figures 2a-c
.through 5a-c. In Part a of these JIigures, Equation (12) is plotted
by | using g(z.,t) given in Figure 1, which is a diffusion
approximation with time-domain impedance taken out of the

integrand. In Part b we plotted Equation (11)., which is a diffusicn

11
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approximation. In Parts a and b the wavefront arrives at t ; o,
because of the intrinsic nature of a diffusion approximation, the
early-time waveform is not correctly given. It is possible to remedy
this, 1if one replaces (1) the diffusion singulari£y, (t—t')l/2 in
Equat on (11) by (t—t')2 _;zzlcz]-l/4 and (2) the 1o§er limit

of integration o by z/c. The resulting numerical integration 1is

indistinguishable from that obtained by using Equation (6), and is

shown in Part c. Also, in Part c, zZ = VZtona_lA. Six curves
in Part ¢ are generated by six wvalues of A (or z). The basic

sonclusion is that when to > 5te (1) the early-time waveform
cannot be obtained by the diffusion approximations, (2) the peak
value can be obtained with very good accuracy by using a diffusion
approximation with the impedance inside the integrand, and (3) the

early-time waveform is correctly obtained by Part c.

When to < 5te, the numerical result 1is not as consistent.

Figure 2 shows the case with to = Zte. In this <case, the correct
peak value given in Part c i1s somewhere between that given by Part a

and that by Part b.
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Section 3. The Effect of an Air-Ground Interface

Since the diffusion limit of the wire current is shown to give
very good approximate solutions, we shall pursué the Ldiffusion
approximation further. The effect of the air-ground inte;féce will
be taken 1into account under that limit (Figures 6a and 6b) by using

an image consideration.

It was shown in Reference 2 that a rigorous transmission line

rheory can be obtained by considering a radial electric field of

31/3z _-p°/28”

2mrep (14)

E 2.t
p(p )

where 1 is given by Egquation (9). The electric field 1in the
dissipative half space can now be obtained by adding that due to the
wire [Equation (14)] and that due to the image located in the air as

shown in Figure 6b.

As in the case without interface, the transmission line wvoltage
can bs defined by integrating the electric field from the wire
surface to infinity. The integration can be carried out most easily
along the x-axis or the y-axis; therefore, denote Wb(z,t) as the
voltage for the case when the interface is not present and the image

term disappears.
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o

2
, : -1 31l a
/,(2.8) = -fE‘.p(p,z,t) dp. 52 El( 2) (15)

a

1 31 5
Swe 32 2%n 3t in Z—Y]
v
where E is the exponential 1integral. When the 1interface 1is

1
present and the 1image 1is 4included, the transmission 1line voltage

denoted by ¥ (z,t) is

oo (2]
r(z.t) = - fE (y.z.v) ay - [  E_(v.z.t) dy (16)
y « y
a 2d+a

1 a1l a2 (24 + a)z
3z yEiloz) v By 2
25 26
O FTY TR e 2en & 4 an 2
~ 2me 3z a * RRe-Y + noo3* =Y

The last step follows, because in considering a signal with a
-6

characteristic early time of 10 sec and a characteristic late
time of 107° sec, the diffusion depth & 1is found to be about
30 m and 1000 m, respectively for o = 1073 S/m. Thus, a small

argument approximation of El is allowed.

The ratio of ¥ to ¥ as given in Equations (1%5) and (16) 1is

o)
the ratio of characteristic impedance for the two cases. The wire
current is seen to be inversely proportional to this ratio, which is

5 8
Z[Qn s ¢n g * n Z—Y]

R = 5 )
2%n P 2n 2-v

29
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When %n &/a >> %n 24/a, R ~ 2. This indicates that the equivalent

transmission line for the case with the interface has half of the

shunt . conductance as in the case without the interface. When n &/a

>> %r &/24. R ~ 1. This indicates that the interface has no effect

on the wire current. This is the case described in most of the
1,6

literature.

Finally, since the reflected wave from the interface does not
affect the wire current until the arrival of the reflected wave, the

wire current is

2
1/2 t =2 9¥ e
-1 T f(t-t') 4(t-t") 0
Az, L) ~ (c/s - to )Zc(ug) Jr 172 e at’
o (t-t') .

( BT L - for t « %Q

n s en 2-y

| cua ]
whe:-e f(t) =<

’ T 1 >t ., for t > %g

n — |+ Qn[ 2} + 28%8n 2-2v
\ | oua | oud

When f(t-t') is approximated by f(t)., the resulting formula is

afm(t -t 1) £(t) g(z.t)
F(z. L) ~ Lot ot oy)l/2

(17)

where g(z,t) is given by Equation (13).
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Section 4. The Current for a Wire Buried in a Soil
With a Realistic Dielectric Constant

Consider the problem of determining the wire current for a wire
with a radius a = 10_2 meter buried 1 meter below the air-ground

interface when an input voltahe is impressed at the gap (Figures 6a

and b). Let us assume the input voltage to be
-t/t, -t/tr
7 (£) = \e - e u(t) ‘ (18)
-3
where te = 10 sec
t_ = 107° sec.
r

The relative dielectric constant as shown in Figure 7 is more

. . . 7
realistic than the dielectric constant used before. The
theoretical reasoning of 1its variation is given in Reference 8. The

ground conductivity is assumed to be
o =2 x 10-3 s/m

Due to the wide variition of the relative dielectric constant
over the whole freg: ency range, 1t 1is necessary to decocmpose the
input voltage into a superposition of many double exponential
waveforms such that :ach double exponential waveform is applied to

the wire buried in an assumed medium with a uniform relative

dielectric constant. Note that the 1larger the time constant, the
larger the response current. Therefore, begin with the decay
portion of the double exponential. The relative dielectric constant .
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. -3 ‘ .
corresponding to tf = 10 sec (or ff = 1/2111:f ~ 160 Hz) 1s €rf

. 104. In order to have an input voltage without discontinuity, let

the ¢ominating voltage be

—t/tf -t/t1 -
Vi(t) = \e C - e u(t) (19)
where ty = €g/0 = 4.428 X 1072 sec.
Next, begin with the second term in Eguation (18). The relative
dielectric constant corresponding to t1 = 4.428 X '.LO_5 (fl ~
3.6 x 103) is €1 = 103. Thus, the next voltage to consider is
--t/tl —t/t2
Tz(t) = (e - e u(t) (20)
6

. where t, = £,/0 = 4.428 x 10 ~ sec.

Proceeding as before, the relative dielectric constant corresponding

to t, is €.np = 200, and the voltage to use is
—t/tz -t/t3
T3(t) = \e - e u(t) (21)
-7
where t3 = czld = B.B55 x 10 sec.

Notice the input voltage ¥ (t) can be approximated by
7 (L) ~ () + £2(t) + r3(t)

The current is the sum o the individual current due to 7i(t) in

. its corresponding medium g, and o. The total wire current in
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amps, which includes the interface effect for an input voltage given

by Equation (18) at the gap, is shown in Figure 8. The figure shows .

the wire currents it locations z = 100 m, 316 m, 1000 m, and 3160 m

from the source.
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Section 5. The Current for a Wire Buried Below an Air-Ground

Interface and Under a Normal 1Incident Electric
Field

Consider the problem of calculating the current on a wire with a

. . -2 - . <.
wire radius a = 10 meter bpuried 1 meter below the alr-ground

interface, when an electric field of

—t/tf —t/tr
E(t) = (e - e u(t) (22)

7

where t 2.5 X 107" sec

i

t = 10 sec

is normally incident on tie interface.

We shall solve this problem via the frequency domain by using

the time-harmonic formula derived in Appendix B.

Flo) = 1 _ 1

-iv + t -1 -io + t
£ r

The transmission coefficient of a normal incident wave from the air
to the earth with € and o as 1its dielectric permittivity and

conductivity is

y 2(e, - o/iwco)l/2
e, - o/iewe  + (e, - we
2:;1/2(—iw)l/2(—im + G/E)_l/z

(24)
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The frequency domain transfer function from just below the interface

to a depth of d from the interface is .

‘!

e-xkd (25)

"3
Qa

4

1)

|
P
=
Q
]

[(—iw)(—im N c/s)]l/2

The wire current transfer function due to a localized voltage E dz

3t 2z distance away is (Appendix B)

4(z,0) = (-iw + o/c) (Equation B6) . (26)

The total wire current 1in the frequency domain due to a normal

incid :nt electric field is [

4¢ -ik(d+z)
S (0) = / dz —f dz] e . |
L
-~Tr o~ K
arctan - Ko(a<1>) E(w)dz
in <> Io(a<r>) dn 2+
-ikd
i¢c = 2¢ -7
= Jg— E(w) —?;YE— agrctan - Ko(a<r>) .
r n n 2+y

<t> T IO(a<1>)

(27)
The time-domain function for the frequency-domain function inside
the parentheses is I(d.t) as defined in Reference 2, Equation 6 with

Z replaced by 4.

The time-domein total current, which is the inverse transform of

{27) can be easily; written as
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: t
-(t-t')/t -(t-t')/t
,r/T(z,t) = gc/dt' I(d,t‘)[e . L e :} ;
L (28)

Finally, in a diffusion limit,,yT(z.t) can be written as

- Zp(tt) 9 (4D

16(wt t yi/?
Qo e

s ] (30}
u{ZQn (;) + n Z*Y]

and gto(d,t) is given by Equation (11) and it is a function of t,

t
L
I

where . ’T(t

- 2
because of A = 2. 9%

4t
Notice te is defined as te = co/a. Equation (30) differs by a
factor of 2 from that given in Reference 6. It appears that a

factor of 2 has been dropped on page 385 of that reference. The

effect of the air-ground interface can be easily accounted for by

using Equation (15) given in Section 3. An important comment is in
order: the wire current solved in Section 2 and that solved in this
section have identical normalized admittance functions. The
difference in the two cases 1s the admittance factor. The

interpretation of 2z and d should be the separation distance in the

dissipative medium from the source point to the observation point.
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A numerical example is helpful in appreciating the value of an
induced wire cvrrent  due to an .HAB EMP. Notice Zp in
Equation (30) 1s proportional to J?;: Therefore, dropping the
in iqdation (29) results only in ébout 10 percent

Consider an earth conductivity of o = 10"3 S/m.

second term

accuracy.

Thus, ¢t = co/c ~ 10 sec,
-3 -7
6 vV _x ‘ .
ZT(tf't) - 1 i 10 m7x 2.5 x 10 = 0.07
4w X 10 X 16 '
In obtaining the above number, the 1interface effect has been

-2 .
included. Also, A ~ 10 7, and from Figure 1, the peak value of

qtf(d,t) ~ 0.5.

When accounting for a multiplicative constant of

E =5 x ].O4 V/m in Equation (21 for an HAB EMP and the error

introduced by urfing Figure 1, the peak value of the current 1is

approximately given by 2 kA.




Section 6. Conclusions

This report illustrated the use of a new theory developed 1in

Reference 2. First, the diffusion approximation was used for both a
localized excitation and -a double exponential pléne wave
excitation. Under that approximation, universal curves were given
for obtaining numerical results in applications. Second, the more

accurate new theory was used to ascertain the limitations of the
diffusion approximation. Third, the clarification of an
inconsistency in the early-time solution in the 1literature was
noteworthy. Fourth, the time-harmonic formula was obtained
previously only in the limiting case. The most important conclusion
is that for most situations with buried wires under 1lightning or
nuclear EMP excitations, the diffusion approximation with impedance
included inside the 1integrand (Figures 2b through 5b) gives the
correct peak value. When an accurate early-time wavéform is
required, the present theory 1s no more complicated than the
diffusion theory. It only requires a simple integration. Typical

results are shown in Figures 2 ¢ through 5¢C.
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APPENDIX A. An Early-Time Solution

Previous investigations of the early-time behavior for free
space are described in References 3, 4, and 5. In order to study
the early-time behavior of 1I(z,t)., use Reference 1 Egquation (3) to

write 1(z,t) as

I(z,t) = 1, + 1

1 2
© / 2 2
_ 27 e—dt/ZC dnm Io(n) Ko(T a +n ) (A1)
¢ n K_(n) 2 2 2
o PR {[Ko(n)] s wfl1 ()] §

T

When 1 <<.1, I(z,t) 1is contributed mostly from the last term of
Equation (Al). Furthermore, B is chosen to satisfy 0 < B8 < 1, such
that, as 1 ~ O, (T—B = ®) I (n) and Ko(n) can be replaced by the

asymptotic expansions.

As a result, for T << 1,

[ o] (o]
I(z,t) ~ 34—“ o~ot/2¢ f K (tn) dn = 4 e"’t/z‘:f K, (%) dx
‘ o -8 1-8

Coﬁr
T
5 (21 -ot/2¢ (A2)
)
Notice in Equation (A2) the lower limit Tl~B in the last
‘integxation can be replaced by zero. When o - 0, Egquation (7)

reduces to the lossless case studied by WU3 but differs from Lee
and Latham,q’5 whose early-time current 1is a factor of 2m too

large.
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Alternatively. Equation (A2) could be obtained by using

Reference 1 Equation (2) as follows: .

- J (’cv‘nz - az)'
0 dn

_ 4 _—ot/2¢
I(z,t) +Tr¢.o e fB {{J ( )]2 v )]2 -
T oM * oM

aa
~ 4Tm e—ot/Zt:f Jo(x) dx = 521 e-dt/Zc
1-8 o
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APPENDIX B. A Time-Harmonic Solution

To obtain a time-harmonic solution for the wire current in a
dissipative medium, it 1is necessary to consider the following

integral:?

2 v .2 2.-1/2v-1/4 72 7
=\/1T—q (p - q7) Kv+1/2<p _q) : (B1)

Differentiate Egquation (Bl) with respect to v and then set v = o.
The following equation emerges:
o

L fonx® - 1) eP¥ 1
2 1

q x? - 1) dx = “e_px K {qvx® - 1' 5x”ﬁ
(o5 o[ )

F

[Z 2 3 (/——2 2)

0 g K1/2(9 "q) ﬁau Kvs1/2\"P - 9 }

* C 2 .42 (45 g\/E TV ) ,\1/4
P-4 (p -q) p° - a

v = 0O

210

(B2)

The right-hand side of Equation (B2) can be evaluated and an

averaging for 1/2 %n (xz - 1) can be defined as
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<1 Qn(xz _ 1)> 7 Equation B2

The time-harmon.c wWire current 1is related to the forward Fourier

transform of Reference 2 Egquation (6) as

[oe] 3
ivt-ot/2¢
I1(z,0) = ;—J/.dt e IO(Q—V 2 _ zz/cz)

4 2¢
° o
. o
arctan - Ko(aT) . (B4)
¢n Tt IO(aT) Ln 2+Y

To evaluate Equation (B4), let

= iw g =z
P = |- Y 2¢ ¢
_ gz
q = 2¢ccC

Equation (B4) can be approximated by replacing T by its

averaging. Notice
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and

z0 . ) . . o\
<T> TZacke * ~1lkc -\/2—1@) <—1w + ) . (B5)

Use of Equation (BS5) n Equation (B4) gives

~ 2 -ikz —
I1(z,0) ~ . (-im) arctan K (a<t3) .. (B6)
° on = e on 2+y

+
<T> Io(a<1>)

When a<t> >> 1, Equation (B6) reduces to

-ikz

Co ke ~2n(2kz) - 2%¥n(ka) - vy + 1 3u

I(z.0) ~

2 (B7)

On using Reference 1 Eguation (1) the time-harmonic solution is
given by

F(z,0) ~ (-io + %) I(z,0) (B8)

10 Notice the

Equations (B7) and (B8) agree with Wu's result.
time-harmonic solution for an infinite wire in free space is given
by Ecuation (B8) with kK = o/c and ¢ = 0.
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