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I. Introduction

Innumerable measurements of currents on single cables as well as on
cable bundles in simple and complex systems have resulted in an unexpectedly
complicated frequency pattern, reflecting more the interaction between various
subsystems rather than showing up in simple resocnance peaks according to the
geometry of the conductors. There have been many encouraging attempts
[2,8,9,10] to explain this behavior, but there are still several questions
without satisfactory answers. Especially, the.different physical mechanisms
which may induce the resolution of degenerate natural modes of complex systems
with certain symmetries have not extensively been discussed in literature. In
[9] it has been shown that coupling between the conductors together with their
(natural) properties as (e.g.) internal inductance and resistance lead to

frequency splitting.

It is the purpose of this paper to present another physical mechanism
associated with natural frequency splitting: Coupling between conductors and
space dependency of the mutual impedances and admittances of the interacting
cables. This is done on the basis of transmission line theory and some kind
of perturbation analysis often used in quantum mechanics. Thereby approximate
perturbation-formulae for the splitting of natural frequencies are derived.
Moreover, this paper gives an additional (non-trivial and analytical) example
of the peculiar behavior of SEM-pole parameters [2] in the complex plane of

natural frequencies.

The outline of our paper is as follows: In Section II we start with
the description of two ugiform and symmetrical conductor transmission lines
over a perfectly conducting ground plane. In Section III we extend the former
description to non-uniform conductor lines and provide the space dependent
elements of the per-unit-length impedance- and admittance-matrices, In
Section IV we insert these matrices into the non-uniform transmission line
equation for the current vector and sgbsequently scalarize this equation.
For thp two-conductor system under consideration, there is mainly one func-
tion which is needed to express local dependent coupling and which enters
the perturbation ansatz for the current modes. This function is subjected
to a perturbation expansion in Section V. The most important section is
Section VI, Here we systematically apply perturbation theory on the scalar

transmission-line equations. The solutions for the perturbation of the




natural frequencies as well as those for the corresponding natural modes
are obtained in the successive (power=-) order of the expansion parameter 6.
A numerical example is presented to illustrate the ideas and relationships
proffered in this and in the previous sections. Finally, in Section VII,

we discuss the results of our paper and draw some conclusions.




II. Two Uniform and Symmetrical Conductor Transmission Lines above a
Perfectly Conducting Ground Plane

One of the simpler models to apply transmission line theory is the
two-conductor plus reference line in a homogeneous,‘lossless medium like
free space. We consider two identical, lossless, parallel, and open ended
conductors tightened over a perfectly conduct?ng ground plane which in our
case Is taken as reference conductor. The lines are uniform and of length
L. For this situation, the homogeneous transmission line equation for the

current vector reads [4,7]:

2
d? s _
= <In(x)>o - (E)o (In(x)>o = [On) | (2.1)
(Y: = (s/c) propagation constant)

Note that the simplicity of this equation essentially results from the mutual

reciprocity of the impedance and admittance per-unit-length matrices,

. , (0)
(zn,m) = s (Ln,mJ = s, [fg ) (2.2)
n,m
) ) (0) -1
(Yn’m) =3 (cn,mJ = s e (fg ) (2.3)
n,m
with
(Cé,mJ . (Lg’m) =€, M, (1n,m) (2.4
and
-2
 Eo B T °F (2.5)

(¢ = speed of light = 3 - 10° g)

The matrix elements of (Lé m) and (Cé m) are of purely geometrical nature and

are given by [1]

L0 _ L0) %_ n (éﬂ) , % <1, (2.6)
1,1 Bpp =T %o
5




and

2
f(O) - f,(O) = 'ZF{ n 1 + (?...) , % <1, L <<
€1,2 82,1 ' %o

(2.7)

Here h dencotes the height of the wires above the ground plane, r their radius,

and 2ao is their constant spacing.-

Assuming the transmission line is of length % with coordinate x limited

by

with boundary conditions at x = z (&/2) of

(&) - [ %) - ()

then the homogeneous solution of (2.1) is easily found to be

cos (m %E) <+;) , if m=1,3,5,...(0dd)
1 +
I ) = —t— .
( "m,0 YT sin {(m %5] (+:) , if m=2,4,6,...(even)
- mwe
Sm,O J A
To normalize the current vector we take
/2
f dx<<I(x)) ;(I(x)) > = 1
no n 0
T2
2

(2.8)

(2.9)

(2.10)

(2.11)

For that what follows we restrict ourselves on the dominant ground mode (m=1)

solution of (2.10) and use the notation

(2.12)




The vectors [1) and [_1) refer to the symmetric (common) and antisymmetric

(differential) natural modes, respectively.

Observe that already the solutions of the homogeneous equation (2.1)
yield the natural frequencies and the natural modes. These in turn form the
basis functions necessary to express an induced {(e.g., by an incident

electromagnetic field) surface current on the wires.




III. Nonuniform Two-Conductor Lines a

We now consider two straight wires (open ended) above a perfectly con-
ducting plane which symmetrically diverge from each other with respect to a
symmetry plane P (see Figure 1). The wire axes include an angle of 6 with the
plane P of symmetry (x-y plane), and their respective centers are at z = * ao.
More precisely, we have a second symmetry plane which is the conducting plane
itself. These kinds of symmetry are also referred to as reflection (mirror)

symmetry which have the related reflection dyads [2,3,5]

100 100

g R d

Rv ={01 0} and Rh ={0-10 (3.1)
0 0-1 001

(v = vertical , h = horizontal)

However, in all what follows we only refer to the P-symmetry, and the
decomposition of the currents and frequencies into symmetric (subscript sy)

and antisymmetric (subscript as) parts is performed with respect to P.

For the experimental arrangement of Figure 1, the inductance- and e
capacitance-matrices per unit length are still symmetric and real but no
longer inverse to each other. They become space dependent along the lines

and explicitly read:

, 10 2 01
L = f . f ;) ) .2
( n,m) Mo & (O 1) + & (x% ) cos?( (.1 0) (3.2)
and
01
(¢ ) =c¢ A"(x ) £ (T 0) -f (x )( ) (3.3)
n,m o} 5 g1,1 01 g1,2 ; 10
with
= ‘ 2 2
Alx , 8) = det (£ = f - f X ,0 (3.4}
; €n,m g1 Bl ]

Observe that the (Cé m) - matrix conserved its form-structure (compared to
that one for uniform lines) whereas in the (Lé m) - matrix an additional

?
cos2(9) - function appears. This function arises because of the modification a




a =a(x,0)

a = a(x,0)

Perfectly Conducting Plane

Figure 1. Two thin non-parullel conductors above an infinitely conducting ground plane.



of the interaction between the local infinitesimal magnetic dipole elements of e

the wires. Consider an elementary length of wire

A x1 = Ax/cos(8) (3.5)
2

An elementary current, say at x, on wire 1 has the magnetic field reduced for

1

x2= xT on wire 2 by a factor cos(8). The orientation of wire 2 further re-
duces the magnetic flux coupled to wire 2 by the same factor cos(8), for an

overall coupling reduction of cos?(8).

The wire orientation angle 6 induces another change. If the overall

length of the wire is fixed as % (not l/cos(e)), then % extends as

- % cos(8) < x ¢ % cos(8) (3.6)
while .
% L
2

Now assuming most of the energy is confined to near the wires, or equivalently
£ >> f > 0 (3.8}

(or x

then propagation is better considered to be along the coordinate x ).

i 2
Note that if the second wire is removed, then on the first wire it does not
matter what value of 8 is used (by symmetry); the unperturbed natural fre-

quency and mode of Section II still applies. However, with the inclusion of

mutual coupling this is only an approximation.

In what follows X, and X, are replaced by the parameter x for simplic-
ity. This is not the old x (slightly different), but does have the simple

boundaries as in (3.7).

Since the orientation of a single conductor above a conducting plane

has no influence on its external inductance per unit length, we have

Eh]

(0) -1
£ = f = (2x)"" wn (&= (3.9)
81,1 81,1 r e

10




However, the function ng 5 depends on the spacing between the lines:

-y
1]

£ (x,8) = (4m)7" zn(1 + (§)2> (3.@

81,2 1,2

with

4]
m

a(x,8) = aj * x - sin(9) (3.11)

For that what follows it turns out to be convenient and useful to

introduce the coupling funection k = k (%,8) defined by

fg1,2(x’e) ( (E) )
__h
r‘

2 (3.12)
)

g 4 2 n

It will be shown that all results derived in the subsequent sections can
essentially be expressed in terms of k and some of its derivatives with

respect to x and 8.

11




IV. Scalarization of the Transmission Line Equations

For the two lines described in Section III, the transmission line
equations get a more complicated structure than in (2.1). Due to the space
dependency of the impedance - and admittance-matrix elements we now obtain an
additional term which contains the first derivatives with respect to x of the
current vector (In) and of the admittance matrix (Yé m). We start with the

’
transmission line egquations [4,7] without sources

S ==z 0 () (5.1)
)= - G e () (4.2)

() & ) - ) - () (4.3

Applying the chain rule of differentiation on (4.3) we obtain

S ((Yr',,mJ'1) . (g; (In]) e (xS (1) - (z; ) - (1)

Dot multiply this equation from the left with the matrix (Yé m) and finally
¥

get
) - () e (S ))& ) - () - () - (5] - (o)
i (4.5)

Assuming again the wires to be identical, lossless and embedded in a lossless,
homogeneous medium (4.5} simplifies to

() « (¢

dx? '"n n,m] ’ (g; [C’,mj-1) : g; (InJ - sz(Cé’m] y (Lﬁ’mJ (In) = [On]

n
(4.6)
with the matrices (Lé’m) and (Cé’m) given by (3.2) and (3.3), respectively.
Performing explicitly the matrix multiplication (Cé,m) . (Lé’m) with formulae
(3.2) and (3.3), we arrive after some simple algebraic manipulations at the

result

12




€s Mo 1-k2(x%,68)cos?(9) ~«{x,8)sin%(8)
(Cn,mJ ) [Ln,mJ T T1-<%(x,8))

-k(x,8)3in%(9) 1-¢2(x%,08)c0s%(8) (4.7)

In order to obtain the product (Cé ) o L (cr )7 in terms of « and its

derivatives we recall the geometriéTimpedgzce-?;Ztor matrix from Section III
as
1 k(x%,9)
Yo <fgn,m> "o fg1,1< k(x,8) 1) e
and observe that
p =1
(c) o) = e <fgn’m) (4.9)

With the aid of (3.3) we then easily can calculate the product

(c; ) -« (— (cs ) ) = kS (4.10)
n,m dx ~“n,m (1-x2(x,0)) ~1 w(x,8)

With the expressions (4,7) and (4.10) for the matrix products we rewrite the

*

field equation (4.6):

42 QE&%;Ql k(x,8) =1 4
dx? (In) T T1-<%(x,9) < > ) <5§ (In)>
-1 k(x,8) (4.11)
52 1 1-x%(x,9)cos?(06) =-x(x,8)sin?(8)
T2 T1-<%(x%,8) °(In) - (on)

-x(x%,8)sin%(8) 1-k2%(x,8)cos?(9)

This is a second order common differential equation with known space-dependent
matrices which has to be solved with appropriate boundary conditions for the
current vector (In). Since we are interested in analytical rather than
numerical solutions we shall try to find solutions of (4.11) by use of
perturbation-theoretical approximations. But before we apply perturbation
theory on equation (4.11) we reformulate this equation taking into account

the symmetry of our two-wire problem mentioned in Section III. Due to this

13




symmetry, it is convenient and physically reasonable to decompose the current e
vector (In) into two parts, designated symmetric (sy = common mode) and anti-

differential mode). We define

<In)x I, (;) (4.12)

where the parameter y is introduced to indicate symmetric or antisymmetric

[}

symmetric (as

m

current modes by the following choice:

+1 symmetric (or common) mode

y = { (4.13)

-1 antisymmetric (or differential) mode

Insert equation (4.,12) into (4.11), apply the matrices on the vector (l) and
find

dx® “x 1+ (x,0) ) \dx (1+xx(x,0)]) X 0

<8|<(x,6))
EF I+ y 9% (g_ . ) _ E; (1+yk(x,8)cos2(8)) 1 ].(1) ) (O)
X c X

(4.14)

Thus from (4.14) we immediately read off the scalar equation for Ix: e
-
(3K(X,9)) ( )
d2 3x d _ 8% [1+yk(x,8)cos?(8) .
dx*? Ix T X Texe(x,8)) (dx Ix) c? (T+yc(x,8)) Ix =0

(4.15)

Equation (4.15) can analytically be solved at the same time for both scalar

modes
I =1 =T (4.16)

We are loocking for solutions of (4.15) by using successively different
orders of a perturbation-theoretical approach. For this purpose we assume
that we deal with analytic functions which allow a Taylor-series-like ex-
pansion with respect to the perturbation parameter 6. Indeed, the angle 8
ocecurring in the equations has to be understoocd as a given (i.e., fixed but
arbitrary) parameter rather than as an independent variable. Nevertheless,
in order to indicate derivatives uniquely, we frequently choose the partial e

derivative sign instead of the common one. In addition, in the following

14




perturbation ansaetze for the quantities IX’ <, (3x/3x), and Sy the angle &
is considered to be a continuous parameter, and we assume the derivatives of
these quantities with respect to 9 to exist up to a certain order. We write
for 8-0

Po

p *1
I = Lo1iP) gp . o(e ° ) (4.17)
X Pt X

p:

(@]

k
e} k +1
k) (k) ( ° )
«(x,0) = — 8 + 0O\8 (4.18)
k! '
3k (x,8) %o 1 { 3e(x, e>>(l) % ( Qo+‘>
(——Bx >=ZF( o + ols (4.19)
20

The natural frequencies which are associated with the natural modes

. They are approximated by the following expansion

m_+2
_%_ (m) 6(m) . O(S o) > (1,20)

(IX) are designated by Sy

EMO

The number 2 on top of the sum sign indicates that only even numbers for m
needed to be chosen. The lowest order quantity sﬁo) for both modes y = %!

is just given by
(0) _ _ o, Tme
sX =8y =37 (4.21)

All the perturbation contributions to sX which carry an odd upper index
number, like e.g. s§1) and s§3), do not appear in (4.20) due to the symmetry
of the two-wire arrangement. The solutions for

As(m) - 1 s(m) g (1.22)
X X

m!
have to be even (i.e. m=2n; n=1,2,3,...) in 8 because a change of the angle
from 8+(-8) does not alter the physics of our system. In addition, the result

As§1) = 0 very well fits into that obtained in [2] for the numerical example.




There it turned out that the so-called image coefficient Ve o varies approxi-
mately with the inverse of 2i&n (4/r) and approaches zero (and thereby also e

AsiT)) for very thin scatterers.

We finally conclude this section with a remark concerning the normal-
ization of the current vectors in their successive approximations. We start

with (compare (2.12)) the lowest order approximation

0y . 3 TX
o= = oS (z ) (4.23)
which fulfiils the condition (2.11)
X . X
Z () {1} -(0) /1 2 (0) .(0) _ 1
dx < I ( ); I ( )) =13 dx I I = = (4.24)
X X X X X X 2
J% i
2 2

Now, for the higher order approximations we require the normalization condi-
tion to be fulfilled up to the considered order. Deviations from unity may

occur in the next higher order, i.e. ‘
dx < (1(0)+ 1 Mee. v L I(n)e”)(T) ;(I(O)+ 1Wee v L I<n)e“)(1) >
2 X X n: X X X X n: X X

(4.25)
-1 +0 (™)

as 60

This requirement imposes some conditions on our successive solutions. For

8! equation (4.25) implies that

g
+ - s
5
100 () 4y _ o (4.26)
. XX
-2

16




whereas in the second order (82) approach the equation

L . X
2 (0) -(2) 2 () ()

/' I I dx = - I I dx (4.27)
) XX P S

-7 )

must hold.

In cases where the condition (4,25) is not automatically fulfilled, we

use the integration constants to achieve this condition.

17




V. Perturbation of the Coupling Function e

This section is devoted to the Taylor-series expansion of the coupling
function « and its derivative (%%). These expansions are needed to solve the
field equation (4.15) for Iin). Since we aim at the calculation of the lowest
order frequency shift As§2), we only have to expand the above mentioned func-
tions at most up to second order in 9. Later it will turn out (see next
section), however, that it is sufficient to know the expansion-coefficients

of «(x,8) only up to first order. The expansions read:

8 + 0(8%) (5.1)
9=0

K(X,e)

<(x,0=0) + @—e ch,m)

as 6-0

and
3 ] a3
— K(X,e)) = (—— K(X,S)) + (—— — x(x,9) ) 8
<8x ax =0 38 <8x ) 8=0
(5.2)
1 {32 (5 2
+ E (862 (5;)) 620 g + 0(33)
- as 8-0
We identify (compare (4.18), (4.19))
O = eix,00 1 Y = (%-e- K(x,e)) . (5.3a,b)
g=0
(2) _ (az )
K = vl K(Xse) (5-“’)
06 6=0
(0) (1)
éﬁ) = (3— k(x 6)) (EE) = (E— — k{x 8))
(Bx 3x 0=0 3x a8 (3 ) 6=0
{(5.5a,b)

[ %] Ko
Bl S
—
n
—
1l
/-__“-»
Qr|as
fav ) B M
M)
—
Q)lQ)
®IAR
—
"-._____/

8=0 (5.6) @

-
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In the following we explicitly represent the necessary derivatives. We

. begin with the first derivatives and have
3 da di B ' -
57 ko) = (52) () (5.7)
3 da dk
5 (K(X,e)) = (-3) (EEJ (5.8)

Observe the common factor (d«/da) in both expressions. Explicit calculations

vield
-1
de 1 1)a ay?
(&) - —= H{H - () } 2-9)
(=)
and
(%%) = sin(8) ; (33) = x cos(8) (5.10a,b)

The expressions for the second derivatives become somewhat longer:

,\ 53 - @ L - (® (5 @) (5.11)
" with X . ) -2
8- Tk (s @) {2 @] (5.12)

Inserting (5.12) into (5.11) we find

2 () = x sin(®) cos(e) —i— 1p (1 + 3 (&) )12+ (&) -
36 \3x) T = 2h, b’ ne/|h h
Zn(;—)
1 1 a ay? -
- cos(9) hen VR (HJ (5.13)
an(=)
r
and therefore
-1
(=) . 1{a_o+(z)a}
9% ln(ézj nn n

¢

19




2
Eventually we need the derivative (gez (35)] of «. The general expression
reads: e
3% 3ky _ (23%ay (day d3%k day (d3%a d?k
57 (%) = (532) (57) (&) + 2 (55) (5e5%) (G
- (887 (@)% &5) (B (=& (5.18)
) 3x’\da ‘da? da’ \36% ‘3x :
Taken at 8=0, we obtain
(&) -efdm @] ()7
362 ‘3x |9=0 8 365x’ ‘da® |8=0 T o\ox
' (5.15)
2 :y~2
ke o) (3
- 2hy h2 h h n
Qn(r—)

g (1 B )
(0) U (a_)) @
(a.c) -0 (0 ° (5.16a,b)

3x 2h
2511’1(;—)
a a \? -1
(1 x 1} (o)
K = o H{h—+ o } (5.17)
Rn[F—)

For purposes in the next section we define the functions

(2) (2)
(m _ (1 3k - [ 3
X K = K and x (3;)x = (55) (5.18a,b)
and observe the relation
(1)
(1Y _ (3x
KX - (3}() (5.19)

(2)

Note that the coefficients K<1) and [gﬁ) are proportional to the coordinate
X

¥. Thus, also in our perturbation-theoretical approach of low order, we have a

x~dependent coefficient-functions in the differential equation for IX'

20




VI. Perturbation Solutions M

In order to find perturbation solutions we proceed as follows: In a
first step we are looking for first order perturbation solutions for the
natural modes. Secondly, with the solutions of these modes we derive second
Qrder solutions for the natural frequencies, Finally, we offer an alternate
solution for the shifts of the natural frequencies and show how these

alternate solutions converge into the former ones.

A. First Order Perturbation

We insert the ansaetze

o= 19 4 1 (6.1)
Xy 1 X X

K1(X,6) = K(O) + r(1)e (6.2)
SX,T = s;o) = 3, (6.3)

into the differential equation (4.15) and reorder the resulting equation
collecting only terms up to first order in 8. We then obtain the second order
common differential equation for I§1)

(d2 (1)) (%)2 (1) (_2_;><Ue d (0
e IX 6 - ry IX B =-x ZT:;;TETI (a; IX ) (6.4)

Here we used already the fact that I§O) fulfills the differential equation
(2.1).
Taking into account (4.23) for I&o) Wwe have to solve the equation

s 2
% (I)((”) - <39-> I;” = A sin (%5) ] (6.5)

. (25)(1)
A = 9%

X _ <1+XK<O))

with

m
(%) (6.6)

Sk

21




and the boundary conditions

X X

The subsidiary condition (4.26) as well has to be met.

The general solution of (6.5) is composed by the general solution of
the homogeneous equation

2
a2 (1(‘) 2o} _
dx? ¥ s homog . e ¥ , homog.

and a special solution of (6.5). With usual methods we obtain

1(1) = C cos(fgi) + C sin(fgi) (6.8}
x,homog. 1 ¢ 2 c ¥
(ju_ = s. ; C, = integration constants ; i = 1,2)
o} 0 i

The special solution is found with the method of the variation of the

constants and by calculation ¢f the Wronskian determinant. It reads

(1) = C, (x) cos(fgf) + C.(x) sin(fgf)
Y,Sspecial 1 s} 2 c
with
u
X (- sin(—2 g))(A sin (%é])
c, (x) = ./P & X dg (6.9)
W
Ji -
: & q
and
i3}
X cos(=2¢e)(a sin (Z8)
C,(x) = <° )( A X ) dg (6.10)
J1 (2)
2 c’
Together we have
(1) (1) (1)
Ix (x) = Ix,homog.<X) * Ix,special(X) (6.11)

Depending on whether (wo/c) is equal or not equal to (m/l) we get two
different solutions for (6.11). First we assume equality, i.e. (mo/c) = (w/%).
This is in accordance with the fact As§1) = 0.

22
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We also solve (6.9/10) for (wo/c) = (m/2) in a separate subsection.
This, however, is not consistent with the lowest order solution I)((O)(x)°
Nevertheless, we will present these solutions in order to indicate how to

proceed on the basis of a more exact ground mode solution.

In the first case (i,e. (wo/c) = (W/Z)) we obtain as special solution

A
(1) x {1 1 ain(2T5) 4 1, X
, = = —2 (=X - sin + o= L cos(——)
X,special [%) (2 M[%) [ ] f [}
AX s s o2 TX ' L (TX .
+ -z sin [52,__) -1 SIYI(T] (6.12)
2(;) ( ‘

It remains to determine the integration constants C1 and C?. The condition

(6.7) only fixes C? = 0, and we are left with the constant C This in turn

x
is fixed by the condition (4.26) and becomes

2 Ax
Cy = [g) EE; (6.13)
_ %
Thus, the natural modes AI§1) of first order in 8 are given by *
Ao
(1) . (1) X ST 1 c2mxy ] TX
AIX (x) . (x) 8 [E) 12 X M(E) sin( 7 )S cos(2 )
2 L
/'. u
A ot
+ -—%—7 sinz[E—J -1 sin[?—J

In the following subsection we use this solution for I§1)(x) to estimate the

natural frequency shifts.

B. Second Order Perturbation

With the above result for I<1) (see (6.14)) we are now prepared to

X
proceed with the second step: Seeking the solution for AsiZ)

. This time we
expand the differential equation (4.15) up to second order in 6. This is a
somewhat tedious and lengthy calculaﬁion. Nevertheless, faqr a better under-
standing of the reader, we elaborate on the important steps in our derivation.

We start expanding all quantities up to second order and insert them into (4.15)
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a2 1 =1 d 1
< z : L ;n) o) + . _ & L Iin) gn
n=0 (% + ¥ %T K(m) em) n=0
m=0
(6.15)
2 1 (m)
2,2 21+ x| X o7« 6™ |{1-02) / 2
- = = sf(p) oP EaE e E = 1;“) 6"} = o(e)
’ 1 {m) _m )
p=0 (1 +XEOFK 8 ) n=0
M=

The notation in (6.15) is self explanatory. Recall, however, that s§1) =0

and observe the expansion of cos?(8) up to second order
cos?(8) = 1 = 82 + 0 (8%) (6.16)

Equation (6.15) has to be reordered only taking into accofnt the
products up to second order in 8. In order to achieve this, we first

calculate the ratio

2
1+ x( :ln—' () em)<1-ez) o .
=0 5 =1 -5 (o? + 0(8%) (6.17)
(1 rx 3 Ep e em) (1"
m=0
and the sum
2 2
1 () o} |2 (2) .2 N
Z o1 SX 8 = 84 * 8, SX 6° + 0(e8*) (6.18)
p=0 ’

Then the product of (6.17) and (6.18) becomes

('f - X K(O) ke s? + s S<2) 82y = s2 [1 - ¥ K(O) 0% + 3 5(2) 8% + 0(e")
frenc@JJL0 0 ° [+ @) 70

] (6.19)

2L




Note-that the lowest order of the numerator in the second term of
(6.15) is 0(8) and therefore the other factors in this term have to be taken

up to order 8. We find for the ratio

el
2 (m) o™ (O)) 3% 2 \3x

- + 0(8%) (6.20)
(”xK(o))2

Using the approximations (6.17)=(6.20) and inserting them into (6.15) we
obtain up to second order in 6:

@ (o _S o) fer L, g <§5)(1)<g_ 1) % ],
dx?® “y c? “y dx* “x ( (O)) X dx "y . 2 7y

T+yx
52 (2) <1’<95)(1>
Llfer (@ 2o (@), (_8_:5) - 2 5% _d__I(O))
2 1 dx* Ty 2* Ty (1+XK(O)) X (1+XK(O)) dx “x

]
_g 8(2) I(O)

82 = 0 (6.21)
c® X X

In the first two bracksts we recover the differential equations for I§O) and

I§1), respectively.. Since I(O) and I(1) from (4.23) and (6.14) fulfill their
X X

respective differential equations, we finally get for I§2>
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(1)
(1) (gg)
a2 I(z)_(s_o)21<z) ) X (g_x_)m _L, 5 U (g_ I(o))
dx% “y e X 1+XK(O)) X (1+XK(O)) dx Ty

., y (S_E)m (d_ I(1)) -y (fg) 0 ()
(1+XK(O)) X dx “x c ( (0)) X

3
S0 (2) [(0)

+ 2
c® Ty X

(6.22)
Equation (6.22) contains the two unknown quantities I§2) and sﬁz).

As soon as we know one of them, the other can easily be determined., There

is a way to calculate 5(2) first. Multiply (6.22) with I§O) and perform the

X
integration from (- %) to (+ %)-then it turns out that

+
e

faz (z)_(_sg)z @1 (o) _
dxldxz I, =) I | I, =0 (6.23) a

1
N

In order to obtain equation (6.23) we integrate twice by parts

% ) %
+ = + = + =
2 3 2
42 (2 L(0) o _d_ _(2) .(0) d_ _(2)y (d_ -(0)
g(dxz I, )IX & = Z LI, Ly /;(dx . ) (% . ) dx
"3 2 T3
% % %
"2 - (2) ¢2  _(0)
. d (2)y (d_ (0) U (2)d (0 s _(2) 4%
- ‘/’;(dxzx delx } dx I, [dxzx ) z+-/9:IX G I,
S 2 "2 T2
%
3
2
= 1(2) 9_? 1(0) ax - (6.24)
g X 94X X
2
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and observe the differential equation (2.1) for I(o). Moreover the

boundary conditions for I(O) and I(Z)

. 0 2 0 A 2 % ‘
(e 9 (-3 - 22 (3 = 0 and 12 (-3 =12 ) = o)

have to be taken into consideration.

Now the integration of the r.h.s. of (6.22) can be performed and the

resulting equation can be resolved with respect to s§2). The integration

vields
g
2 + = (1) 73\ (1)
(- () - oy (g
2
e/ %y e (1+xK(O)) <1+XK(OD Jy - 3 (T+XK(O)) dx X
>
. X
2 (1)
-2-———L(0—)—f(g—'<) (gx (1))1(0) dx = 0 (6.25)
(1+x'< )-‘& * * X
: .

- - (0) (d +(0) a4 (1)
For the above integration we need to know I,”/, (dx Iy ), and [dx IX )

explicitly., Differentiation of (4.23) and (6.14) yields in turn

d .(0) Ty 1 in (TX
= IX = [ = -i-) T sin (2 ) (6.26)
d I(1) 7 AX in?( x) ( X) Y 1 _ A i (?“le in[EE)
—CE X = E EE—J- sSin .Q,—- cos r X E X 4(1) 31ln T ’ 3 T
% %
A ) *
© X gos(TX) ,(_9=1t) (6.27)
2(%) 2 c B
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The following integrals will therefore be used for the integration of Q

(6.25)
+ 2
2 TX X 1% 1 ’
A dx x sin[E—] cos(E—] = (5] [?) (6.28)
T2
y
, 1
i dx 31n2(%5] cosz(%ﬁJ =gt (6.29)
"2
+% ¢
dx sin(glz] sin(T) cos(X) = 1y (6.30)
. 2 % L 4 :
T2
+& . ®
2 TX L
cosz[z—] dx = 3 (6.31)
)
"3
'3 w
"3 W x -2[%) cos(-é2 %)
dx cos |=— %) cos{=) = 7 ~ (6.32)
2 e 2 Yo [ﬂJ‘
) c/ 2

(2)

After integration of (6.25) and resolution for Sy we arrive at

O o KO L ()
NG So< . l(gz_) " “x_J\3x _1 (35) (2 3% |
X (1+XK(O) 2 \s, (T+XK O)) 4 Sy (1+XK(O))
(&)
] -1 (Ei)__ifx_. (6.33)
4 0 (1+XK(O))
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Observing the relation (5.19) we can combine the second and third term in

(6.33) and finally end up with the compact result

- R - I (0) . 1 /e (X \5x 8;<>
s = =3 B2 = = —— ¥ = [ = _— . !
X 2 "y 2 (1+XK(O» U (so> (1+XK(O)> 3% /.

(6.34)

The frequency shift As§2) is caused by two different effects: The
first effect arises from the derivatives of the capacitance-matrix elements
(expressed by the derivatives of x) whereas the second effect results because
of the non-reciprocal relation of the matrices (Cg,m) and (Lg’m). The cor-
respond;ng term which takes into consideration this effect is the first term
(no derivative of «k!) in (6.34). It turns out, however, that the summands
containing the derivatives of « considerably predominate the summand con-
taining only k itself (see below the numerical example). As expected (we
did not include any losses) the frequency shifts are purely imaginary and
therefore only take place along the imaginary axis in the complex s-plane.

This is different from the spiral behavior of the natural frequencies in [2].

C. . Alternate Solution

In order to complete our first order results we put the current
solutions AI§1) for the case that (wo/c) % (w/2) to our disposal. The
calculations needed to be performed are completely equivalent to those of
(6.8) through (6.14), For the special solution we now find with the help

of (6.9) and (6.10)

‘ sin(iz)
(1) = A —_t (6.35)
x,special X W \° 2 :
(=2) - (3)
e 2
and thus the general solution is
(1) Wy wy sin(%z)
I = C, cos|—= x| + C, sinl— x] + A = (6.36)
X 1 c 2 c X wo> 7\2
() - (%)
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This time the boundary conditions (6.7) fix the constants C1 and CZ:

C, =0 and C, = - L (6.37)
sm(i .&) [(i’*_o.) _ (zﬂ
¢ 2 c A

This leads to the result

Y et
(1) AX T sinlz— x
I8 (x) = = sin(Z2) - (6.38)

sinl22 1)
B (IR B
()-(z)

In this case the condition (4.26) is automatically fulfilled by I§1) of (6.38}
and by I§O)of (4,23).

Analogously to our former calculations we now differentiate (6.38)

A w cos(fg x)
d (1) X T X o) c i'E'
— I = - oS .—) - —— ————— (6.39)
dx Ty w_\? 21 ¥ [ e w
o) T o 4
[(?) } (z):l Si“('c— '2‘)

(%) - (2))-

insert (6.39) instead of (6.27) into equation (6.25) and obtain after
52)
)(1)
"

L (A
T M A T

integration and resolution with respsct to As

|%

~rl Q2

(1) (3
o< g2 o2 6<X ) (
8% = 4 (—_) X* (0

10 -1 + 1
2 °x X 5 X "“;(d)) 4 \s (1+XK

0
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Comparing the results (6.33) and (6.40) with each other we observe that they
agree in all summands except one: The factors in front of ((BK/BX)(1)J2 are
considerably different. One might think that there is a singularity for
(wo/c) = (w/%) in formula (6.40). This, however, is not®the case. Formula
(6.40) has a well defined limit for (wo/c)*(w/ﬂ)e Applying de 1’Hospital's
rule two times we get

(6.41)

and® thus recover with (6.40) (as it should be) our old result (modulo

multiplication with 2072) (6.33). This establishes the consistency of our
calculation.

Finally, we can go back with our solution s§2)(compare (6.34)) to

(6.22) and solve this equation with the usual methods for I%z). Since we

do not intend, however, to extend our calculation for s(”) to higher than

second order in 6, we abstain from calculating Iiz). Note from (4.20)

that SX is already accurate to third order, the error being 0(8%*).
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VII. Discussion and Concluding Remarks 9

We begin our discussion with a numerical example. For this purpose we
consider two copper wires of radius 0.4 mm above the conducting plane. The
lines are 3m long (and open ended), the height above ground is 3 cm and their
spacing 2ao = 1 em. We also chose these numbers in ref. [9]. With these

numbers we get:

K(O) = 0,36

-

LD

- 38.84 [m™*] (7.1)

16.38 « 10° [m~2]

———
m‘m
ta Y
e
» —
N
et
U}

For the angle & we ¢choose the value

g = 1.67 « 1073 (7.2) e

This angle is obtained assuming that the closer ends of the wires are 0.5 cm
apart from each other. Inserting the above numbers into (6.34) we find the

following results ((mo/c) = (/%) ):

(2}

Af = 0.18 MHz
sy S 1 sy
X = (7.3)
(2) l-I as
AT = =~ Q.47 MHz
as
with
oraet?) j = ast? (7.4)
X X

Thus the (single) freguency fo = 50 MHz is split into two distinet natural
frequencies (fg + Af52)) = 50.18 MHz and (r, + Ar{2)) - 49.53 WHz which are

0.65 MHz separated from each other. The amount of separation as well as the
relative position of the two natural frequencies Aféi) and Afég) with respect

to each other depend on various system-parameters like 2y, h, and r. (Compare

the "competition" between the second and third term in (6.34).) e
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The above splitting of frequencies is analogous to the splitting of
energy levels in quantum mechanics. There degeneration occurs for forces of
high(er) symmetry. Breaking those symmetries leads to resolution of degen-
eration. In our case the space dependency of the mutual impedance - and
admittance - matrix elements of the two wires is responsible for the frequency

splitting.

We dealt with lossless transmission lines and thereby disregarded
radiation losses. Moreover, neither internal self inductances nor internal

resistances of the conductors were included to make s, complex. Therefore,

(2)

the ground frequency as well as the frequency shifts Asx

turned out to be

purely imaginary.

We found that small changes in the spacing between the conductors can
produce small shifts in resonant frequencies (but with negligible damping).
This can greatly modify the coupling into a multiconductor cable by moving
one resonance away from another. In propagating signals through systems
one maximizes the various norms (related to time-domain peak, square root
of energy, etc.) by lining up the various resonances in the transmission path,
as well as the excitation frequency (of say a damped sinusoid) [6]. What one
thinks are small changes in dimensions can produce small shifts in resonant
frequencies. However, with negligible damping this can make the resonances
not significantly overlap, thereby reducing the propagation through the

system.

All our calculations refer to open ended cables, short-circuit ter-
minations, being also lossless will giye similar results. In more typical
situations intermediate terminating impedances, including losses (such as

50Q), are likely.
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