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19 July 1989
SEM Backscattering

Carl E. Baum

Weapons Laboratory

ABSTRACT

“The paper considers the properties of the backscattering residue matrix corresponding to the
SEM poles or natural frequencies of a scatterer. For the case of non degenerate natural modes this matrix
becomes a single dyad which is characterized by a complex two-component vector. Introducing various

symmetries in the scatterer, combined with choice of observer location, gives other special properties to
the residue matrix.




Introduction

A previous paper [4] has considered the general electromagnetic scattering problem with some
implications of reciprocity and symmetry, and applied these to the forms that appear in the eigenmode
expansion method (EEM) and singularity expansion method (SEM). Looking at the far-field scattering, of
an incident plane wave one can define a scattering matrix {(in complex frequency domain) which exhibits a
symmetry (reciprocity) between the incident and scattered fields. In the case of backscattering this matrix
is symmetric in the usual case of defined orthogonal horizontal and vertical polarizations. This paper
further develops the backscattering results for the SEM representation.

Our starting point is (5.18) from [4 ]wh:ch reads
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where



1 =direction of incidence
3

= polarization of incident electtric field

1
=1~ 1 =incident transverse dyad
1, = scattering direction

s
7,,, = direction for measuring (sampling) scattered electric field
0 (constrainton i, ’

'1‘

-1, 1, = scattered transverse dyad

r = distance from observer of scattered field to scatterer(center of minimum circumscribing sphere)
E, = scaling constant (V /m) for incident field at scatterer
f(¢) = waveform of incident field
s=Q+ jo =Laplace - transform (two sided) variable
= complex frequency

~

Zt = Kernelof E - field (or impedance) integral equation
Js,, =naturalmode of scatterer

sq = Natural frequency of scatterer
ﬁfa = far coupling coefficient

(1.2)
Noting the important symmetry (reciprocity) relationship
6a(1)=Eal3)

.

Cra¥H)=Cal-F)Ca(R)

then the single vector function 605 can be used to characterize the symmetric dyadic residue.

As noted in [4] the integrals defining Cy,, 5,a, and the three-term symmetric-product

denominator in (1.1) are taken over the surface S of the scatterer and involve surface-current-density

natural modes. This, however, is not arestriction in that volume integrals are also allowed with volume

current-density natural modes. [tis only necessary that the media comprising the scatterer be reciprocal,

i.e., have symmetric constitutive-parameter matrices.

For backscattering we have



Co ()= Crp (-3.%) = Car(4)Car () (1.4)

which is evidently a symmetric dyad (fequired by reciprocity). Furthermore introducing the standard unit

vectors as in fig. 1.1

_1.;, = horizontal polarization

:{v = -'h x-‘1:| = _.,- xﬁh ="vertical" polarization
fxd =
k=T (1.5)

Here horizontal is usually taken as parallel to the horizon and vertical is interpreted loosely. Taken in the
sequence -1",,:!’;1,-1'1 this is aright handed system with 11 as the direction from the observer to the scatterer

(direction of incidence). Later considering the h, v plane with positive sense of rotation from -1.;2 toward i,

then (7;1,1,, —71) or (Thﬁv,?,) form aright handed system.

Defining
—1

)

d 2, .,
Wy = wg th(rs,rs,s) )

= —Sa“o<;sa(’-{¥);
(1.8)

we can in turn define
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Fig. 1.1. Backscattering from General Scatterer



)50‘(11) | (1.7)

This for is what is experimentally observable in (1.1) using far-field measurements. For symmetry one
might as well normalize the two vectors in the dyad (particularly for backscattering) the same way. The
relative normalization of the two is arbitrary since itis actually the dyadic product which is observable in the
far field.

This form for Cp,, is convenientin that it is effectively the backscattering matrix for SEM

measurement purposes. Rewriting (1.1) we have for backscattering
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E)7,5)= Eaf(sﬁpe_ﬂ"? (1.8)




So allowing for the delay ¢~ and 1/ (4zr) expansion to the observer then the pole terms of the
backscattering matrix are just [s—sa]—1&'ba(_1.1). Allowing for the 1/(47r) each such term has dimension

meters. Thereside matrix &,  then has dimensions m/s giving &, dimensions (mis)1/e,

In terms of coupling coefficients we have [4]

nr, (4 T = e % W), (1.7,)  (far coupling coefficient)

Mot T,)=-227,-C,()  (coupling coefficent)

n,a('f,,?m) = —Sglolm éfa( 1,) (recoupling coefficient)

=Waln Cr,(T.9)-, (1.9)
For backscattering this becomes
ﬂfa(ﬂﬁ :—:ﬁm) = T,71'51705(11)'7@7 ‘ (1.10)
where 7,,, and -1'p assume values of ?h and 1, in all combinations.

Now interpret our backscattering residue dyad as a 2 x 2 matrix noting that Ea(ﬂ) has no

component in the '1'1 direction. Labelling the two components of vectors (Transverse) to 71 by subscripts h

and v we have
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The various forms of this matrix are of course symmetric by reciprocity.

In this two-dimensional h, v space we have the identity (fransverse identity)

- - - e - - 1 O
11=1r=1_1‘I11=1_1r1r=(0 1]

with rotation by 7z /2 in the positive sense (from 7;1 toward, ) as

—

- 0 -1
1. X =-}x =(1 0]0

Rotation by an angle ¥ in the positive sense is

cos(¥) -—sin(\P) .
(sin(‘P) cos(‘P))

(1.11)

(1.12)

(1.13)

(1.14)




I. Representation of £ (%)

Assuming that at the natural frequency s,, of interest there is only one natural mode 7505 (no

model degeneracy), then the observer has a backscattering residue dyad ¢, characterized by a single
vector ¢, . Thisis in general a complex valued vector. Restricting our attention to the two-dimensional h,

v plane there are two vector components, each complex valued. This can also be thought of as four real
numbers. The magnitude is straight forward as

() =225 3) = (5 o

= Rez[cha (71)}+'m2[cha (ﬂ]meg[% (71)]””12[6”0: (W (2.1)

This vector is an observable characteristic of the scatterer so its orientation or direction is also of
interest. This is traditionally characterized by a polarization ellipse [14]. [n such a context an incoming
electromagnetic wave (monochomatic, i.e. single w) is viewed as an electric vector rotating in the h, v
plane with the tip of the electric vector forming an ellipse. By establishing the lengths of the major and
minor axes of the ellipse and orientation of the major axis in the h, v plane this incoming wave is

characterized except for an arbitrary phase (in effect 3 of 4 real numbers established). Viewed as a
complex vector this incoming wave has the same form as ¢,.

Then analogous to the traditional use &, can also be so characterized by a polarization ellipse. As
in fig. 2.1, let us introduce an angle v in the positive sense in the h, v plane. This polarization ellipse is

contained in many articles. A convenient formin[7]is applied in our case as
- = - Cha Ch
Co = Chy htcn, b= =( ]
CVa Cy a

|

. [cos(vfa) —sin(wa)].[ cos(fa)]ejAa

*sin(wg)  cos(wg)) | jsin(zy)
Ao, Vo T Ay all real scalars (2.2)

Here the result is cast in terms of one magnitude and three angles. Note in the polarization ellipse the
“overall" phase angle A, is not included, but can be specified by a number. Also all these parameters

(including T, and 1,) are functions of % which is now suppressed for convenience.
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Fig. 2.1. Polarization Ellipse for?a
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To visualize this better, define a real direction ?((Z’) inthe h, v plane such that |1

) -za[ is
maximized. This will determine the orientation of the major axis of the ellipse. Consider the radial unit
vectorin the h, v plane '

Z TR cos(w))
=cos{y) 1t +sin(y)t, =|
g = cos(y), +sin(y), [sm(w) 23
and the corresponding angular unit vector
Ty =—sin(y), + cos(y), = —sin(y)
v= Vg Vit = cos(w)
(7 T, =X
So now maximize
- 2 - e =
e -To| =T 000 T
) 2 2 * * N
=|Chal cos (w)+[chacha+chacva}cos(y/)sm(u/)
2 .
+IC"0:[ smz(y/) (2.5)

and use this to define ¥, as T, and v as y corresponding to the maximum. Note the Hermetian dyad

¢, Co for which we are finding the maximum projection along a real unit vector. Differentiating with respect
to y and setting to zero gives (after a little algebra) the well-known result

Chacva + chac"a _ 2Re[chacva}
(ool ol el

tan(2yy )=

lcha - lcva Icha - Icva (2.6)

Over the range of -z < yy < 7 there are 4 solutions, in general, of (2.6) corresponding to 2 opposite

directions for for the major axis and 2 opposite directions for the minor axis. To resolve this form

11




(24
sin y/a+—j cos(yy,) 1 0
(2.7)
and constrain
(r) >l (i)l
‘o | (2.8)

to select a major axis for Tc(l’ ) and a minor axis for 7&"). It remains but to choose which of two values of v,

separated by 7 to specify. Note that reversing Tg ) (rotation by z) changes the complex number

cg) to —cg), s0 one could choose that y, which made, say, Re[cg)} = 0. The usual convention is to
choose 0< ¥, <, as in the example in fig. 2.1. Note that in a measurement situation absolute phase

may not be available so that one may only have, say, cg) .

Also, note that the sign of ¢, is ambiguous since the dyad ¢, ¢, is what we obtain from the scattering
measurement, this being the same as (-¢4 ) (-¢, ). The usual convention is then not a limitation. Even if we
have absolute phase by knowing r sufficiently accurately, or have relative phases, referencing 2., to the

phase of some other selected c‘ao , there is still this sign ambiguity inherent in the dyad.

Referring back to the form in (2.2), this can be now put in the form

12



_(cos(w) —Sin(l!/a)}_ Cg) r)3(r) L 030)

Coq = =c 1
% \sin(we) cos(wy) Cg) « « «“
2 2
eal? = e f 4]
(&)
¢ . Vi3 b4
c
[24
minor axis =|Cg)|
major axis !Co:)l

cg) = ag c0s(7y Je/ta

cg) = jag sin(ty Je/ta

(i) ,
arg[f("—ﬁ)—} = ig- (for cg) * 0)
o (2.9)

This form of ¢, has it represented as two complex numbers times orthogonal real unit vectors. The two

complex numbers are orthogonal also in the complex-plane sense (have imaginary ratio). So this

decomposition is like a double complex number (with components designated by "r" and "i" superscripts).

Note that there is an IEEE standard for the sense of rotation of a polarization based on radiation
and reception by a helical antenna, right or left handedness being defined in the usual screw-thread
sense [14]. Right handed elliptical polarization has for an incoming plane wave the electric vector in the h,
v plane rotating in the sense of increasing w. Left handed elliptical polarization has the sense of
decreasing . Noting time dependence e as &/ with @ positive (or sg = Qg + joo With @, positive)

then we have

¢4

r).

C(i) +§=> left handed elliptical polarization
arg i =
Ca

- Z - right handed elliptical polarization
2 (2.10)

For special cases we have

13
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& =|ce

= gircular polarization

(& _ . A
¢y, =0=linear polarization (2.11)

One can also use this information to represent the polarization on what is called the Poincare sphere
{7,14}.

14




M. Properties of ¢, for Non-Degenerate Modes

Now look at some of the properties of Eba assuming that at the s, of interest the scatterer has
only one natural mode, this being the typically encountered case. Since Cp, can be represented as a
single dyad then as discussed previously we need only know ¢, a vector in the h, v plane which is
characterized by two complex numbers ch, and cy,, OF equivalently four real numbers. This can be
compared to the usual backscattering matrix which is a 2 x 2 matrix in the h, v plane (as in (3.8) of [4]).

Applying reciprocity makes the matrix symmetric which means it requires in general three complex
numbers (or equivalently six real numbers) to characterize it.

This single vector ¢, which characterizes the residue scattering matrix leads to an interesting

result. From (1.11) such a backscattering matrix is singular as

det(z, (1)) =det((cbn’m (?1))) = det(Za (¥)2a(%)) =0 for al’y o)

This is a necessary condition for a single natural mode characterizing ¢, and can be used as a test on

data (allowing for noise). Having found a zero-determinant residue matrix then (1.11) can be used to
construct ¢, .

Note that ¢}, is already in diagonal form. One normalized eigenvector (right and left) is

172
]

Ca /[Ea -Cq with eigenvalue ¢, -Z,. The second eigenvalue is zero and corresponding eigenvector

is orthogonal to ¢, .

Now ¢, and ¢, are associated with s¢, and ]‘Sa . Having found these we also have

* - *

Se jsa ,Eba, and E:'; since we are dealing with the Laplace transform of real-valued time functions and
operators. For each s, not on the real axis of the s plane there is another (a separate value of o) that we

find automatically together with the corresponding E;.

For the case that s,, is on the negative real axis we have real }’Sa, real Cq , real &, and real W,.

However Wy, can be real or imaginary depending on the sign of W,,. From section 2 we then have

.

Ea(h) = cg)('ﬂ)?a('ﬂ), real or imaginary for all % 3.2)

Since this comes from the residue matrix we have

15



Note also in this case of real s¢ that ¢, is characterized by two real numbers (or one real and one

imaginary) as contrasted to two complex numbers.

Since ¢, is an integral over the natural mode ]‘Sa, we can use the orientation of to tell something

about the orientation of ]‘Sa and hence of the scatterer. From (1.1) and (1.7) we have
. s e WH T
Ca(11) = Wa<1'1€ Yot sy (rs)>
= wa.1.1<e_70‘ 17 ;fsa (7_‘_‘;')>
a7 5, )

Noting especially the last form, only components of fSa orthogonal to 11 contribute to ¢, .

Consulting fig. 3.1, look at some thin slice at constant 4.7/ through the scatterer. While for a
perfectly conducting scatterer 71 -]’sa is locally tangential (parallel) to the scatterer, it can vary in phase over
this slice. In some cases of interest there is a predominant orientation of i -]’Sa over the slice in some
particular direction. Integrating (summing) over all such slices there is the phase and amplitude factor
e—7a71'?s' which weights the contributions from the different slices. Provided there is a predominant
orientation to the £, contributions from each slice, then this predominant orientation will appear in ¢,

One general kind of scatterer to which such considerations are simply applicable is a long slender
conductor. Then the low-order natural modes can be thought of as currents running along the body.

Then if the body is straight so the currents can be thought of as passing in the same direction, the
projection of direction is given by &, at the observer. The observer then has the scatterer orientation as

projected on the h, v plane.

- 16.




A. Cross-section view at slice
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B. Plan view _1-)
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Fig. 3.1. Relation ofE&( ) to the Natural Mode
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Looking at fig. 3.2 one can see how &, can be used in some cases to tell shapes and orientations

of scatterers. Suppose one is backscattering from a typical aircraft with side-on illumination. Consider, for
example, one of the lowest order symmetric modes [2, 3, 11]. From the side ¢, will be dominated by

fuselage currents and so will point {in the sense of 7}1’)) approximately parallel to the fuselage. So in this
case ¢ is related to the pitch angle (nose up or down) of the aircraft. For comparison consider some

higher order symmetric natural frequency which might be associated with the vertical stabilizer (at least
approximately, depending on details of the scattering shape). In such a case one could have ¢, more

vertical.

Note that with side-on illumination the dominant antisymmetric resonances (associated with wings
and horizontal stabilizers) will be suppressed, being small for ?-; perpendicular to the symmetry piane of the

aircraft provided that the antisymmetric currents are predominantly parallel to 1'

Excessive presence of antisymmetric ¢, in the backscattering then tells something about the yaw

angle of the aircraft (nose side to side) and/or roll angle of the aircraft, depending on the orientation of the
o for the low-order antisymmetric modes.

18




Ty, for symmetric mode
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on vertical stabilizer
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Cg, for low order
symmetric mode

(approximately parallel
to fuselage)

Fig. 3.2. Typical Aircraft Viewed from Side



V. Observer on Symmetry Plane of Scatterer

Now let the scatterer have a symmetry plane [1, 3]. This separates the natural modes into two
kinds, labelled symmetric (subscript sy) and antisymmetric (subscript as). Asin fig. 4.1, let there be a
symmetry plane P through the scatterer with unit normal ?p. Then we have a reflection dyad

Rp=1-21p7p (4.1)
which reflects coordinates through the symmetry plane as
Fm = EP . F (42)
The point symmetry group is
2 . .
Rp = {(RP) , (1)} , (Rp)*=(1) (identity) 4.3)
Symmetric and antisymmetric natural modes are defined by their reflection properties as

._i's , ;':s‘m =-—*P'.-/rs , s
o) =20 T, (5)

as as (4.4)

where the natural-mode index is now partitioned as

For a general observer the backscattering residue matrices will exhibit this symmetry as 71 is

reflected through P. (See some discussion concerning this in [4].) For present purposes, however,
confine the observer position to lie on P so that

f1p=0 . (4.6)

Then we have the result that the ¢, are all either perpendicular to or parallel to P (as well as being
perpendicular to Tp). This follows from the fact that on P a symmetric electric field is parallel to P while an

antisymmetric electric field is perpendicular to P [1, 3]. Thus we have

20
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Fig. 4.1. Symmetry Plane Through Scatterer and Observer
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Zo =) -3
Csy. e’ =Cq0 sy 0 gy =-Hhx1Pp

= =7 —
Cas,o’ =Cpo50r las ' as T P

(4.7)

Thus the ¢, are all now linearly polarized and are characterized in general by one complex and one real

number {or equivalently three real numbers). Furthermore there are only two polarization vectors to cover
all (assuming no modal degeneracy). Thus the observer can determine from measurements of the ¢, the

presence of such a scatterer symmetry plane passing through itself {at least in a necessary-condition
sense).

Referred to our basis in the h, v plane we have angles v, and y,s for vy describing the linear

polarizations via
?g) =cos(yy T +sin(wg )7,

—-

70 = cos(Was) T + sin( was )i

Wy = Vas £
= Vas =3 (4.8)

Considering a typical aircraft with nose-on or tail-on illumination, then of course v, is the roll angle.

22




V. Body of Revolution

Suppose now our scatterer has an axis of revolution as illustrated in fig. 5.1. This means that the
scatterer can be rotated about this axis by some angle, say ¢, with no observable change. Thisis C.,

symmetry with group elements.

(C) 5 = rotationby ¢
(C,,)¢ = (Cm)w = rotationby L¢

(Cua)p = (Caa)pp = (Ca)p - = (1) = identity
L’ = an integer (+, —, or 0) (5.1)

This symmetry assures that the backscattering to the observer will be independent of ¢. Note the 27
periodicity so that increasing ¢ by 2z does not give a new group element.

Now consider a plane P containing this axis and the observer location. Let us further assume that

this is a symmetry plane. This result is not implied by the symmetry axis if one allows the scatterer to
contain anisotropic (yet still reciprocal) materials. If the scatterer is perfectly conducting then C.. symmetry

implies reflection symmetry as in (4.3), but which we now term Rg symmetry ("a" denoting the fact that this
plane contains the symmetry axis) with '

Ry = {(Rs), (0}, (Ra)? = () (5.2)

Note that this differs from other notations [12] which term this Ry symmetry, but this conflicts with the
standard horizontal and vertical (h and v) designation for polarization of the transmitted and received
electric fields. In this context one might also use Ry (instead of Rp) to denote a symmetry plane
perpendicular to {(or "transverse" to) the symmetry axis.

If anisotropic materials are allowed let us require that the associated constitutive-parameter

matrices also reflect with the appropriate symmetry with respect to P [1]. With this restriction the scatterer
still has R symmetry, which when adjoined to the C.. symmetry, gives C..qz Symmetry and all planes

passing through the axis are symmetry planes. This high order of symmetry has elements

1

Coa = {(Ca)g(Cu)p (Ra) | ¢ reat}

23




Fig. 5.1. Body of Revolution with Symmetry Plane Through Observer
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Forevery ¢ there are then two kinds of group elements: rotation by ¢ and a combination of rotation and
reflection. Note that C.., and (Rg) do notin general commute. However, we have

(C°°)¢(Ra)=(Ra)(C°°)_¢ =(Ra)(cw)27z_¢ (5.4)
where the defining symmetry plane is takenon ¢=0.

Referring back to section 4 then the effect of the symmetry plane is to make the ¢, be some

symmetric and some antisymmetric. So the observer will see these two sets as in (4.7) except for perhaps
some shift to relative to w4, as

T
Ysy = Was ) (5.5)

for the orientation of P in the h, v plane in fig. 4.1. This relates to the choice of convention for polarization
angles in section 2.
Now as the scatterer is rotated through some angle ¢, the observer see no change, i.e. Cb,, 18

unchanged. As one rotates the scatterer and the associated natural modes ]‘Sa of the scatterer, and

hence the associated &, this may raise some concern. However, the resolution is simple by noting that
there is a modal degeneracy for such a body of revolution. The ¢ dependence of the currents on the
body is expandable as a Fourier series giving cos (m¢) and sin (m¢) terms. The index m belongs to
certain natural frequencies s,,. There are then two natural modes for each s, (except for m = 0 when

there is but one). These two modes have separate Ea(ﬂ). There are then two different « index sets for

the same sg,.

For a particular s let us consider symmetric (sy) and antisymmetric (as) excitation. Given the fact

that a symmetric incident field must give only a symmetric backscattered field, and similarly in the

antisymmetric case, then we have

Eb(Z (-1‘1) =Csy,a’ (i)gsy,a’ (-1.1) +Cas,a’ (ﬂ)aas,a’ (-{1)

= Cbsy,a’ (-1:1)-{5)’ (11 )-{Sy (:1‘1 ) + Chyg,a’ (-{1)-{“‘(—{1)?‘25(7{1)

as (5.6)

25




This is a diagonal form for Eba with eigenvalues cp

sy, and Chgas, o » corresponding to symmetric and

antisymmetric excitaiton, respectively. From measurements this can be reconstructed by diagonalizing
the measured ¢, .

Note that
det(Eba (-1.1)) = det((Cb m (:‘.1))) = Cbsy a (-1.1 )Cbas a’ (:{1)
- - 2,
_C(ZL(“)C(?)V(“)"’%Z)V (%) (5.7)

which is in general non zero, in contradistinction to the case of a single ¢, asin (3.1).

_Noting that

”(Eba (:i‘ )) = tr((cbn,m (-1'1 ))) = Cbsy,a' + Chas, !
=Cbh,h (-{1)+va,v (-{1) (58)

then with (5.7) both eigenvalues are readily determined. The eigenvectors are normalized and real as

—{sy,a’and.{as,a" The scatering residue matrix is now characterized by two complex numbers (the
eigenvalues) and one real angle ¥sy (since by (5.5) v, is constrained). This is equivalently five real

numbers. This is still one less than the three complex (or six real) numbers needed to generally
characterize a scattering matrix in the h, v plane.

For the results of (5.6) to apply it is merely necessary that the two natural modes belonging to s,
produce two linearly independent ¢, (i.e. non parallel). These two vectors then span the h, v plane (i.e.

any vector can be expressed as a linear combination of the two). The 7Sy and Tas are merely a convenient

diagonalizing basis. As can be seen in special cases (e.g. a symmetry plane perpendicular to the
symmetry axis (Rt symmetry) with this plane also through the observer), the two ¢, can become parailel

giving a representation involving a single dyad.

For the case of m=0 (no ¢ variation in cylindrical coordinates based on the axis of rotation) there is

. only one natural mode for each s,. The results of section 4 then apply and Eba is characterized by a

single vector 50, which is either parallel to P or perpendicular to it.

26.




Note that the symmety axis of the scatterer is assumed to not pass through the observer for these
results. Otherwise P is not uniquely specified.
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Vl. Observer on Symmetry Axis of Scatterer

Continuing our consideration of symmetry implications in backscattering let us now orient the
scatterer such that its symmetry axis points at the observer. As indicated in fig. 6.1A our body of
revolution is described in a cylindrical coordinate system (v, ¢, z) where the z axis is the symmetry axis

passing through the observer so that

- - - -

=%, =1 (6.1)

Now as a body of revolution the group elements in (5.1) have matrix (dyadic) representations [12]

(cos(g) - sin(¢)

(Cw)q; - (Cn,m(¢)) = sin(@)  cos(4) = rotation by ¢
L L_ (cos(¢) —sin(o) L _(cos(Lg) - sin(Lq&)j
(Coo)¢ (C’Z""((p)) “|sin(¢)  cos(¢)) (sin(up) cos(L¢)

= (Cn,m(Lgb)) = rotqtion by Lo

oy
o

(€ = (Crm(0)) = (Cum(2)) =[ j T =TT+ T,

= Tfh-'ih + _{v-iv = identity (6.2)

Note in fig. 6.1A that ¢ =0 can be taken at any angle, say v, inthe h, v plane. This is a two dimensional
representation since we are not considering any symmetries (such as Rt) involving the z coordinate.

Note that the rotation matrix is real and unitary since

Conto =[S eyt

=(Cn,m(_¢)) (6.3)

Let us not yet assume that there is R symmetry (axial symmetry planes). What can be inferred
from the C.. symmetry? Now if we consider some incident polarization (real) characterized by some unit

vector, say '1'0, in the h, v plane and scatter axially the field we obtain an amplitude and polarization
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characterized by Eba '1'0 Rotating the scattering by ¢ gives backscatter (Cn,m(¢’))'5ba 070. Now reverse

the order. Rotate and then scatter by &, giving &y, +(Cpm(9))- 1,. Since 1, is arbitrary we have
(Crm(9)) -5, = By, *(Crim(9)) (6.4)

i.e., the rotation and scattering commute. Viewed another way this is a coordinate rotation, in one case

before and another after the scattering.

To see the constraints this imposes on ¢y, write (6.4) out in components as

[COS(¢) —Sin(¢)} Cb1’1 Cb-l,g Cb1’1 COS(¢)_Cb2,1 Sm(¢) Cb1,2 COS(¢)_Cb2,2 S|n<¢)
sin(p)  cos(¢) ) | copq Coyo » \CBi sin(¢) + cpy 1 COS(9)  Coy sin(¢) + cp, , COS(9) y

{Cbm Ch,a} ,(COSW) "Si“(¢)]_ Cby,y COS(9)+ oy SIN(9)  ciyy SIN(@) +cty COS(@]

Chaq Choo sin(¢)  cos(¢) B Chy 4 cos(<z5)+cb2,2 sin(¢) Chy 4 sin(¢>)+cb2_2 cos(9) .
(6.5)
Equating each of the matrix elements in the two forms of the matrix products we have
[cl()i? ‘Cl(aa,)z} sin(¢)=0
(@) (@) -
[Cb12 +c ’J sin(¢)=0 (6.6)
For sin (¢)# 0 we then have
() - (o)
b1 T Cbap
(@) _ @)
bo1 T ‘b2
= _ a1 0 ()(0 1 |
‘b cb1,1 (0 1) * Cb1,2[—1 0 (6.7)

so that the rotation invariance allows ¢, , to be the linear combination of an identity and a rotation.
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Now constrain the scatterer to be reciprocal, i.e. comprised of reciprocal media, in addition to

symmetry. Then we have

@ _ () _g 5 T
Cbyp = oy =0 ¢ Pba =P,
Eba = Eba 1 (6.8)

i.e., just a complex constant times the identify. This requires just one complex number (or two real
numbers) to specify, no angles being needed. Note that while the on-axis C.. discussion has been

centered around scattering residue matrices it applies to scattering matrices at arbitrary complex
frequencies as well.

Note that we have not assumed a symmetry plane containing the axis, i.e. Rg symmetry for this
result to hold, as has been done previously [6]. It only relies on C,, symmetry and reciprocity. One might

ask if this necessarily implies Ry symmetry, but it does not. This can be seen through examples. Let the
scatterer contain anisotropic materials (say conducting in some preferred direction). Let the currents spiral
around the symmetry axis. Approximations involving N arms on, say, a conical spiral scatterer meet this

condition.

Consider now some other symmetries with respect to the z axis for on-axis backscattering. Begin
as in fig. 6.1 B with C symmetry, the iliustration being for C3 symmetry. Asin[5, 12] we have

N ={(CN)p(CN ) g (CN )y s (V]

il

(Cn),, = rotation by 2T7m (positive ¢ direction)

(Cn),=(Cn)§

(en)Y =)y =00 (6.9)

This group is a subgroup of C.,. It has a two-dimensional matrix representation like (6.2) as
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(Cn), - (C”'”‘(sz)jz om (Zm = [Cn,m(gNz))n = rotation by 27”"
sm[ ) cos( )

(6.10)

As indicated in fig. 6.1 B one might associate some angle v, (corresponding to ¢ =0 and some
plane which is in general not a symmetry plane). Let this scatterer have CN symmetry. Then (6.4) is
replaced by

(C””’(%@)) R '(C”‘m(z_;’m-)) (6.11)

i.e., ¢ for rotation symmetry is now discrete. Considering (6.5) and the result (6.6) let us require

Sin[?—”—n—j #Ofor at least one of n=1,2,...,.N
N (6.12)

This requirement is satisfied for N>3. As can be seen for N=1 (n=1) and N=2 (n=‘1 and n=2) the sine

function is always zero. From this it follows as in (6.8) that

Cby = Cbgy Yo for Cy symmetry with N 23 (6.13)

Note the example in fig. 6.1 B does not have Rg symmetry; it is not required for this result.

Note that C2 is not adequate for this result. As a special case in fig. 6.1 C let C2 symmetry be
adjoined by Rz symmetry, giving Cog symmetry. The existence of one symmetry plane (say defining v,)
implies a second (at v, + w/2). However, as illustrated, the extension of the scatterer in the direction of
these two symmetry planes need not be the same. Then the results of section IV apply, giving two
different eigenvalues to ¢, , with unit eigenvectors oriented by y, and w, +7/2.
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Vil Concluding Remarks

So it appears that the backscattering matrix can be cast in the form of a residue matrix which is
closely related to the scatterer properties. For non-degenerate natural modes this is a dyad which
characterized by a single two-component complex vector. For cases of symmetry in the scatterer and
. observer location various additional properties appear in the Chy -

Some of these results are reminiscent of low-frequency scattering [13]. The polarizability tensors
are real valued for perfect conductors. The scattering matrix, being real valued, is characterized by three

real (not complex) numbers. This is a reduction comparable to that for the case of a symmetry plane on the
Co asinsection V.

A previous paper [4] has considered the bistatic form of the SEM residue matrices, noting various
symmetries in coupling to the incident field and recoupling to the scattered field based on reciprocity, as
well as some effects of a symmetry plane. Various other symmetries can be explored in the scattering
residue matrices, including effects of reciprocity and scatterer symmetry such as is done for the usual
scattering matrices [ 8, 9, 10]. Hopefully further simplifications will resuit.
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