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I. Introduction L.

Transmission-line theory has becomé one of the basic tools for
describing EMf induced voltages and currents on multiconductor transmission
lines (MTL). Although one has to observe some restrictions in the application
of the MTL theory, there are innumerable cases (see e.g. [1,5,8,9]) Whgre its
use turned out to be very successful, among others in the analysis of EMP/EMC

interaction with modern complex electronic systems.

Dealing with transmission-line networks onme finally has to use com-
puters in order to solve the high dimensional coupled differential equations
for the voltages and currents. But, before starting a computer, one should
try hard enough to find analytical answers, even as solutions for complex
problems. Every analytical solution has the great advantage that it can be

interpreted on the basis of physics.

In this paper we present a certain class of analytical solutions of the
MTL-equations (in the frequency domain). These solutions are obtained under
the restrictive assumptions of the commutativity between the propagation
matrix and the characteristic impedance matrix and that the matrices which
enter the MTL-equations can be written as a sum of products of real matrices
times (scalar) complex valued functions. WNevertheless, these subsidiary
conditions still permit one to describe a host of configurations of multi-
conductor lines. Especially, we cover multiconductors above a perfectly

conducting plane and those inside a shielding tube.

The organization of our paper is as follows: In Section 2 we present
the MTL equations and cast their solutions into an appropriate form exhibiting
especially the property of forward and backward traveling waves. Moreover,
the important property of the matrices under consideration to be symmetric

is explicitly worked out.

In Section 3 we focus our attention on a set of (pairwise) commuting
matrices. The commutativity of this whole set of matrices (which are
the basic ingredients in the MTL equations) turms out as a result of our
(wofking-) hypothesis. This hypothesis requires the propagation matrix and
the characteristic impedance matrix to commute. Since (real) symmetric and
pairwise commuting matrices can simultaneously be diagonalized by one set
of (of course linearly independent) eigenvectors, the solutions simplify

considerably.




Sections 4 through 7 deal with concrete examples of multiconductor-line
properties and with the surrounding medium. These properties are expressed in
terms of per-unit-length impedance and per-unit-length admittance matrices.

In Section 4 these matrices are chosen for lossless conductors in a lossy,
uniform, and isotropic medium. In Section 5 we add small changes to the per-
unit-length admittance matrix whereas in Section 6 we assume lossy wires in
a lossless medium. Section 7 deals with small changes added to the per-unit-

léngth impedance matrix.

In Section 8 we permit general ansaetze for the per-unit-length
impedance and per-unit-length admittance matrices (but still under the
restriction of commutativity). A special relation between the eigenvalues
of these matrices is chosen to make the expressions for the eigenvalues of
the propagation matrix become perfect squares. This procedure is performed

in close analogy to the "equalization" [7] of long telephone lines.

In Section 9 we are looking for resonances of an MTL with passive
terminations. We choose the lines to be open ended or to be short cir-
cuited. Especially, mechanisms which lead to the splitting of natural

modes are investigated.

We close our paper in Section 10 with a few concluding remarks.

Appendixes cover some of the mathematical details.




IT. Basic Equations for an N-Wire Transmission Line Tube

In this section we briefly list the basic transmission line equations
for an N-wire transmission-line tube in order to provide the necessary quan-
tities, denotations, and definitions which are used in the next section.
Thereby, we rely on [l (Section III)] and the formalism established therein.
In Figure 1, we show a per-unit-length model of a multiconductor transmission

line.

An N-wire transmission line consists of N conductors and a reference
which can be chosen to be infinity or ground. We are most interested in
those physical quantities which mainly describe such a system. These are
the N modes of propagation and the (closely related) characteristic impedance

matrix.

The generalized transmission line equations for a single section of an
N-wire system are the well-known telegrapher equations governing the voltage

and current propagation, respectively.

< <\7n<z,s)) = -("Z;I,m<s)) . (Tn<z,s)) + (\“fr(ls) (z,s)) (2.1)
3—2 (Tn(z,s)) - -(‘Y’;l,m(s)) . (Vn(z,s)) + (Tfls) (z,s)) (2.2)

where
s = Q + jw = Laplace-transform variable or complex frequency

~ = Laplace transform over time (two sided)

= position along the tube

voltage vector at z (2.3)
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current vector at z

( I’l m( )) B i :'].E[lgth series impedance matrix
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) = per -U.nit—length shunt admittance matrix

n
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= per-unit-length series voltage source vector

(Tis) (z,s)) = per-unit-length shunt current source vector

We note that all vectors have N components, and all matrices are N X N,
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Figure 1. Per-Unit-Length Model of a Multiconductor Transmission Line

Equations (2.1) and (2.2) can be very elegantly combined [l] to result

in the combined voltage equation.

‘ % (Vn(s))q + q(?cn m(5)> . (Vn(z,s)>q = <Vn(s) (z,s))q (2.4)

the solution of which reads

<vn(z,s)>q = exp {-q(;cn m(s)) [z-zoj} . <Vn(zo,s)>q

(2.5)
4

+ f exp {-q(?c (s)) h[z-z']} . <\7§IS) (z’,s))q dz”’
n,m

z
o]

Here the matrix (ry'c (s)> is called the propagation matrix, and it is defined
n,m /
by

(;c (s)) = principal value of [(Zr'l,m(s)) . (?t’l,m(s))}% (2.6)

n,m
We have the separation index

g ==%1 for forward and backward traveling
' combined N-vector waves, respectively. 2.7)



The combined voltage vectors are defined by

(vn(z,s))q <vn(z,s)) + q(ZCn m(s)) . (Tn(z,s))

) ) ) (2.8)
(i'fff’ <z,s>)q = () z9) + q(’icn m(s)) - (’fff) <z,s>)
where we have introduced the characteristic impedance matrix via
('z'c <s)) = (?C <s)) : (Yn,m(s))-l - (?c <s>)'1 ('z}l,m“))
n,m n,m n,m (2.9)

Thus, we obtain the important results

(Vn(z,s)) (Zc (s)) . (Tn(z,s))
n,m

for forward traveling waves and (2.10)

(vn(z,s)) = -(Zc (s)) . (Tn(z,s))
n,m

for backward traveling waves.

Knowing the forward and backward traveling waves (e.g. through
appropriate experiments), we can reconstruct the voltage and current
vectors. The combined current vectors are simply related to the combined

voltage vectors through the characteristic admittance matrix

('I'n(z,s))q = q(‘?cn m(s)) . (?n(z,s))‘q (2.11)

(*’fc <s)) (Ec (s))'1
n,m n,m

Once the combined voltages are evaluated, the total voltages and total

I

currents are readily obtained. One finds

(vn(z,s)) -2 [(ﬁn<z,s))+ + (ﬁn(z,s))_J (2.12)

(in(z,s)) - <?c (s)) . [(vn(z,s))+ - (vn(z,s))_] (2.13)

n,m

N[




With the aid of (2.5) we bring (2.12) into a very suggestive form expressing

explicitly forward and backward traveling waves.

2(T_(2,9)) = exp {-(T,C (s))z} . <<(\7n(0,s))+ + (Vés)(z,s))_*_)

n,m
(2.14)

+ exp {(Qc (s))(z-L)} . ((Vn(L,s))_ + (Vés)(z,s)>_>

n,m

The constant (non z-dependent) vectors (vn(o,s))+ and (?n(L,s)>_ are given by
the boundary conditions of the total voltage and total current vector. We
compute these vectors explicitly in Section 9.

The z-dependent vector fields (Vés)(z,s)>+ and (Vés)(z,s)>_ are

integrals over the source vectors as

. .
ol fo el o] (1o
ZO ’
- ~(s)' .
+ (zc (s)> . (In (z ,S>>) (2.15)
n,m

(77 @e). = 7d2' exp H??c <s>) <z’-L)} : ((vgs)kz‘,s))
L

n,m

— =(s) ", .
- (zc (s)) . (In (z ,S)>> (2.16)
n,m

Considering equation (2.6) we clearly recognize the necessity of an
eigenmode expansion of the matrix product (ZA,m(s)) . (?A,m(s)). Once we
start an eigenmode expansion we should do this as well for all matrices which
occur in the above equations. We assume that those expansions are possible
and that we are dealing with p.r. matrices (see [l]). The expansion of the
propagation matrix yields.

(?c <s>) PIERS <\7cn<s>>6 (’i‘c (S)>5 (2.17)

n,m ) n



where § = 1,2,...,N is the eigenindex and ;6(3) are the eigenvalues, and
(50(5))6 and (Ec(s))a are the normalized right and left eigenvectors,
n n

respectively, defined by the following equations:
P y Yy g

(Z,a) - <?;,m<s>) (% ) = 7o) (7o)
n ] n /é

(@), Ean) - (T00)

In the case that 7§ e 72' (sufficient, but often not necessary), there exists

(2.18)

7o (1) |
n /6

the biorthonormal relation

(ECQS))g’ . (?rCn(s))5 = 15,5’ (= Kronecker delta) (2.19)

Using (2.17) together with the fact that we equally well can expand a function
F of (% s as
(Teq, &)

F[(*%,J”)J - T (75 ()] (vcn<s>)6 (icn<s>)6 (2.20)

equation (2.14) could be written in terms of eigenmodes.

In reference [1l] it is shown that a reasonable normalization for the

voltage and current modes in given by
5,0, o, ) - 5o 0)
n é n,m n é

v (s)) (Z (s)) o 1 (s))
( ®n § cn,m °n )

In this case it becomes easily obvious (from (2.18), (2.19), and (2.21) that

<Zc <s>)T
n,m
(2.22)

(% )
o, m (2.23)

(2.21)

the characteristic matrices can be represented as

(’Zc (s)) (*’fc (s))'1 , Z("\Fc (s)) <i’rc (s))
T, m n,m & n § n )

(i’fc (s)) (Zc (s))-l E(’i’c (s)) <Ec (s))
n,m n,m ) n & n )

I
f
It

and
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These equations explicitly show that the characteristic matrices are sym-
metric. This property was not assumed in the beginning, but it turned out
as a consequence of the assumed character%ftics of the propagation matrix
(p.r. matrix) and of the structure of the solution of the multiconductor-
transmission-line equations. Usually the symmetric form of the characteristic
impedance and admittance matrices is derived from the reciprocity principle.
The present results then apply to reciprocal multiconductor transmission
lines.

The expansion of (ZA’m(s)) and (?A’m(s)) in terms of (Gcn(s))6 and
<Icn> is also performed in [1]. We only quote the result here which we need

for our investigations in the following sections.

- - - . . T
(zn’m<s>> - ; 74 (s) (Vcn(s)>5 (vcn<s>)5 - (zn,m<s>) (2. 209
-~ . ~ b bod 5 T
<Yn,m(s)) = g: 76(5) (lcn(s))g (lcn(s)>5 = (Yn,m(s)) (2.25)

Again, as in equations (2.22) and (2.23), the symmetry of the impedance and
admittance per-unit-length matrices was not explicitly assumed at the start.
It rather is a consequence of the development including, especially, the

dynamic equations for (Vn(z,s)) and (Tn(z,s)). Moreover, it is a statement

of reciprocity for these matrices.

For our further considerations in the next sections we assume
reciprocity (symmetry) of the impedance and admittance per-unit-length

matrices and of the characteristic matrices for granted.

11



IIT. Consequences of the Commutation Hypothesis for the Propagation
Matrix and the Characteristic Impedance Matrix
Due to the structure of our solutions (2.12) and (2.14) of the multi-
:
conductor tube equations in the foregoing section, it becomes immediately
obvious that two matrices describe the inherent physical properties of the

system: The propagation matrix (;c (s)) and the characteristic impedance
m

~ n,
matrix (Zc (s)) (or equivalently the characteristic admittance matrix
- n,m
(Yc (s)).’ The first matrix describes the propagation of waves along the
n,m

transmission lines, whereas the second one establishes the relation between
the voltage and the current vector at every point along the lines. Both
matrices can be measured by appropriately performed experiments. On the
other hand, the properties of these matrices (e.g. symmetry, normality
and/or commutativity) determine the mathematical degree of difficulty for
the solution of the' transmission line equations. It is well-known (from
linear algebra) that real symmetric matrices and normal (in general complex)
matrices can be diagonalized, and if there are real symmetric (or (complex)
normal) matrices which commute with each other, they even can simultaneously

(with the same set of eigenvectors) be diagonalized,

In some cases the propagation matrix takes the form of a complex number
times the identity, e.g. the case of perfect transmission-line conductors
embedded in a uniform medium (such as free space) [3]. 1In such a case, the
eigenvalues are all the same and the diagonalization is not unique. Any
set of N orthonormal N-component vectors will do for eigenvectors. Then

(zcn,m

be used to generate an orthonormal set of eigenvectors, these also being

(s)), as a measurable symmetric characteristic impedance matrix, can

applicable to (;c (s)). More generally (?c (s)) need not be restricted
n,m

n.,m 1
to a complex number times the identity, but can be relaxed to the form of a

C

matrix which commutes with (E
n,m

(s)) as will be clear later.

Therefore, we are led to the following question: Assume we establish a
commutation hypothesis for the propagation matrix and the characteristic

impedance matrix, i.e.,

Hypothesis: (;C (S)) o (zc (S)) = (zc (S)) . (;c (S))
n,m n,m n,m . n,m (3.1

12




what are then the consequences of this assumption, and which physical sys-

n,m<s>),

(Zn,m(s)), and (Yn’m(s)) are already restricted to be symmetric (reciprocity).

tems can still be described under this restriction? Note that (zc

It is the purpose of this section to find some consequences of the
hypothesis (3.1). Examples which are an answer to the second part of the

question are given in the following sections.

Our first observation is that

o) = ) - ()

This follows from (2.9) and (3.1). Inserting (3.2) into the first relation of
(2.9) gives

~ ~ -1 -~ -~ -1
(Zc (S)> = (Zc (S)) . <Zn,m(s>) . (Yn,m(s)> (3.3)
n,m n,m .

and therefore

_ 2 ~. = -1
(zcn m(s)> = (Zn,m<s)> ) (Yn,m(s)> (3.4)

?

Equation (3.4) represents the matrix generalization of the equivalent scalar

relation for a two-conductor line.

Next we show that the per-unit-length impedance and per-unit-length

admittance matrices commute. We have (see (2.6))

-~ 2 - ~.
(vcn @) - (#n(®) - (Yn,m<5ﬁ (3.5)

On the other hand we derive with the aid of (2.9) and (3.1)

@va-«ﬁQw- Z; ) 2 @) - (7, @)-@ (=)
? ’ n,m n,m n,m

n,m
-~ — 2
(zc <s>> . (70 <s>> (3.6)
n,m n,m

This implies the above statement (together with (3.5))

(70 <s>)2 - (Y;,m<s>) : (2;,m<s>> - (Zé,m<s>) : <?A,m<5>) (3.7)

n,m

13



Using equations (3.7), (2.24), (2.25) and (3.5), it is easily seen that e

the propagation matrix itself is symmetric.

~ T =. -~ T =- T =- T
((7% IEIS))Z) <<z“’m(3)) . (Y“’m(S))) i (Y“’m(s)) ' (Z“’m(s)) (3.8)

0] - () = 50) - (9] = (e, )

The symmetry-property of the (;c

(s)) matrix will have an important impact
n,m
on our further considerations. ’

We continue listing properties of symmetric matrices by formulating a
theorem. The proof of this theorem is given in the second part of Appendix A.
Theorem: If (An m) and (Bn m) are two commuting N X N symmetric matrices,

s E
then the following statements hold:

(1) (A y~! is symmetric. (3.9)

n,m n,m n,m n,m
and (3.10)
—1 . - -
(An,m) (Bn,m) is symmetric.
(The assumptions imply that also the proquct (An,m) . (Bn,m>
is symmetric.)
(3) (This is an implication of (1) and (2)})
-1, -1 _ -1, -1
(A, D7t e By DTh = (B DT e A D)
and (3.11)

© 14




Before we apply the above theorem to our matrices of concern
i.e. (v , (2 , (Z: , [ ¥ , thei tual
(1 e (7cn’m(s)> ( Cn,m(S)> ( n,m(s)> ( n’m(s))> we prove eir mutua

commutativity.

(a)

( “ (Tn®) - |

(b) (?cn’m<s>> . <Zg,m<s>) - (Zg,m<s>) . <§cn’m<s>> (3.13)
(% (7 i2)
[ (2, ) -

?cn m(s)) (3.12)

() En’m(s>> . (2 (s)) - (Z, < Zé,m(s)) (3.14)
n,m n,m
(d) ?n’m(s)> . (Z (s)> - (2 (s) ~é’m(s)> (3.15)
n,m n,m
Proof:
To (a): (Take into account equations (3.2) and (3.7)):

- ~. ~ -1 - ~.
(7c (s))' (Yn,m(s)> - (Zc (s)> ) (zn,m(s)) ) (Yn,m(s)>
n,m n,m

~ -1 ~. -
(e () - ()
n,m

In (3.16) we replace (z;’m(s)) by (applying (3.2), (2.9), (3.7))

7 (s)) - <?’ <s>)'1 . (Z ) : (? <s>) . (? <s>> : (Z <s>>'1
( n,m n,m cn,m cn,m Cn,m cn,m (3.17)

and observe (3.1). Then we obtain the result (3.12).

(3.16)

To (b): Statement (b) is a consequence of (3.1) and (3.2).

Té c): (Apply (3.2), the above theorem, and (b)):

n®) + (2, ®) = (o) * (e, )"+ (Faa®)
n,m n,m
oy O (Erat0) * (1)

_ <2c (s)) . (Zé’m(s)) (3.18)
n,m

15




To (d): (Observe the above theorem): -

(?;,m@) C (B, @) - (Fn®)" « (E () - (7 <s))T
n,m n,m n,m

- (vcn m(s)) - (zcn m(s)) : (Y{l,m(”)

We summarize the important result: The set of matrices

{(?cn m(s)), (‘ch m(s)), (Z;I,mcw), (Yﬁ,m“))} (3.20)

consists of mutual commuting symmetric matrices. Thus, the assumptions for

(3.19)

the theorem are fulfilled, and therefore it applies to the above matrices.

We aim at a simultaneous diagonalization procedure for the set (3.20)
of matrices. These matrices, however, are complex matrices. Nevertheless,
we may use the theorems of matrix-theory for real symmetric matrices if we
require the symmetric matrices in set (3.20) to be the product of a complex-

valued function f(c)(s) with a real symmetric matrix (Aér;), i.e

n,m

(An,m<s)) - £ (A(r)) o (3.21)

(This is a special class of normal (complex) symmetric matrices.)

Now we use (3.20) and (3.21) - an alternate way 1Is to choose (3:20)

together with the requirement that these matrices are normal, i.e.

) (o] = o) = o]

as our basis for further considerations. The symmetry of the real matrices
implies thelr diagonalizability in terms of an orthogonal (real) matrix,
whereas their commutativity (with each other) impliés that these matrices
can be diagonalized simultaneously with the same set of (real) orthonormal

eigenvectors (xn) 1f (An m(s)) is one of the matrices from set (3.20) we

Pz

can represent it as a dyadic product

N
(An,m(s)) = ﬁz=:1 aﬂ(s) (xn)ﬂ (xn)ﬂ (3.23)

16




where aﬂ(s) are the (in general complex) eigenvalues of (An,m(s))’ and (Xn)ﬁ

are the right as well as left eigenvectors of (A, p(8)). Moreover, of g is

some acceptable function of (An m(s)), we have

b

N

g[A (s)} = E gla,(s) X X (3.24)
on®l] = 85 (s (5]
In conclusion of this section we write the matrices of interest in

their dyadic expansion:

I N
<;Cn m(s» - 2, ;5(5) (xn)ﬁ (Xn)ﬂ== 2 2;1(5) Eé(s) (Xn>ﬁ (Xn)ﬂ (3.25)

, A1 b1 °p

_ N N z (s)

(ch’m(s» = géi zcés) <xn>ﬁ (Xn>ﬁ = géi {?ﬁ?ES} (xn>ﬁ (xn>ﬁ (3.26)

-~ N ~

(ch,m(sv = ;éi ycés) (Xn>ﬁ <Xn>ﬂ (3.27)
N

(zé,m<s)) = /3§1 E/;(s) (xh)ﬁ (xn)ﬁ (3.28)
N —_—

(Yn,m(s)> - é:l T8 (%a)p (%a)s (3.29)

- N . = %

<7cn,1§8)> " (e (als - & e o <Xn>ﬂ () (3.30)

As soon as we have found the similarity transformation matrix (which columns
are the eigenvectors (xn)B for one of our matrices), we only have to find the
eigenvalues of the other matrices in order to represent them as a dyadic sum.
It is sufficient to know only two sets of eigenvalues (e.g. ;ﬂ(s) and Zc (s)
or Eé(s) and ;é(s)). The eigenvalues (due to (3.25) through (3.30)) of

the other matrices are then simultaneously given. In special cases, how-
ever, (see Section 4) one may even express all the above eigenvalues in terms
of the eigenvalues fﬂ of a real so-called geometrical factor matrix (fgn,m).

The (Xn)ﬁ are then the (real) eigenvectors of the (symmetric) matrix (fgn,m).

17




In context with Section 2, we can establish the relation

(xn)ﬁ= zcés) (In)ﬁ = ( zcés))-l (-Trn)ﬁ (3.31)

between the eigenvectors and thereby recover some of our above results.

In the remaining sections we describe systems which a priori fulfill

our hypothesis (3.1) and equation (3.21).
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Iv. Perfectly Conducting Wires in a Lossy, Uniform and Isotropic Medium

We start our presentation of examples with a simple case. Let us
assume that the per-unit-length impedance matrix and the per-unit-length
admittance matrix are passive. Then they are p.r. matrices. Let us further

assume that they can be written as

(Zn,m(s)) = s(L n,m(s)) = S”<fgn,m> (4.1)
~- —~. - -1
(Yn,m<s)) = (Gn,m(s)> * S(Cn,m(s)) - (o+se)(fgn,m> (4.2)
where

(i; m) = per-unit-length inductance matrix

(EA m) = per-unit-length conductivity matrix

(EA m) = per-unit-length capacitance matrix

(fgn m) = dimensionless symmetric matrix of

purely geometrical nature

The factors g, o, and ¢ characterize the surrounding medium. The elements of
(fgn,m) are positive - real and frequency independent (dispersionless). Since
the matrices (iﬁ,m) and (?A,m(s)) commute, we now can apply the results of the
foregoing section. This especially means that there exists an orthonormal

real matrix (compare Appendix B) (Xn m) which simultaneously diagonalizes

’

(fg,, ) and (fg, 7%

) f
(Xn,m> Lo (fgn,m) ) (Xn,m> = ()2'. (4.3)
fN
g0
£-2
(4.4)

/><\
2
H
-
0q
2
B
]
e
2
=
|
8o
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Here the fﬁ are the real, non-negative eigenvalues of (fgn,m), i.e.
(4.5)

8 are the columns of the matrix (Xn m). An
1
eigenvalue with fﬂ = 0 cannot occur because otherwise (fg, ) would not
0 3
be invertible (in contradiction to our assumption).

and the eigenvectors (x,)

The eigenvalues of the propagation matrix and of the characteristic

matrix are simply related to fﬁ:

;ﬂ(S) = [s;z(c7+se)]])é (p.r. square root) (4.6)
zcés) = [;;g;] fﬁ (p.r. square root) (4.7)

Observe that the eigenvalues of (;c (s)) are all equal. Thus, in the
n,m

special case where ¢ = 0 we may introduce the phase velocities

v, (s). = sy31(s) = 1

B B

v (4.8)

fil

€u

Then we find that all eigenmodes propagate at the same velocity v.

Going back to the original representation of the above matrices (with

o # 0) we have:

- 1

('yc (s)) = [sr(ovse)] (1n m) (4.9)
n,m :

- s |®

WEEE

Of course, due to the very simple relation of the matrices in (4.1) and (4.2),
there was no urgent need for the diagonalization procedure (4.3). Equations
(4.9) and (4.10) immediately follow from the definitions. Nevertheless, we
invented the similarity transformation matrix (Xn m) in order to stress the

close (formal) analogy to the following sections.
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v. Addition of Small Change to (?ﬁ 2(s)) .

In the foregoing section we found for ¢ = 0 that all modes have the
same speed of propagation (compare equation (4.8)). This is the case if the
tube consists of N perfect conductors immersed in a uniform isotropic medium,
and the (Zé’m(s)) and (?;’m(s)) being frequency-independent symmetric real
matrices times functions of the constitutive (space-independent) parameters

of the medium.

In this section we describe the tube and the medium by the following
per-unit-length impedance and per-unit-length admittance matrices,
respectively:

(Za,m(®) = su(fe, )

(Tn®) = (ovse) (o )" + (T o)) (5.2

n,m

where the "extra" per unit-length admittance matrix (?é (s)) is constrained
n,m

to be one that can be represented by

(?é (s» = ﬁi §é s) (Xn)ﬂ (Xn>5 (5.3)

n,m

(e.g. as a complicated function of (fgn m)).

Again, the (Xn)ﬁ are the eigenvectors of (fgn,m)’ and the functions §é (s)
are the eigenvalues of the matrix (Yén,m(S))' Equation (5.3) guarantees that
the per-unit-length impedance and admittance matrices are commutative.
Including the matrix (?én’m(s)> in equation (5.2) means that we allow
a special class of transverse loading admittances (going beyond those being
described by a ¢ = 0). This might be produced by extra permittivity and/or
conductivity in an inhomogeneous and/or anisotropic form, or by the addition
of lumped transverse admittance elements in sufficient number to approximate

a uniform distribution along the length of the tube.
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Our diagonalization procedure now leads to the following results for
the eigenvalues of the propagation matrix and those of the characteristic

impedance matrix, respectively:

;ﬁ(s) = [S#(5+SE)}% (l + (o+se) "1 fﬁ i;igs));i (5.5)
z ={—§-“—T £ (1 + (otse)™1 £ “"( y | (5.6)
zcés) e ﬂ( (ot+se 8 yeﬂs ) .

If we regard the extra loading as a small perturbation we may Taylor-expand

the above eigenvalue functions. Doing this for the ?B(s)-values we obtain

~ - - 2
v,(s) = Iisy,(ar+se)];5 jl + 1 (o+se)"! £_ vy (s) + O(((a+se)'1 f. v (s)))
2 | 2 B eg A B ey
, (5.7)
Now, different from (4.6), the eigenvalues §éﬁ(s) prevent the degeneration of

the eigenvalues of the propagation matrix.

With the aid of (5.7) we may derive a first order expression for the

propagation matrix in its original representation.

(§£1)<S)) - [s“(a+se)J% i(ln,m) * % (o+se)™* (fgn,m) ) <?é (S))}

n,m n,m

(5.8)

Of course, higher order approximations (?ék)(s))(the index k indicates the
n,m *

order of the approximation) can be obtained’ from higher order approximations

for §ﬂ(s).

The first order expression for the characteristic impedance matrix
reads (derived from (5.6)):

= s & ' 1 | 5
0 w) =[] (tena) [(10,c) - 00 fo5 ) - (2, @) 69

n,m n,m

Note that the approximate representations (5.8) and (5.9) are only possible
after appropriate Taylor expansions for the corresponding eigenvalue

functions.

A meaningful direct back-transformation (of the r.h.s.) of (5.5) or
of (5.6) in terms of products of the per-unit-length impedance and per-unit-

length admittance matrices does not exist.
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VI. Lossy Wires in a Lossless Medium

In this example we describe lossy identical lines in a lossless medium.
The commuting per-unit-length impedance matrix (Zﬁ n(s)) and per-unit-length

admittance matrix (Y] _(s)) may be given by

<2;,m(s)) - sp(fgn,m) + 2 (s) <1n;m) (6.1)

(?;,m(s)> - se(fgn’m>-1 (6.2)

With the aid of the "wire function"

E&(s) =1 (s) + sii(s) (resistive + inductive parts) (6.3)

we have included per-unit-length "surface impedance" matrices of lossy

conductors through

~ .

. r at low frequencies (6.4)

: z (s) =
W( ) s L

20 2nx
A w

at high frequencies

where the N wires are all identical and have

r = wire radius (circular wires)
b, = wire permeability
o, = wire conductivity _ (6.5)

If one wishes a more accurate expression for z&(s) can be obtained in the form

of Bessel functions which reduce to (6.4) in the limiting cases.

- The matrix p(fg, ) is the per-unit-length external matrix computed as

if the lines were lossless and the medium were uniform.

Of course, the ansaetze (6.1) and (6.2) together with (6.3) for the
(special) losses only cover certain conductor configurations. Nevertheless,
they cover two important configurations of N identical conductors with either
(1) an infinite perfectly conducting ground pane or (2) a perfectly conducting

shield surrounding the other N conductors.
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After diagonalization of the matrices we obtain the following
eigenvalues for the propagation matrix and the characteristic impedance

matrix, respectively:

(s) = s/ue [1 + (spf )'1 E‘;(s)r’ (6.

78 B

Ecés) = \/i__f— fﬂ [1 + (sufﬁ)-1 E‘;(s)];é = (se)"? fﬂ ?ﬂ(s) (6

Assuming the perturbation (resistive/inductive) to be small, i.e.

<< 1 (6

AN

for all relevant frequencies and g = 1,2,...,N, we can derive a reasonable

approximate expression for the propagation matrix. Observing that

:r'ﬂ(S) = s/ue {1 +% (sufﬁ)'l z_(s) - % (spfﬂ)'z z_2(s)

+0 [((spfﬁ)'l E‘;(s))s}} (6

we find in the original representation

(;é;)éls)) - s/ne %(ln,m) + 2 (sp)7t Z(s) (f8q m)"

(6

w5 [, )]

6)

T

.8)

.9

.10)

From (6.9) we conclude that (in general) the phase velocities (to the extent

that the concept of phase velocities makes physical sense) of the propagating

eigemmodes are different from each other (due to the losses). Degeneration
may occur if the configuration of the conductors fulfills certain symmetry
conditions, e.g. if all conductors are equally spaced around a circle.

(This will be the topic of a forthcoming paper.)
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VII. Addition of Small Change to (Z. ()

In this section we add a "small" contribution to the per-unit-length
impedance matrix

(zé,m(S)) - s#(fgn,m) + 2 (s) <1n,m> + <Zé (s)) (7.1

n,m

with the "extra" per-unit-length impedance matrix is constrained as

-, N -,
(ze (s)) -3 Z

n,m

) (%3)s (%a)s 7.2

whereas the per-unit-length admittance matrix is the same as in (6.2).

This time we present the eigenvalues of the propagation matrix in

two alternate forms

&'ﬁ(s) = s/eu (1 + (spfﬂ)'l .z-‘:’(s)>;§ (1 + (s;ﬁ:’/s + ’z"’v(s>)-1 Eéés)y’i

= s/ep [1 + (sufﬁ>'1 (E&(s) + Eéé5)>J% (7.3)

Assuming now "smallness” of the eigenvalues Zé (s) only, we then may Taylor-
expand the second factor of the first expression for gﬂ(s). However, the
application of the inverse similarity transformation on the diagonalized

propagation matrix

7. 0
X . ‘) < (x. \'= (5 (s>> (7.4)
( “’m) 0O & ( “’m> < ©

n,m

does not lead to an expression of (;C (s))in terms of matrices given in
n,m

(7.1) and (6.2) due to the remaining s&uare root in the first factor of the

first-expression in (7.3). This changes if we consider the last two terms in

(7.1) as small perturbations, i.e.

(spfﬁ)'l (’z-v;(s) + EééS)H <« 1 (7.5)
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and consequently can write down a series expansion for the second expression

in (7.3) yielding (in first order, see the explanation after formula (5.8))

75 (s) = sJZZ.(l + % (s#fﬂ)-1 (E;<s> + Eéésﬂ) (7.6)

or after the inverse similarity transformation (in first order)

<§£1)(S)) - S‘\/e_‘;;(ln,m) +—§- (sp)'1 (fgn,m)-l(g‘;(S) (_1n,m) + (Zen<;)))} (7.7)

n,m r

The advantage of (7.7) in comparison to (7.4) lies in the fact that in (7.7)
we have not to know the eigenvectors constituting the similarity matrix but

instead can use given matrices in their original representation.

In conclusion of this section we give an example. Choose N=2 and
consider two identical wires at the same height above a lossy ground return

described by the matrix

3 T 11 o~ l) 1y . 8
( en,iso EXOR BN EEROR N N (7.8)

We immediately observe that only the common mode is present in (7.8) while the
eigenvalue of the differential mode vanishes. The similarity transformation

in this case reads
‘ 1 1 .
(Xn,m') N \/%— (l _1) = (Xn’m) ' (7.9)

and via (7.4) we find

(%o, ) -

Here we have to insert the eigenvalues ;l(s) and ;2(5) from (7.3). Note that

Y,(s) + ¥,(s) Y,(s) - ¥,(s)
1 2 1 2 (7.10)

B[

O RENOREROIENC

the lossy ground only contributes to the common mede value. In case that the

perturbation terms are small we also can use (7.7) with

-fg

fg
-1 1 1,1 1,2
(fgn’m) = (7.11)

2 2
] £ £
fg1 1 - 81 512 %11

to express the propagation matrix. Note that the two diagonal terms of

(fg, p) are equal in this special case.
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VIII. Equalization of Multiconductor Lines

The purpose of this section is twofold. On one had it generalizes and
concisely summarizes the foregoing sections. Secondly it serves as a starting
point for a more elaborate and deductive derivation of the so-far obtained
results. Especially the equalization of the lines (i.e. the eigvenvalues of

the propagation matrix are made to become a perfect square) is a major step.

The essential ingredients are the per-unit-length impedance and per-

unit-length admittance matrices for which we make the following general

ansaetze:
(’z’r'l,m<s)) = sp(fgn’m> + E‘;(s) <1n’m> + (’z’e <s>> (8.1)
n,m
<?£1,m(s)) = <a+se) (fgn,m)'l + ("f’e (s)) (8.2)
n,m :

with the usual assumption that the small losses are contained in

N
(zén,riS)> - /3;1 Eéés) (xn>ﬂ (xn)ﬂ (8.3)

and N
(?én’rgs)> - 521 §éés) (%a)s (*a)s (8.4)

In the first place we are again interested in the diagonal represen-
tation of the propagation matrix and of the characteristic impedance matrix.

We easily find

7;(5) = (sp)(o+se)<l +(spfﬂ>'1 (-z";(s) + Eé(@)) (1 + (o+se) 1 fﬂ §(;(s))

B B
(8.5)
and
Ezés) - (ﬁi) £ (1 +<sufﬂ)'1 (Z (o) + E;gs)»(l + (o¥se)t £ i;és))-l
-1 [ =z S-1 2
= |suty (1 + (s,ufﬁ) (zw(s) + zeés)» 7 (s)J (8.6)
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The last equation establishes an immediate relation between Zc (s) and §ﬂ(s).
Regard the distortion terms to be small compared to 1 (including the losses

E&(s) on the wires), i.e.

(syfﬁ)°1 (Zo¢s) + Eé(s))l «< 1 ; I(a+se)'1 £, 5.0 << 1
B B (8.7)

(for all relevant frequencies and § =1,2,...,N),

we perform a Taylor expansion (of lowest order) for Yo(s) and z. (s).
B Cﬂ

;ﬂ(s) = Jsp(a+se)(i + %(spfﬁ)'l <Eé(s) + Eéés»
(8.8)
1 ] ~. 2
+ 5 (gtse) ! fﬂ yeés) + 0((...) ))
~ s _]: _ -~ ~
zcgs) S s ;B(l + 5 (spfﬁ) 1 (zw(s) + zeés))
(8.9)

- 2
- % (g+se)~1 £ ye(s) + O((...) ))

P ep

The empty bracket in the "order-of-expansion-sign" has to be filled with

either expression of equation (8.7).

Considering (8.6) and (8.9) it becomes evident that in the case of

choosing

(spfﬂ)'l (E;(s) + Eéés)) = (o+se)~1 £, ;éﬂ(s) (8.10)

we obtain for Ec (s) the eigenvalues of a distortionless conductor system

(compare (4.7)). At the same time ¥2(s) represents a perfect square with now
mp 8 P b% q

§ﬂ(s) = Jsu(o+se) (1 + (sp 5)'1 (Eé(s) + Eéésn) (8.11)

(p.r. square root)}

The "equalization" of the two (main) factors in (8.5, 8.6), expressed by the
relation (8.10), is completely analogous to the procedure performed in [7].
There the author investigates the problem of distortionless transmission

lines.
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By virtue of (8.10) we may write the "extra" admittance matrix as

(?é (s)) = (Egii) (fgn’m>‘2 [E&(s)<?n,m> + <2é (saJ (8.12)
n,m : n,m

In order to illusgrate the physical meaning of this matrix more explicitly we
reconsider our example of two identical conductors at the same height over a
lossy ground return (compare Section 7). The two eigenvalues y, (s), 8 = 1,2,
are easily computed from (8.10) giving P

§é§s) = ﬁgi%?l <E;(s) + Eé(s» ("common mode™) (8.13)

vy (s) = igié%l .z (s) ("differential mode") (8.14)
e, s,uf2 \
We may now even go one step further in our "equalization" procedure. Let us

try to equalize the two eigenvalues of the propagation matrix on the basis of

(8.11). Then we end up with the following requirement (cf. (8.11)):

<spfl)'1 (Eé(s) + Eé(s)) - (sufz)‘l z (s

(8.15)
i.e. £, ¥ (s) = £, y.(s)
( 1 el 2 e2 )
Since the eigenvalues of the matrix
£
(f ) 8.1 fB 8.16)
g = .
n,m f £
, 81,2 "B11
are given by |
fl = fgl,l + fgl’2 (common mode) (8.17)
f2 = fgl,l - fgl,2 (differential mode) (8.18)
we can rewrite equation (8.15) (resolving w.r.t. Eg(s)) as
£
~. 1 -~ 2Kk ~.
zg(s) = <f2 - ) zw(s) = Ion zw(s) (8.19)

29



where we introduced the quantity sk as ratio

fg
R (8.20)
fe1.1

Note that fl (common mode) = f2 (differential mode), and therefore

Eé(s) =0 if Eé(s) > 0. Note also that the common-mode impedance is

of the form

vl (z,s) B [ - ]% fl

= — = —_ (8.21)
common 2I1(z,s) otse 2
Since this is normally defined with the sum of the wire currents. The
differential-mode impedance is of the form
2V. (z,s) 5
= _ 1 1 sp
Zgifferential’s) = = B [;+seJ 2£, (8.22}
Il(z,s)

Since the differential voltage is the difference of the wire voltages. Thus,

consistent with the above one may still often have

A 5 1 fl
<Zcommon(s)/ zdifferential<s)) “Z\E <1t (8.23)

2
(real)

and this is the case in typical shielded pairs.

Due to (6.4) E&(s) is frequency dependent. Therefore, two cases are to

be considered:

(L) In the high frequency domain we have besides (6.4)

Eé(s) - const. _ [=—& (8.24)
and the constant turns out to be (cf. (8.19))

f u o
const. = {2 - 1} 5= v_E (8.25)
f 27r L o
2 w g w

(2) For low frequencies we set (by choice of “ground" materials)

. ~ f]_
T lE =0 (8.26)

z'(s) =T
g() >
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The 2 X 2 propagation matrix is obtained with the aid of the two eigenvectors

(xn)1=/%<i>"(xn)2 =7§—(i> (8.27)

~ ~ 1 0
<vc <s>) - 3(s) (8.28)
n,m 0 1 .

where we used the definition

and is found to be

71(8) = 7 () = 7(s) (8.29)

Our result (8.28) is very important. Via our "equalization" steps (8.10) and
(8.15) we finally arrived at the result that for both modes we have the same
attenuation and the same velocity, and no dispersion occurring. However, we
emphasize that the above "equalization" procedure only works in our example
for N=2. 1In case of Cy symmetry and N=3 we also may equalize the eigenvalues

of the propagation matrix due to the fact that the two "differential® modes

‘are degenerated. This and more, however, will become the subject of a

forthcoming paper.

Another simple configuration, covered by the above consideration for
fl = f2, is worth to be mentioned. If we deal with two identical coaxial

cables for which the matrix (fg, ) "degenerates" to

10
(fgn,.m)= f% (o 1) (8.30)

we also find equal eigenvalues for ; (s)], i.e. equal damping and equal
g S q ping q

speed for the propagating modes.
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IX. Resonances on a Single Terminated Tube

In this section we want to show how the former results can be extended
and used to calculate the natural frequencies of transmission lines with given

(passive) terminations.

Inspecting our compact solution (2.14) we assume that its resonance
behavior is inherent in the summands (‘.;'Tn(O,s))+ and (Vn(L,s))_ since these
vectors contain poles in the complex frequency piane. In the following we
express these two vectors in such a way that the above statement immediately
becomes obvious. This can be done in terms of the propagation matrix
(;cn(;)) and the reflection matrices at z = 0,L which are defined in terms
of péssive terminating impedance matrices (2T(zo,s)) and the characteristic

impedance matrix as

(gn’m(zo,s)) [(z'_[' (ZQ’S)) + (zc (s))]-l ¢ l:(z’j_‘ (Zo,s)) - (Ec (S)M
: n,m n,m n,m n,m

(with z, = 0 and z, = L) (9.1

Then we find the scattering relations for both ends of the tube as

<'\7n(o,s))+

(\"fn@,s)) i

<§n m(O,s)) . (vn(o,s))_ (9.2)

b

(gn,m(L,s)) . (vn(L,s))+ (9.3)

and thus have two equations for the four unknowns (vn(O,s))+ . (ﬁn(O,s))_,
(Vn(L,s))+ , and (vn(L,s))

establish two other relations between the above quantities:

(VH(L,S))+ = exp {-(?c (s))L} . (vn(o,s))+

n,m

By application of (2.12) through (2.14) we

L (9.4)

+ ./” exp I-(QC (s))(L-z')} . (Vés)iz’,s))+ dz”’
A l

n,m
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.<i’7n(o,s))_ - exp {-(;c (s))L} . (vn@,s))_ 4

n,m

0
+ fexp{-(ry- (s))z'; . <\7(s)(z',s)>_ dz”’
/ CCom n

Equations (9.2) through (9.5) can easily be written in supermatrix form

(9.5)

L
exp {-(;c (s))L} -f dz” exp{ -<;c (S)) (L-Z’)} .<‘7r(15)(zf’s))+
n,m A n,m

0
/dz’ exp {-(;c (s))z') . (Vr(ls)(z’,s))_
/ 27

(0,) (9.6)

The elements of the supermatrix are N X N matrices, and the elements of the
supervectors are N-dimensional vectors. The description how to solve (9.6)
w.r.t. the left-hand side supervector can be found in [2]. Before we, how-
ever, use these methods we reduce the 4 X 4 supermatrix to a 2 X 2 supermatrix
by inserting (9.4) and (9.5) into (9.2) and (9.3). We then obtain (observe
also (2.15) and (2.16))
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v e ®
(Lom) (8, n(0+9)) -ex2{- (?cis;)l.} (7_c0,9),
O

'(Sn,m<L’s)) sexp {- ('}’C(S) )L} <1n,m) (VH(L,S))_
n,m
(5 mO s)) « exp{-(7, ()L}~ (\7<S)(o s))
n,m* ’ ( cm n ’ -
! (9.7)
(‘§ (L s)) . exp{-(§ (s))L} . (v<s)(1, s))
n,m "’ c n ! +
n,m
This equation system is easily resolved (compare e.g. [2]) with respect to
the unknown vectors by applying the inverse of the 2 X 2 supermatrix. A brief
calculation yields

(vn(o,s))+ - {(1n’m) ; (§n,m(o,s)) . exp{-(‘&c (s))L}

n,m

. (§n,m(L,s)) . exp {-(;C (S))L}} -1

n,m

- (§n,m(0,s)) « exp {-(;c (s))L}

n,m
o) o foi o)
- (7 w,e), + (?fls)(o,s))_} (9.8)

and

(vn(L,s))_ - [(1n,m) - (8, a(Ls9)) « exp {-(i;c (s))L}

n,m

.

. ('s'n’mw,s)) . exp {-(}C (s))L

n,m

n,m

}
° (gn,m(L’S)) *« exp {-(;;c (s))L}
: [(gn,mco’s)) TSP {-ﬁcnf;))L}

- (7 0,9) + (\’?r(ls)<L,s))+] (9.9) 3
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Insert the solutions (9.8, 9.9) into (9.4, 9.5) and obtain the last two
vectors (vn(L,s))+ and (vn(O,s))_.

Equations (9.8) and (9.9) represent our desired results, and we make
the following observations: (1) Both vectors contain an (inverse) matrix
which might become singular for certain frequency values. (2) Since, however,
singularity of one vector implies singularity of the other (compare (9.7))
(supposing the reflection matrices are non-singular for those cases) the
possible poles for both vectors are the same. (3) The singularity condition
reads (cf. [1]):

det[(ln,m>-<§n,m(L’sa))' exp{-(?c (sa)>L}

n,m
. (’s’n’m(o,sa)) . exp { -(scn élsa)>LH =0 (9.10)

One result becomes immediately obvious from (9.10): If one of the reflection
matrices vanishes (i.e. if one end of the tube is terminated with its charac-
teristic impedance), we have a perfectly matched transmission line which does
not show any resonance behavior. In other words expression (9.10) has no

Zeros.

Let us now investigate the resonances of a tube which ends are either

open ended, i.e.

<§n’m(o,sa)) - (§n’m(L,sa)> - <1n,m) (9.11)

o (o]

or short circuited, i.e.
<Sn,m(o’sa)> = (sn,m(L’sa)> - °<1n’m> (9.12)
sc sc

In both cases (8:110) simplifies to

det [<1n,m> - exp? {-<'{,C (sa))L” -0 (9.13)
n,m

We transform the matrix inside the square bracket of (9.13) into its diagonal

form. Then we can write instead of (9.13)

N

-25,(s )L
H(l-e B )-o (9.14)
g=1
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Thus only one factor in this product chain needs to vanish. We indicate this

factor with a subscript zero and have

25 ,(s )L
o™ _ (9.15)

With the aid of the natural logarithm equation (9.15) can be resolved with

respect to §3 (sa) giving
o

§ﬁ(sa) = %9 i (m=%1, £2,...) (9.16)
Q

as an implicit equation for s, = Q, + ju,.

Now we will use equation (9.16) to compute the resonance frequencies
(natural modes) in first order perturbation (see the foregoing sections) for

three different situations.

A. Resonance Frequencies in a Special Lossy Medium

We refer to Section 5 (5.7) and obtain (with o = o)

(?)J = Sél) J; {l -l-']z: (sil) e)-l f,B ?é (9.17)
ﬁo ﬁo ° 50
Assuming that §é does not depend on s, and setting
o
¢ (speed of light) = (ep) * (9.18)
R B B NG .19
ﬂo ﬂo ﬁo ﬁo ﬂo ﬂo ﬂo
we get
Iy - 'nio) + Aﬂil) + j(Qio) + Awil)) + 1 cufy . (9.20)
ﬂo ﬂo ﬁo ﬁo ° ﬂo
which in turn results in
Qi°) =0
ﬂo
(9.21)
(1) 1 eyt 5
e, 2 B e
ﬁo ﬂo
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and t

Awa =0 (9.22)

(B (1,2,...,N)

Observe that in this approximation we do not have frequency
splitting. However, the damping is mode-dependent unless fﬂ §é is
' o

B
independent of 3. °

B. Lossy Lines with Internal Inductance
A first order expansion for ;ﬁ(sa) following from (6.6) leads
o
to the equation

: (1) — 1 (1) “t
mrly L
< - ) - Saﬁ Jeu (1 + 3 (Saﬁ pfﬂo) zw(s)> (9.23)
o] (o]

If we assume the losses to be caused by a frequency-independent internal per-

unit-length inductance, i.e. E&(s) = s(1)3., we obtain

aﬂo 1’
2o om0 (9.24)
a a
50 ﬂo
(o) _ (mme (1) _ 1 mrc VL.
v = ( 1 ) , Awa =5 L <pfﬂ ) EI (9.25)
ﬁo ﬂo o

This time we found no attenuation in the first order approximation for all
the modes, whereas the internal inductance gives rise to (mode-dependent)
frequency splitting. With "frequency splitting" we refer to mode-dependent

imaginary parts of the complex frequency s.

C. Lossy Lines with Resistance
In this example we assume E&(s) =1 and r to be independent
of s. Again, because of the skin effect, this can only be an approximate

value.
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The following equation (derived from (6.6)) has to be resolved
(1)

with respect to s,

o]

L]

(1) — ¢ P
%‘-‘mj=sa Jep {1 + —Lm
ufay s
ﬂo aﬁo

[+ a

g B

(o} o]

-2 2l 4 Aﬂil) + j(w(o) + Aw(l)) P (9.26)

We find mode-dependent damping, but no frequency splitting:

R R A (9.27)
a a 2 puf
ﬂO ‘60 'BO
wio) - m—’iﬂ , wil) -0 (9.28)
ﬂO 'BO

The above considerations - even i1f they are somewhat artificial -
show that frequency splitting is mainly caused by the internal inductance of
the conductors (- first order effect!). Other losses, like special losses
in the medium or resistances of the lines, "only" contribute in higher order
(second order and higher) to the frequency splitting. There is, however,
(among others) another mechanism, space variation between the conductors,

which causes a comparable frequency splitting [4] as the internal inductances.
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X. Discussion and Concluding Rémarks

In this paper we dealt with'a certain class of solutions (in the fre-
quency domain) of the MTL equations. These solutions were obtained on the
basis of an eigenmode expansion for a commuting set of symmetric p.r. matrices
which could be simultaneously diagonalized by only one set of orthonormal
eigenvectors. In the basis of these eigenvectors the MTL equations completely
decouple and scalarize, each scalar equation describing the propagation of one
(voltage- or current-) eigenmode. The solution for every eigenmode (say for
the voltage vector) (;ﬁ(z,s)), g=1,2,...,N, can easily be represented as a

sum of forward and backward running waves.

2v (z,s) = e

“Y5(s)z <~
B

v+ﬁ(L,s) + 5£Z>(z,s)>
(10.1)

Y ,(s)(z-L)
8 ( (s) )
+ e V_ﬁ(L,S) + v_ﬁ (z,sz

Here, the mode vectors are indicated with a lower case letter, and they are

defined via the equations

x’}B(z,s) = (xn>ﬁ . (Vn(z,s)) (10.2)
Gqﬂ(zo,s) = <Xn>.B . (\~7n(zo,s)>q (10.3)

(Zo =0Oand q =1 ; z,=1L and q = -1)
Va5 (29 =[xy ) - LACIO) (10.4)

q = *1

Equation (10.1) indicates the need of knowing the eigenvalues Qﬂ(s)
of the propagation matrix (of course, besides the knowledge of the boundary
conditions and the source terms). We investigated various multiconductor
lines which are embedded in different media. Our main emphasis laid on the

discussion of the different properties of ;ﬂ(s)

-

(s) = (Eﬁ

-~ ~. s
T4 (s) yﬁ(S)) (10.5)
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for lossless as well as lossy lines and lossy media. Depending on the rela-
tion between the eigenvalues of the per-unit-length impedance matrix and those
of the per-unit-length admittance matrix and on the degree of degeneration of
their eigenvalues one may find entirely different values for the eigenvalues
of the propagation matrix, ranging from a complete degeneracy of (10.5), i.e.
all modes propagate without attenuation with the same phase velocity, over
such modes which all have the same damping but distinct phase velocities (or
vice versa) up to modes which all have different, real and imaginary parts.
One may even study various multiconductor lines under the aspect to meet
certain given sets of eigenvalues of the propagation matrix (see e.g. the
discussion about "distortionless" transmission lines in [7]).

Another major advantage of knowing the §ﬂ(s) values lies in their use
in context with the search of poles of solution (2.14). These poles in the
complex frequency plane represent the resonances of the MIL.

Of course, we are aware of the fact that our restrictions which we
imposed on the MTLs are severe, and therefore many interesting cases for MIL-
configurations and environments are excluded. But, nevertheless, the concept
of dealing with eigenmode expansions for MTLs is very fundamental, and, in
addition, even with our limiting assumptions we still cover the most common
MTL configurations. More fundamentally, in the synthesis of MTLs to have
certain desirable properties for a given application, the restrictions allow
one to analytically associate some of the MTL properties with physically

controllable parameters.
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Appendix A, Commuting Real Symmetric Matrices

Let (An m) be a given real symmetric matrix, i.e., (An m)T = (A
and find all matrices (Bn m) that commute with (An m)

(An,m )' (Bn,m> - (Bn,m) ) (An,m> (4.1)

Due to well-known theorems of matrix-theory (e.g. [6]) we know that (An m)
(since it is a special case of a hermitian matrix) can be diagonalized with

the aid of a unitary matrix (Xn m) (even with a real orthogonal matrix), i.e.

’

(Ai?;) N (Xn,m>-1 ) (An,m> (Xn,m) (A.2)

Here (Aédi) denotes the diagonal matrix (similar to (An m)), and the matrix

<Xn,m) has the property
(Xn,m)-1 = <Xn,m)T (4.3)

t =T = adjoint

The matrix (Xn m) has columns as the eigenvectors (Xn)ﬁ , 1.e.

Fam) = ((sad (ol oo (il (.4)

the transposed matrix (Xn m)T then reads

’

(xn’m)T = ((xn>l , (xn)z (xn)N>T (A.5)

where the eigenvectors are now the rows. All matrices that commute with

(A, p) are given in the following form (compare [6 (Chapter VIII, par. 2)]

(Bn,m> - (Xn,m>(Bé?;) ) <Xn,m>-1 — (A.6)

(d))

where (B< )) denotes an arbltrary matrix which commutes with (A Since

n,m
(A(d)), however, is diagonal (B ) is an arbitrary diagonal matrlx too.
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This means that every matrix that commutes with (An,m) can be simultaneocusly
diagonalized with (An,m)‘ A more general version of this result reads as
follows: Any finite or infinite set of pairwise commuting real symmetric
matrices {(An,m)* (Bn,m)’ (Cn,m)"°‘} can be transformed into diagonal form by
one and the same unitary transformation (Xn,m)' Then the above matrices have
a complete set of common orthonormal eigenvectors (Xn)ﬁ' These eigenvectors

constitute the matrix (Xn m) (see equations A.4, A.5).

b

In the second part of this appendix we prove the theorem formulated in

Section 3 (compare formulae (3.9) through (3.11)).

Theorem: If (An m) and (Bn m) are two commuting N X N symmetric

matrices, then the following statements hold:
(1) (An m)‘1 is symmetric (A.7)

(2) (A Yyt e (B )= ) (& H7F

and (A.8)

(3) (A )P (B )Tt = (B )7t (& )7
and (A.9)

(A )"t e« (B_. )! 1is symmetric.

n,m n,m
Proof:
To (1 We have the trivial relation
- -1 = -1, =
O R S R N N R CIR I Y (4.10)
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Transpose both sides of this equation and get

————
~~
>
N
°
~~
o>
S
)
[y
S
L]
Ml
o
~
bg

)'1)T « (A, ) (A.11)

I
>
>

)'1)T= (A )1 (A.12)

(ap ) o By D)= (B, DT e (Al = (A )Th e (B )TE (A.13)

(B )7t e (A )l e (B )=(A ! (A.14)
and this equation with (Bn,m) from the left
(A )7t e (B )=(B ) (A ! (A.15)

n,m n,m n,m n,m

To show the symmetry of this product consider

- T -
(<An,m) e (Bn,m)) = (Bn,m) ’ (An,m> '
(A.16)
- (An,m)-1 ’ (Bn,m)
To (3): The commutativity follows from
- - -1 -1
(An,m) e (Bn,m) = «Bn,m) - (A ,m)> - (<An,m) ) (Bn,m))
=(B_ )7t (a )7t (A.17)
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whereas the symmetry of the above product is a trivial consequence of the o

subsequent relation

((Bn’m)'l)T' (a, 079"

n,m

——
P
N
L
]
-
[}
Py
v+
B
=]
-
1]
o
ey
H
I

(B, )1 . (A )1 (A.18)

n,m n,m

(o )t . (B )71

n,m n,m

This completes our proof.
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Appendix B. The Canonical Diagonalization of a Real‘Symmetric Matrix

Consider a non-singular positive-definite N X N real symmetric square

matrix (fg, m) with eigenvalues fﬂ, and eigenvectors (x,) (right and left

B

eigenvectors coincide) defined by
(fgn’m) (xn)ﬂ = fﬂ<xn)ﬂ (B.1)

with the orthonormalization condition

1 for ﬁl = 52

(Xn)ﬂl (xn)ﬂz = lﬂl ﬂz = . (B.2)

otherwise

(ﬂl’ 182 = 1727-‘~5N)

Such matrices are very common in electromagnetics. They occur in the low-

frequency limit of many field problems.

Since (fg, ) is real and symmetric it is orthogonally similar to a
real diagonal matrix (féd&) (see, e.g., ref. [6 (Chapter IX, par. 13)], i.e.,

there exists a real orthogonal (even orthonormal) matrix X, m) such that

(£ ) = (5 0) - (Fgn) * (o)
(B.3)

I
R
?
=]
~—
o~
o
2
=]
S——
=]
It
———
H
B
=
~——

(fg(d)> = .
n,m () ‘£
N

The columns of the matrix (Xn m) are the eigenvectors (Xn)ﬂ of equation (B.1l).

We need to briefly study the case where we have to deal with degenerate
eigenvalues. We know that all eigenvalues of (fgn,m) are real and positive.
Moreover, the characteristic equation of a real matrix has real coefficients,
so that with a root fﬂo ?f multiplicity p it also has the root fgo = fﬁo
of the same multiplicity. Thus, for possibly complex, linearly independent

eigenvectors (x(c)) s oo (x<c)) there correspond the linearly independent
& n 1 n P P y P

eigenvectors (xéc))i,..., (xéc)); (corresponding to the eigenvalue f; <=fﬂ R
o o
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Then from

(e) (c)
(fgn,m) (xn )po = fﬁo<xn )po (B.4&)
(Pofa{l,...,p})
it follows that
(e)\* _ (e)y*
(fgn,m) (Xn )Po = fﬂoan )Po (B.5)

Now we may go over from the complex basis ((xﬁc))p , (xéc)); ) to the
, o o

corresponding real basis

re (8], )= 3 ((x2) + (x£)]

) o
(B.6)
ia (), ) =35 (), - (x)7)
It is easy to see that
(fgn,m) ° Re((x;c))po) = 1’:'/60 Re((xéc))po)
(B.7)

(50,0 )+ 10((57), )= 55 (), )

In other words, in the case of degeneracy, we can construct an equivalent set
of real eigenvectors from the set of complex eigenvectors taking the real-
and imaginary part of the complex eigenvectors, respectively. A possibly
necessary orthonormalization of this set of real (linearly independent)

eigenvectors is performed by a subsequent Gram-Schmidt procedure.
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