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Abstract

A fundamental problem in qualitative electromagnetic topology is the construction of
the interaction sequence diagram given a preassigned shielding between all pairs of primary
“sublayers. Idealizing this into one of relative shielding order makes this problem amenable
~ to graph theoretic treatment. A constructive characterization of the relative shielding order
matrix for primary sublayers of an electromagnetic topology defined to the level of layers
and sublayers is given. In addition, all possible sublayer topologies with relative shielding

order at most 5 are explicitly given.




I. Introduction

Electromagnetic (EM) topology is a mathematical abstraction of the electromagnetic
design of systems and is primarily concerned with the electromagnetic interaction process
(1,2,3,5]. Given system requirements, one can hopefully find an appropriate electromagnetic
topology and assign design specifications to the parts of the system. For an électromagnetic
topology defined to the level of layers and sublayers we abstract this by introducing a relative
shielding order (the number of subshields crossed in passing between two sublayvers) applied
to selected sublayers—the primary sublayers—and ask whether an electromagnetic topology
exists with these speciﬂc;a,tions.

In [2] it v\;as shown that for the special case that the; relative shielding order between
all pairs of primary sublayers was constant R the results were quite simple. In particular,
R could only be even and the case R = 2 was of practical significance. In this paper we
characterize the relative shielding order matrix for the primary sublayers of an EM topology -
when the primary sublayers are extremal (leaves of the dual graph), when the primary
sublayers include the extremal sublayers together with specified internal sublayers, when all
sublayers are primary and when the primary sublayers are arbitrary.

Corresponding to the EM topology is the interaction sequence diagram. This diagram
is essentially the dual graph of the electromagnetic topology and, as such, may be analyzed
from tﬁe graph-theoretic vantage. For an EM topology defined to the level of layeré and
sublayers, the dual graph is particularly nice since it is a tree and our relative shielding
order matrix is the distance-matriﬁ applied to selectéd vertices-the primary vertices—of this
-tree. 'We then characterize the relative shielding order matrix for the primary sublayers f)f
an EM topoiogy by solving the analogous problem for the dual graph. Our characterization
gives a recursive procedure for constructing the interaction sequence diagram and, hence, an

EM topology.




Having determined neceséary and sufficient conditioles for the realiéation of EM topologies
subject to various constraints on the iarimary sublayers, illustrative examples are given. In
particular, if the maximum relative shielding order Rum.x among the primary sublayers.is
given, all possible trees and associated EM topologies, including differences introduced by
inversion, are exhibited. This is treated for Rinax at most 5 for which the trees and dual EM
topologies are not overly complicated.

For electromagnetics, see [2,3] for a discussion of EM topology defined to the level of
layers and sublayers, the relative shielding order matrix for primary suBlayers and inversion
of the interaction sequence diagram at a vertex and see [3] for a discussion of EM topology
defined to the level of elementary volumes, which is beyond the scope of this paper..

For graph theory see [4] for a discussion of trees and distance matrices.




II. Realization of Specified Sublayer Relative Shi_elding Order

Matrices

Recall that an electromagnetic topology is given by partitioning Euclideé,n space into a
set {V)} of nested volumes called layers where each V), is composed of one or more subvolumes
{VA,¢} called sublayers and by separating layers V) and Vj11 by disjoint closed surfaces Sy.y+1
called shields where each 5,541 is composed of one or more closed surfaces {S,\;g;,\_{.llgf} called
subshields [1,2,3,5]. We construct the interaction sequence diagram from the EM topology
by placing a vertex in each sublayer and joining twe sublayers with an edge provided they
share a common subshield. (See Figure 1.) Note that the above construction is equivalent to
the usual formulation of the interaction sequence diagram as we identify each edge with the
appropriate subshield in place of subdividing each edge and then identifying the new vertex

with the appropriate subshield.
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Figure 1.
For example, sublayers V;;, V5, and V4, a.re.said to be extremal in the EM ﬁopology-
since they are leaves (endvertices) in the interaction sequence diagram.
Recall that the distance dr(v,w) between vertices v and w of the interaction sequence
diagram T is the number of edges traversed in traveling from one vertex to the other. We

assume that the weights of all subshields have been normalized to 1 so that the relative shield-




-

ing order between sublayers in the EM topology is the distance between the corresponding
vertices in the interaction sequence diagram.

We designate certain sublayers of the EM topology as primary sublayers A®) and the
corresponding vertices of the interaction sequence diagram as primary vertices and note that
the relative shielding order matrix among primary subiayers is the distance-matrix among

the corresponding vertices of the interaction sequence diagram. (See Table 1 where we refer

to Figure 1.)

Vii Va1 Vg

Vial O 2 3 | For primary sublayers
Vaa 2 0 3 AW = {‘/’1,1,%,1,‘/4,2};

Vaa | 3 3 0 | the extremal sublayers.

and

Vial 0 1 2. 2 3
Voul 1 0 1 1 2 | For primary sublayers
Varil 2 1 0 2 3 AFI) ={V11, V2,1, Va1, Va2, Va1 }; ,
Va2 | 2 1 2 0 1 | all sublayers. .
T Vai| 3 2 3 1 0

Table 1.
Relative Shielding Order Among Primary Sublayers.

Let Txm denote the set of m X m symmetric matrices whose entries are nonnegé,tivé
integers and which are zero precisely on the main diagonal. For D € T, and distinct
1 <41,...,i, < m, we call the s X s matrix D;,,...,, obtained from the 5, ..., t® rows and
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columns of D a principal s X s submatrix of D. For example, if D is given below




(0 1 2 2 37
1 01 1 2
D=2 1 0 2 3
2.1 2 0 1
13 2 3 1 i
then
0 1 2

D1,2,4= ]. 0 1
2 10

is a principal 3 X 3 submatrix of D obtained from the first, second and fourth rows and

columns of D.

A. Primary Sublayers are Extremal Sublayers.

In this subsection we characterize the symmetric matrices that are relative shielding order
matrices of an EM topology where the primary sublayers are extremal by characterizing the
symmetric matrices that are distance-matrices for the leaves of a tree.

For D = (d;;) € Tmxm, we say D is leaf-realizable iff there exists a tree T with precisely
m leaves labelled {1,...,m} satisfying dr(¢,7) = d;; for 1 <4,57 <m.

Theorem 1. Let D = (d;;) € Tsx3. The following are equivalent.

(a) D is leaf-realizable.




I (b) b, €27 ={1,2,3,...} for p € {1,2,3} where
b { (di,j -i- di,k - dj,k>/2 fOI‘ p= Z
p = )
(dp,i + dp,q - dq,z’)/Q for {Pa Q} = {Jy ]"}

Proof. D is leaf-realizable by a tree T iff tree T is as below

1 2
a1 az
0
as
3
‘ where a; = dr(0,1), a; = dr(0,2) and as = dr(0, 3) are positive integers satisfying
a1 + a = dig .
ay + a3 = dig (1)
a; + az = di3.

Gauss-Jordan Elimination shows system (1) has the unique solution

a1 = (di2+diz—da3)/2

a; = (dig—diz+da3)/2
a3 = (—=dig+diz+dyz)/2.

" (a) = (b) System (1) is consistent and a, = b, for p € {1,2,3}.
(b) = (a) Since b, = a, for p € {1,2,3}, system (1) is consistent. Then (b, by, b3) €
(Z+)3, the set of 3-tuples.of positive integers, is the solution of system (1). Construct T as

above so that D is leaf-realizable by T'. a




Remark. Condition (b) expresses that the branches ai, ag, az of the tree have positive e

integral length.

Corollary 1.1. If D € Y33 is leaf-realizable by a tree T then T is unique.

Proof. Tree T is characterized by a1, a2, a3, which are unique. a

Theorem 2. Let D = (d;;) € Taxs. The following are equivalent.
(a) D is leaf-realizable.
(b} For some {i,7,%,£} = {1,2,3,4} we have
(1) dig +dje = dig + djg
(i) b,-€ Z* for p € {1,2,3,4} where-

b { (dpj + dpi — di ) /2 for p € {i, £}
| ? T\ dps + dpe —dig)/2  for p € {4, E},
(iii) di,g—bi—-bze N={Q,1,2,...}.

Proof. D is leaf-realizable by a tree T iff for some {¢, 7, k,¢} = {1,2,3,4} tree T is as below




where a; = dr(3,7'), a; = dr(¢',5), ap = dr(i", k), ag = dr(i",{) are positive integers and

e = dr(2/,4") is a nonnegative integer satisfying

a; + g = di;

ai A 7 + e = dig

a; + a; + e = diy
' (2)

a; + ag + e = dj’;c

(lj + [27] + e = djg

ar + ay = dk,e

¥

Gauss-Jordan Elimination shows system (2) has the unique solution

a;

i

(dij+dig—d;e)/2
a; = (dij—dig+d;e)/2
ar = (dig —dig+ drs)/2

(=dip +dig+drp)/2
(=dij+dip+d;o—dis)/2

ay

e

when consistent, while systerﬁ (2) is consistent iff d;; + d; o = di ¢ + d; 5.

(a) = (b) Since system (2) is consistent, b(i) holds. Now a, = b, for p € {j,k}. Since
b(i) holds, dis — djx = dis — djs and a; = b while dj — dj = diz — dix and a; = by, Then
a, = b, for p € {1,2,3,4} and b(ii) holds. Since a; = b; and a, = b, e = d; ¢ — b; — by and
b(iii) holds. '

(b) = (a) Since b(i) holds, system (2) is consistent and, as above, b, = a, for p €
{1,2,3,4} so that dis — b; — b, = e. Then (b, b;, by, by, €) € (Z*+)* x N, the set of 5-tuples
of nonnegative integers, the first four of which are positive, is the solution of system (2).

‘Construct tree T' as above and note that D is leaf-realizable by T by using b(i) to show that
dT(ja k) = dj,k- . -




Remark. Condition b(i) expresses the consistency of the system, condition b(ii) expresses
that the branches a;, a;, ai, a; have positive integral length and condition b(iii) expresses

that e has nonnegative integral length.

Corollary 2.1. If D € T,y4 is leaf-realizable by a tree T then T' is unique.

Proof. Given the labels of the leaves, T is characterized by a:, g, ak, ¢z, e, which are

unique. O
Denote the tree whose leaves are precisely ¢y,...,¢, by T'{%;,...,%,}. For a tree T contain-
ing leaves iy,...,t,, let T; . ;, denote the subtree of T whose leaves are precisely iy,..., .

We give now the main result of this subsection.

Theorem 3. D = (d;;) € Tixm is leaf-realizable iff all principal 4 x 4 submatrices of D

are leaf-realizable.

Proof. (=) E}é&rnine the tree for the appropriate subtree.
(<=) Let D be a counterexample to the theorem with m as small as possible. Necessarily
m > 5. Then D/ = D;,...;m—1 satisfies the hypotheses of the theorem and, by the minimality
of m, is leaf-realizable by 7.

For 1 < 4,7,k, k' < m — 1, note that T{s,7,k,m}ijm = T{, 5,k ,m}ijm = T7; and
T{i,j, k,m}ijx = T{; by Theorems 1, 2 (Easy to arrange equality). Define (4, §, k) as the

vertex of degree at least 3 in T'{¢, j, k,m} that is closest to m and define
a(i,j, k) = dT{;,j'kl,m}(m, $(i,j, k)) N
a(i,j) = min{a(i,7,k): ke {l,...,m—1}—{3,7}} and
a = min{afi,j):1<i<ji<m-—1}.
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Let a = «(l,j, k) and let £ € {1,...,m—1}—{7,5}. Consequently, drgijemy(m,2(2,7,0) > a
and z(i,7,£) is an internal vertex of the (4, 7)-path in 7". Let 7 = 7" U I7;. Then

dT(maE) = dTi':j(mvx(Z'vjag)) + dT/(CE<i,j,£),€)
= dT{i,j,Z,m}(m, CE(i,j, E)) + dT{i,j,Z,m}(x(iaja g)aé)

= dT{z’,j,E,m}(mye) = dm,f .

Hence, D is leaf-realizable by 7. jm!

Corollary 3.1. D = (d;;) € Trxm is leaf-realizable iff for all 1 Suu<pg<iz<iys <m

some {7,7, k, €} = {t1,1q,13,14} satisfies

(i) dig+djp=dip+d;p,
(i) b, € Z* for p € {1,2,3,4} where
, { (dp; + dpr — d;1)/2 for p e {i,{}
p —

(dpi +dpe —dip)/2  forpe {j,k},
(i) dig—b;—b €N
 Proof. ~Use Theorems 2,3. ‘ ad
Remark. See the rémark following Theorem 2 for a discussion of conditions (i), (ii), (iii).
Corollary 3.2. If D € Y,uxm is leaf-realizable by. a tree T then T is unique.

Proof. Use Corollary 2.1 and the proof of Theorem 3. a

Remark. The proof of Theorem 3 is constructive and gives an algorithm for finding the

tree T that leaf-realizes D € T xm.

11




Leaf-Realiz,able Algorithm

1. Set T, =7TY{1,2,3,4}.

2. For £ < m, choose 1 < 4,5,k < £ —1 with
dT{,-,j,;c,g}(:c,E) as small as possible where z is
the vertex of:degree at least 3 closest to £ in
T{¢, 7, k, £}

3. Set Ty =Tt UT{i,7,k, ¢}

4. Stop.

Example 1. We illustrate the algorithm for D below

By Theorem 2,

1 2 3 4 5 6
10 3 3 4 4 4
2!3 0 2 5 5 5
D= 313 2 0 5 5 5
414 5 5 0 2 4
5|4 5 -5 2 0 4
614 5 5 4 4 0
1 2
i i i
1 (edge weights w
Ty=T{1,2,3,4} =
47 {1,2,3,4} 4 1 denote path lengths)
4 3

12




. For 1 <4,j,k < 4, the minimum value of dry;js1(,5) is 1 for

T{1,2,4,5} = 5 by Theorem 2

11
4 3

so that

For 1 <¢,j,k <5, the minimum value of dry;;xe6)(z,6) is 2 for

i 2
12

T{1,2,4,6}= 2 11 by Theorem 2

%

13




so that

We now show that Theorem 3 is best possible in-that the minimum size of the testing

submatrices is 4 X 4.

Example 2. For m > 4 and even R > 4, let D be the symmetric matrix defined below.

L2 s 4 o

1|0 R-1 R-2 R-2 -+ R-2
P O R-1 R—-1 --- R-1
3 O R .-- R
D= 4 QO -+ R [« All nondiagonal entries are R.
m O

14




-

All principal 3 x 3 submatrices of D are leaf-realizable:

1 2 . ;
;1;?,)]} C(R=-2)/2 Rz%:z ;2;;1;} A B2 R/QR/Q
j . .
Y J J k
Lk} | kL)
ésjjzk(R_@/z 3/5/2 §]Sjik<€ B2 R/éR/z
k ¢

However, D is not leaf-realizable, since Dy 3 4 is not leaf-realizable, otherwise as in the proof
of Theorem 2 with ¢ = 1, we have: '

(J,k,0) = (2,3,4) implies a; = R/é, as = R/2 so that dy3 > R, a contradiction. (Simi-
lazly, (7, k,£) = (2,4,3).) |

(G b 0) = (3,2,4)  iiplies as = B/2, s = (B — 2)/2 but then a; = R/2 so that e = 0 and
ds4 = R — 1, a contradiction. (Similarly, (4,%,£) = (3,4,2).)

Gk, 0) = (4,2,3)  implies a5 = (R — 2)/2, a4 = R/2 but then a; = B/2 and dy¢ > R, a
contradiction. (Similarly, (4,%,¢) = (4,3,2).) o : O

B. Primary Sublayers Include Extremal Sublayers and Specified

Internal Sublayers

In this subsection we characterize the symmetric matrices that are relative shielding order

matrices of an EM topology where the primary sublayers include the extremal sublayers by

15




characterizing the symmetric matrices that are distance matrices for at least the leaves of a e

tree. )

For D = (d;;) € Yaxe and L C {1,2,3,4}, we say D is L-realizable iff there exists a tree T
with labelled vertices 1, 2, 3, 4 so that L C Vi(T) € {1,2,3,4} and satisfying dr(s,j) = d:;
for 7,7 € {1,2,3,4}. Here Vi(T') denotes the leaves of T

Theorem 4. Let D = (d;;) € T4xq and L C {1,2,3,4}. The following are equivalent.
(a) D is L-realizable.
(b) For some {i,7,k,£} = {1,2,3,4} we have

(i) dixg+dje=dis+d;u,
(ii) b, € Nforpe {1,2,3,4} — L and b, € ZT for p € L where

; { (dp; + dpe — dj)/2 for pe{i,{}
© 7 (dpyi + dps — dig)/2  for p € {4, k},

(i) dig—b;—b e N.

Proof. D is L-realizable by a tree T iff for some {3, 7, %,£} = {1,2,3,4} tree T is as below.

16




where a; = dr(2,7'), a; = dr(¢,5), ap = dr(i", k), ay = dr(i",4) and e = dp(1',¢") are

nonnegative integers satisfying

a; + a; ' = d;;

-4 + + e = diy
>y + a + e = diy 3)

a; + ay + e = djj

a; + a; + e = dj,

ar + ag = dy

with a, € Z* for p € L. Gauss-Jordan Elimination shows system (3) has the unique solution

a; =

(dij + die — dj0) /2
(dij — dig + dj) /2
a = (d,,k— dig + dig)/2
(=
(=

a; =

ay = dig +dip+ dre)/2

(A =

—dij+dip+dip—dis)/2

when consistent, while system (3) is consistent iff d; + d;, = d; s + d, 1.

.. (a) = (b).. _Sincé system (3) is consistent, b(i) holds. Now a, = b, for p € {7,%k}. Since
b(i) Bolds, dix — djx = dio — d;; and a; = b while dys — d 5 = dis — di and a; = by, Then
ap = b, for p € {1,2,3,4} and b(ii) holds. Since a; = b; and a, = by, e = d;¢ — b; — by and
b(iii) holds.

(b) = (a) Since b(i) holds, system (3)is consistént'a,nd, as ‘above, b, = a, for p €
{1,2,3,4} so that d;, — b; — b, = e. Then (b;, b, b1, bs,€) € N3, the sét of 3-tuples of
nonnegative integers,. is the solution of system (3) Construct tree T’ as above and note that
D is L-realizable by T' by using ‘b(i) to show that dr(j, k) = d;x and using b(ii) to insure
L ¢ W(T). 0

17




Remark. Condition b(i) expresses the consistency of the system, condition b(ii) expresses
that the branches a;, a;, ar, a; have nonnegative integral lengths and condition b(iii) ex-

presses that e has nonnegative integral length.

Corollary 4.1. If D € T4y4 is L-realizable by a tree T' then 7' is unique.

2

Proof. Given the labels, T is characterized by «¢;, a;, ag, ¢, e, which are unique. ]

For D = (di;} € Y(mtr)x(mtr), We éa,y D is (m,r)-realizable iff there exists a tree T
with precisely m leaves labelled {1,...,m} and (at least) r internal vertices labelled {m +
1,...,m+r} satisfying dr(¢,7) = d;j for 1 < 4,7 < m+r and we say D is r-linear iff for all
m+1<k<m-+randforall 1 <i<m there exists 1 < 7 < m satisfying d;; = dix + dij.
In words, D is r-linear iff for' each internal vertex m+1 < k <m-+randeachleafl <i<m
there exists another leaf 1 < j < m with vertex k. on the (¢, §)-path in the tree.

For D € T(m4r)x(m+r) and E = D, wherel <4y <.+ <i, <m+r, let L(E) =
(i i} N {1, ., m).

We give now the main result of this subsection.

Theorem 5. D = (d;;) € T(m.i.,-)x(m.l.,..) is (m, r)-tealizable iff D is r-linear and all principal
4 x 4 submatrices E of D are L(E)-realizable.

Proof. (=>) Examine the tree for the appropriate path and for the apprqpriate subtree
and note that leaves of the tree are leaves of the subtree.

(«<=) Let D be a counterexample to the theorem with m +r as small as possible. Necessar'ﬂy
m+r>5and r>1. Then D' = D; _n4r-1 satisfies the hypotheses of the theorem and, by

the minimality of m +r, is (m,r — 1)-realizable by T". Let d;; = dim4r + dmir; and, using

18




this, let T be obtained from T” by labelling the appropriate vertex of the (7,7)-path Pin T"
with label m + 7. Let £ € {1,...,m +r} = {i,5,m +r}. Then T{i,j,0m +r}i;¢ = Ty
and T{4,7,4,m + r}ijmer = Tijmer (Easy to arrange equality.) For £ on P, the tree
T{i,j,£,m + r} is the (¢, 5)-path P with the labelled vertices # and m + r so that
dT(E, m + T‘) = dZ,m+r
while for £ not on P and y the vertex of degree 3 in T{i,j,4,m +r} we have
dT(ga m+ 7‘) = dT(g, y) + dT(ya m+ T)
= drijemery (6 y) + dr(ijemrt(y,m +1)
= drgjemeny(&m+r) = domgr

Hence, D is (m,r)-realizable by T'. O

Corollary 5.1. D = (d;;) € Y (mar)x(m+r) 18 (m,r)-realizable iff for all 1 < iy < 45 < i5 <
te Sm+rsome {7,7,k,4} = {i1,i3,43,14} satisfies

(i) dig+dje=dip+d;p,

(ii) b, € Nforp € {i1,%2,43,i4}—{1,...,m} and b, € Z* for p € {11,12,73,34}N{1,...,m}
where

b { (dp,j + dp,k - dj,k)/2 forp € {i,f}
? (dpyi + dpe — dig)/2 for p € {j, k},

(111) d,',g —b; — b, € N.
Proof. Use Theorems 4, 5. a
Remark. See the remark following Theorem 4 for a discussion of conditions (1), (i1), (iii).

Remark. The proof of Theorem 5 is constructive and gives an algorithm for finding the

tree T' that (m,r)-realizes D € T (mr)x(mer)-

19




(m,r)-Realizable Algorithm

1. SetT,=T{1,...,m}

2. For{ <m+r,choosel <i,j <m withd;; =

di,g + dg,j.

3. Set T; = T;,_; where the appropriate vertex has

been labelled £.
4. Stop.

We now show that Theorem 5 is best possible in that the minimum size of the testing

submatrices is 4 x 4.

Example 3. Let T be a tree whose longest path has length 2/ and with precisely m leaves .
labelled {1,...,m} and (at least) r — 1 internal vertices labelled {m +1,...,m +r — 1}

so that some longest path has endvertices 1, 2 and center m + 1. Let D be the symmetric

matrix defined below.

1 2 - m+41

m+r—1 m+4r

1 - O 2 ... Z
2 O - £
m+1 O
m+r—1
m-r

O

14
£

O

Columns m + 1, m + r are identical except that dmi1,m+r = 2 and Dy mir—1 is the distance

matrix for the labelled vertices of T'. Since m + r acts as m + 1, D is r-linear. All principal 9

20




n

3 x 3 submatrices £ of D are L(£)-realizable:

{1,5,k} € {1,...,m 4 r —1}: Consider the subtree of T with leaves contained in {i, 7, k}.

{t,j,m+7r} C{l,...,m+r}: Consider {i,j,m + 1} and argue as above.

- wherem +1¢ {7,7}.

{t;m+1,m+r}: For d; i1 = dimmyr = = > 2, consider

the tree with leaves {i,m + 1,m + r}. While for d; ;ns1 = di m+r = 1, consider

m+1 ¢ m<+r

1 1

the path of length 2 with leaves {m 4 1,n}. Note'that i & {1,...,m}.
However, D is not (m,r)-realizable since any tree realization must contain a cycle, a contra-

diction. =

21




C. All Sublayers are Primary Sublayers -

In this subsection' we characterize the symmetric matrices that are relative shielding order
matrices of an EM topology where all sublayers are primary sublayers by characterizing the
symmetric matrices that are distance-matrices for a tree.

For D = (d;;) € Toxpnand 1 < ¢ < m,let d(i) = {1 < 7 < n:dy; = 1} and let
LD)={1<i<n:d(E)=1}.

For D = (d;;) € Trxn, we say D is tree-realizable iff there exists a tree T' with precisely -
n vertices labelled {1,...,n} satisfying d7(¢,7) = d;; for 1 < 4,7 < n and we say D is linear
iff |[L(D)] = 2 and for all k ¢ L(D) and for all ¢ € L(D) there exists j € L(D) satisfying
di; = dig + d;.

For D€ YToynand E=D;,, ;, wherel <@ < -+ <, < n,let L(E) = {i1,...,%,} 0
L(D). | -

We give now the main result of this section.

Theorem 6. D = (d;;) € Ypxn is tree-realizable iff D is linear and all principal 4 x 4
submatrices E of D are L(E)-realizable.

Proof. (=) Examine the tree for the appropriate path and for the appropriate subtree
and note that leaves of ‘the tree are leaves of the subtree.
(<) Let D be a couhterexa,mple to the theorem with n as. small as possible. Necessarily
n > 5 Let D' = Dy i-1:41,.n Where ¢ € L(D) and d;» = 1. Then ¢’ ¢ L(D) or the tree
T{i,?, k,£} of order at least 4 contains adjacent leaves ¢,7’, a contradiction.

Now |L(D")| = 1 implies |L(D)| = 2 and d(¢') > 3. Let L(D) = {¢,j} and du; = dy,» =
dy ym = 1. Then T{i,7',4",4"} is a tree of order 4 isomorphic to K3 (the tree with precisely

3 leaves and 1 center vertex) and we must have
ldi,i’l = d{,il!f = d{ll’i”l = 2 . (l)
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Then one of i",¢" & L(D) = {i,j}. Let ¢’ ¢ L(D) so that d;; = d; . + din; and by (1),
" #j. Then " g L(D) = {i,7} so that d;; = d; gw+dsm ;. Then T{7,5",7",j} is a path with
endvertices 7, j and distinct internal vertices ", 7, contradicting (1). Hence, |L(D")| > 2.

Let b ¢ (D) U {i} (s0 k ¢ L(D)) with ds; = dis + e for j € L(D). '

Now i' € L(D’) implies ¢’ # k §vh11e i & L(D ) so that i’ # j. Since div =1, T{i, 7,7, k}
is a path with endvertices 7, j and disltinct internal vertices ¢, & and we must have dy; =
dy g + dij. Assume ' & L(D') so that d(') > 3. Observe that d;n = 2 for all i # i with
dy;n = 1. Since no tree of order at least 4 contains adjacent leaves, 7/ # 7.

Now " = j with dysn = 1 implies ¢/ = k or T{i,7',j,k} is a path of length 2 with
endvertices ¢,; and distinct internal vertices ¢, k, a contradiction. Then thére exists i =z
%,J;k with dyym = 1 since d(i') > 3. Now " € L(D') (so " € L(D)) implies T{z’,z””,j;k}
is a tree with leaves 7,7”,; and mternal vertex £ is on the (i", j)-path there since d; n = 2.
Assume 7" ¢ L(D ) (so i ¢ L(D)) so that dj; = djm + dym ji for j' € L(D). Now j' =i
implies T'{%,7",j,k} is a path of length 2 with endvertices ¢, and distinct internal vertices
"'y k, a contradiction. Assume ¢” # j for all dy;n = 1.

Now " € L(D') (so i" € L(D)) with dyy = 1 and " # 3 implies ¢ # 4,7,k since
k ¢ L(D') and T{7,4",j,k} is a tree with leaves i,s”,j and k on the (1", 7)-path there since
dign = 2. Assume i ¢ L(D') for all dpn = _1lwith i" # i (so i" & L(D)). |

Now di; = dign + din; for all dyju = 1 implies there exist distinct #,i” # 4,7 with
dirgn = dygm = 1 since d(¢') > 3 and T'{7,1",i",j} is a path with endvertices i, and distinct

internal vertices 7", 2"

each distance 2 from i, a contradiction. Hence, d;; # d; i + dgn ; for
some dirgn = 1 so that 5 # 4, j, k. Since 1’ & L(D’) (so " & L(D)) we have d; ;1 = jz'll+dill y
for j' € L(D). Then j' # i (so j' € L(D")), j' # i",k and T{i",4,5',k} is a path with
endvertices j,j’ and internal vertices " ,lg and we must have d; ; = d;; + dy ;1.

Then D’ satisfies the hypotheses of the theorem and, by the minimality of n, is tree-
realizable by T". Construct T from T” by adding vertex ¢ and edge i7'.
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For any distinct j,k € {1,...,n} — {i,i'}, ¢’ is on the (4,7)-path in T{i,¢,j,k} since e

d;» = 1 and we must have

di;

diy +di;
.= ]. + di’,j
= 14 dT’(ifsj)

= dr(i,7) .

Hence, D is tree-realizable by T ]

Corollary 6.1. D = (d;;) € Tpxn is tree-realizable iff for all 1 < 44 < i <3<ty

some {1,7,k,£} = {i1,42,13, 74} satisfies
() dig+dje=die+di,

(ii) b, € N for p € {41,%2,3,24} — L(D) and b, € Z* for p € {i1,%2,43,%a} N L(D) where a

; { (dpj + dps — dj)/2 for p € {3, £}
r = ]
(dpi +dpe — dig)/2 for p € {j, k},
(11!) d,;,g —b;—b e N.
Proof. Use Theorems 4, 6. a

Remark. See the remark following Theorem 4 for a discussion of conditions (i), (ii), (iii).

Remark. The proof of Theorem 6 is constructive and gives an algorithm for finding the

tree T that tree-realizes D € T, xn.
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Tree-Realizable Algorithm

1. Set T3 = T{i}, 12,13} a path of length 2.

2. For { < n, choose i € {il,.‘. .,Z:g_l}, g €
(Levosn} = {is, .. is} with dy s, = L. |

3. SetT, = Tg_l plus the edge‘ikig.

4. Stop.

Example 4. We illustrate the algorithm for D below.

1 2 3 4 5 6
110 2 4 3 1 2
212 0 21 1 2
D= 3|4 2 01 3 4
43 110 2 3
5/1 1 3 2 0 1
612 2 4 31 0]
Let
1
T3=T{1,2,5}=\ 5
2
First dss = 1, so that
1 6

=Yt
2
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Next dqg s = 1, so that

Ts =

Finally d3 4 = 1, so that

[ S 1

We now show that Theorem 6 is best possible in that the minimum size of the testing

submatrices is 4 x 4.

Example 5. Let T be a tree of order n — 1 with longest path 1,2,...,2m +1 where m 2> 3

and let D be the symmetric matrix defined below.
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1 2 -+« m+1 - 2m4+1 - n-=1 n

1 O 1 m 2m m

2 O m—1 2m—1 - . - m—1
m+1 s O e m 2
2m +1 O
n—1 ©

n o

Columns m + 1,n are identical except that dmi1,. = 2 and Dy, .1 is the distance matrix
for T. Since L(D) is precisely the leaves of T and n acts as m + 1, D is linear. All principal
3 x 3 submatrices E of D are L(E)-realizable: -

{2,7,k} € {1,...,n — 1} : Consider the subtree of T' with leaves contained in {3, 5, k}.

{i,7,n} € {1,...,n} : Consider {i;7,m + 1} and argue as above.
where m + 1 & {1,7}

{t,m+1,n}: For dimy1 = din =z > 2, consider

the tree with leaves {i,m + 1,n}. While for d,',m_,_l = d;, = 1, consider
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¢ the path of length 2 with leaves {m + 1,n}. Note that ¢ & L(D).

b

However, D is not tree-realizable since any tree realization must contain the cycle m, m +1,

m + 2, n, m, a contradiction. a

D. Primary Sublayers are Arbitrary Sublayers

In this subsection we characterize the symmetric matrices that are relative shielding order
matrices of an EM topology where the primary sublayers are arbitrary by characterizing the
symmetric matrices that are distance-matrices of a set of vertices for a tree.

For D = (d; ;) € Tpxp, we say D is realizable iff there exists a tree T’ containing p vertices

labelled {1,...,p} satisfying dr(i,7) = di; for 1 < 4,5 < p.

Remark. With no loss of generality, we may assume that all leaves of T" are labelled vertices

in that we may rid the EM topology of excess secondary sublayers.

We give now the main result of this subsection.

Theorem 7. D = (dij) € Tpxp is realizable iff all principal 4 x 4 submatrices of D are -

realizable.

Proof. (=) Examine the tree for the appropriate subtree.

(<=) Let D be a counterexample to the theorem with p as small as possible. Necessarily
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. p =5 Nowh di; # dip + dij for all i < 1,7,k < p impliés that aﬁy realizable matrix is.
in fact, leaf;realizable Vand, consequently, D is leaf-realizable by Theorem 3, a contradiction.
Choose d; ; = d; s +di; with d; ; as large as possible. Then D’ = Dy g1 t41,..p satisfies the
hypotheses of the theorem and, by the minimality of p, is realizable by T with vertices 7, as
7 ‘leaves. Used;; = d;x +d;;,j to construct 7" from 7" by labelling the appropriate vertex on the
(¢,7)-path in T" with label k. For £ € {1,...,p} — {4,7, k}, note that T{i,7,&,}: ;% = Ti
and T{7,7,k, £} ¢ = T:;z by Theorems 1, 2. (Easy to arrange equality.)

For T'{i,j,k,¢} a path then T{¢,j,k,¢} is an (4, j)-path with internal vertices &, ¢ by the

3

maximality of d; ;. Clearly,
dr(k,£) = drgiiee(k,€) = dig .

For T{:,7,%,¢} not a path, let z be the vertex of degree 3 in T'{7, j, k,¢}. Note that z,
but not k, is on the (4,7)-path in 7. Then

dr(k,8) = dr(k,z)+dr(z,£)
= dT{z',j,k,Z}(ka z) + dT{i,j,k,l}(fE )

= dr{ijeen(k, ) = dre -

Hence, D is realizable by T o | _. Q

Remark. The proof of Theorem 7 is constructive and gives an algorithm for finding the

tree T that realizes D € Tpxp.
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Realizable Algorithm

1. Set T, =T{%,...,tn} the tree of leaves of D.

2. For £ < p, choose z,j € {i1,-..yim} with d;; =
dii, + i,

3. Set T; = T;_, where the appropriate vertex has
been labelled 2,. ‘

4. Stop.

3

Example 6. We illustrate the algorithm for D below.

1 23 456
10 1 2 2 3 3
201 01 1 2 2

D= 3|2 10 2 3 1
a4l2 12 01 3
503 2310 4
613 2 1 3 40

Note that 1, 5, 6 are the leaves of D. Let

(edge weights w
denote path lengths)
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FiI‘St dl,5 = (]1,2 -+ dg’s, so that

Finally d5’6 = d3,5 + d5,67 so that -

Remark. Any of examples 2, 3, 5 show that Theorem 7 is best possible in that the minimum

size of the testing submatrices is 4 X 4.
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III. Construction of All Sublayer Electromagnetic Topologies

with Rg.. at Most 5

In this section we exhiBit all EM topologies with the properties that the primary sublayers
inch}de all the extremal sublayers, possibly some of the internal sublayers and that the
relative shielding order matrix among primary sublayers has largest entry Rmax of at most
5 by examining all trees of diameter (length of longest path) at most 5 and constructing
the EM topology by inversion at a vertex in the tree. Note that only inversion at a leaf of
the tree, which is always a primary sublayer, results in a connected system. Observe that
a system is connected iff there exists one subshield which contains all other subshields and
all but one sublayer. In our diagrams it will not be necessary to distinguish primary and
secondary sublayers.

In what follows, we use the obvious symmetries of the tree to construct the electro-
magnetic topology by inversion of the tree at a labelled vertex. We leave the trivial cases

Roax = 0,1 to the interested reader.

A. Ry =2

Aﬁy tree of diameter 2 is as below for some a 2> 2. '
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B. Rmax =3

Any tree of diameter 3 is as below for some a, b > 1.

. 2 . fa—1
> < O
1
‘a
‘C- Rmax =4
Any tree of diameter 4 is as below for some a,b,¢,d;,...,d. where d; > 2 for 1 <

and b+c> 2. .
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D. ‘ Ryex =5

Any tree of diameter 5 is as below for some a,b,¢,dy,...,de,¢, f,g9,h1,..., 1y where

di,h; 22for1 <i<e, 1 <j<gandb+c+ f+g2>2.
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Note that appropriate choice of the parameters allows for construction of a small system

with the desired properties.
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IV. Summary

We have characterized the rcla.ti.vc shicldiug order matrix among primary sublayers for
an clectromagnetic topology defined to the level of layers and sublayers. Moreover, our char-
acterizalion gives a recursive procedure for constructing the interaction sequence diagram
and, hence, an EM topology. For small relative shielding order the EM topologies and dual
graphs are not overly complicated and are exhibited.

In the results of the present paper we have found that there are cases of specified rela-
tive shielding order matrices which are not realizable. An irﬁportant related problem is to
detérmine when such a matrix can be appropriately repaired so as to become a realizable
relative shielding order maérix. By this we mean that certaln matrix elements may be in-

creased (more shielding) and so achieve at least the desired shielding performance. Ideally

this would be done in some optimal manner involving minimum repair. We have some results

concerning this to report in a future paper.

Since electromagnetic systems can acquire considerable corﬁplexity, also of interest is a
similar analysis of the realizability and repairability of the relative shielding order matrix for
an EM topology defined to the level of elementary volumes. This will produce a dual graph

which is not a tree and complicate matters considerably.
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