INTERACTION NOTES
NOTE 482

Bounding Calculations in RF Coupling*
K.S.H. Lee and F.C. Yang

Kaman Sciences Corporation, Dikewood Division
Santa Monica, California 90405

22 September 1989

ABSTRACT

Various analytical formulas for bounding the absorption cross section in RF coupling are derived
and discussed. Some are derived rigorously from first principles, while others are based on
heuristic arguments. What needs to be done in gaining more quantitative and qualitative
understanding of system coupling is suggested.
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INTRODUCTION

When an electromagnetic wave impinges on a system, a sequence of penetration and
propagation starts to take place from the system outer surface into its interior and, ultimately, RF
energy will appear at the system electronics (Fig. 1). The energy arrival can be by way of cither
front-door or back-door paths. A front-door path is an intended path for RF transmission and
reception, an example of which is an antenna connected to a coaxial cable terminated at an
electronic box. A back-door path is an inadvertent point of entry (POE) for energy penetration,
such as windows, doors, cracks, seams, connectors, cable shiclds or non-electrical lines.

A convenient quantity to describe the above coupling to electronics is the absorption cross
section () which gives, when multiplied by the incident power density, the total power delivered
to the terminals of the electronic component.

Recently, an integral bound on & has been derived giving [1]

jodx < nZV(Pu M) )
(o]

where V is the volume enclosing the system, and P}, and M,,, are, respectively, the normalized

electric and magnetic polarizabilities of the system in the directions of the incident electric and
magnetic ficlds. For example, the right hand side of (1) is equal to 2% (41ra3/3) for a circular hole
with radius a, and equal to ©°L3/(12 #n (4L/w)) for a narrow slot with length L and width w. Eq.
(1) is useful in two ways. It bounds the behavior of & at low and high frequencies. It can also be
utilized to obtain some upperbound energy or power that an incident electromagnetic wave can
penetrate into the interior of a system, given the geometries and the distribution of its POEs.

Since (1) is of such a fundamental nature, it is worthwhile to derive it in more than one
way. A derivation slightly different from the one given in [1] can be found in Appendix A.

Reference {2] offers another look at (1) from a complex frequency and time domain consideration.
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Figure 1. Example of RF coupling to electronic pin with an impedance loading
represented by ZL‘ Voc and Zy are the Thevenin parameters
representing the induced RF stress.



Warne and Chen have skillfully applied (1) to bound EMP coupling problems [3].
Noticing that the left-hand side of (1) is proportional to the total absorbed energy for a step-

function indicent plane wave, they have shown that
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The left-hand side is the energy absorption, and S, = EmcH:m with I:Zimbcing the Fourier
transform of the incident field Eim = Eou(t), u(t) the unit step function. The right-hand side is the
total energy stored in the induced electric and magnetic dipoles p and m. It is interesting to note
that the energy absorption is bounded by the sum of the static electric and magnetic stored energy,
whereas if one starts with the frequency-domain Poynting vector theorem one will end up with the
difference of the two energies([4)].

The bound given by (1), although useful, often yields too loose a bound such as the case in
EMP interaction problems. It would be most desirable to have a bound tighter than what (1)
offers. Since the publication of [1-3], several other forms of bound on & have been discovered.
The purpose of this report is to discuss these bounds, some derived from first principles while

others from practical assumptions.

FIELD-THEORETIC CONSIDERATION

In this section the Lorentz reciprocity theorem is invoked to derive rigorously a concise
expression for the absorption (or coupling) cross section 6, which will be valid all the way to the
pin level within a system. The only assumption invoked is that the intervening medium between
the pin's terminals of interest and the RF source outside the system is reciprocal, be it lossy,

inhomogeneous, or anisotropic.




Let (E. H) and (E,, H)) be two electromagnetic fields oscillating at the same angular
frequency @ and having no singularities within the volume V bounded by the surface S, and §

(Fig. 2). The subscript r or t on a quantity denotes that that quantity is associated with the

reception or the transmission problem. In the reception problem one is interested in the power
received by the load ZL attached to the terminals (A,B), whereas in the transmission problem one

applies a voltage V, across (A,B) and asks for the power gain function G and the impedance Zr
looking out from (A,B). From Maxwell's equations one has the so-called Lorentz reciprocity

theorem,

V. (ExH-ExH)=0 A3)

within V, which gives, by means of the Gauss theorem,

(ExH-ExH)-ndS=0
IS~+SAB r t t l") (4)

The surface integral on S_ can be evaluated by the method of stationary phase and the result is

12
ISAB(Erx H-ExH) ndS=-——E_ (6,0 F® ) o
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where E, is the clectric field of the incident plane wave and F is related to the far field of the

transmission problem by

c
E ~iF— - oo
i r ©

and (6,,9,) is the direction of incidence. The surface integral over S , 5 enclosing the terminals
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Lorentz reciprocity theorem applied to the volume

Figure 2.
bounded by the surfaces S, and SAB'




(A,B) can be expressed in terms of the voltages and currents across (A,B). With the usual
definitions of V and I in terms of E and H and the assumption that 8, ; be electrically small, one

can obtain from (5)
12
thr + vl'Il. = ——E—Emc F
% Q)

The quantity of interest is the real power (P received by the load in the reception problem, and is

given by

1 -
=—R. 11
r 2 Lrr (8)

where RL is the real part of ZL Since Vt = Zl.It and Vr = ZLIr' one gets from (7)

2
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If one introduces the gain function G defined by
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into (10), one obtains

l2
P = HG(eo’ $,p(6,4 )qS, (12)
where
2 4R_R 1 »
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with I and 1 being the unit vectors in the directions of Einc and F, respectively.
Recalling that the definition of the coupling or absorption cross section G is P_divided by
S,c» one finally has the following concise expression:

2

o=2g Pq
4 (14)

which has also been derived by Tai from a circuit consideration [5].

BOUNDS ON ABSORPTION CROSS-SECTION

It is obvious from the definitions of p and q that they are real and never exceed unity.

Therefore, the first bound on G is

2
G < 1'—G
4r (15)

If (14) is averaged over all angles of incidence one gets

2 2
[ z'—q < L
8~ 8xn (16)




since p is averaged to 1/2 and G to less than unity. If losses between the pin's terminals and the
outside surface of the system were ignored, G would have been averaged to unity; otherwise the
angular average of G is less than unity by the amount of such losses.

One may notice that in the expression for P, given by (10), Ry cancels out except for the
part of R, contained in Z. This means that one may introduce quantities other than G for the
representation of P.. One such quantity is the directivity function D defined by
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where R__, is the radiation resistance, a measure of real power leaking out of the system when it is
driven by a source across the terminals (A, B). With (17) one obtains the following alternative

form for o:

2 4R R
o’:—l—-Dp —rad L 18
4 (18)
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A comparison of (14) and (18) shows that

Rmd

—_—

S
D R

which, for a real system, should be a small quantity.

The most interesting feature of (18) is that D can be interpreted as the directivity function of
all the points of entry (POEs) in the outer surface of a system and has nothing to do with the losses
(Rloss) between the pin's terminals and the POEs.



Since

2 2 2
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one gets for (18)

a2 4R RL

c<—D
ax ¥ (R, +Ry) (192)

2 R
4n R, (19b)

The last inequality is obtained when R is set equal to Ry .

The advantage of having (19b) over (15) is that the gain function G has been separated into
the prodl;ct of two parts, one part dealing with the radiation pattern (the D function) and the other
with the efficiency factor (meaning the losses or, more precisely, the ratio of radiation loss R 4w
load loss R or to internal coupling loss R, ). Although one may estimate the D and p functions

for a given situation, it is rather difficult to have any feel for what Rmd should be. To be sure, Rmd

is a very small quantity in a real system and is given by

Rpag =Ry~ Rigg @0)

If R _, is to be measured, one can first measure the real part of the input (or driving point)
impedance Z. and measures it again with all the POEs closed, as suggested by Wame [6]. The

difference between the two measurements will give R ad: AS of now no known procedures exist to

estimate Rmd'
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DIRECT DECOMPOSITION OF ABSORPTION CROSS-SECTION

In the preceding section the coupling or absorption cross-section is written as a product of
other functions, such as G, p and q as shown in (14). In this sense a decomposition of the
absorption cross-section has been achieved. As one may recall, such a decomposition comes
naturally in the process of deriving the cross-section and it does not come directly from the
sequence of interaction that is actually taking place. The sequence of interaction from outside to
inside is, first, penetration through POE(s), then coupling to cavity, then through cable shield(s),
etc., and finally to connector pin(s). There may be more or less intermediate steps than those just
enumerated. For simplicity, consider an interaction sequence with POE(s) to cavity to a wire pin

connected to the load impedance Z; . Then onc would be tempted to write for the absorption cross-

section at the pin the following expression,
= -1
O in = (Zo(msi))- (c,)" o, @1
1 .

where G represents the cavity effect and should have the dimension of area, o is related to the
absorption cross section of the wire (with Z; ) exposed to an angular spectrum of plane wave, and
Zio(POEi) represents the sum of transmission cross-sections of all POEs. In the following, two
heuristic approaches are suggested to derive an explicit representation for 6. The first is
borrowed from the ideas developed for mode-stirred chambers [7].

Let P, be the total net power that penetrates into the system through its POEs in the system
outer surface, and W be the corresponding total energy. Assume equilibrium is reached so that P

and W are related as follows:

P.

oW
= Q (22)
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where ® = angular frequency and Q = quality factor of the cavity including all losses. Now a

crucial assumption is made that the average power density S be related to the average energy

density W/V (V = volume of the cavity) through
S=cW/V (23)
which is exact for a plane-wave field. Combining (22) and (23) one has

M,
S=o Pr=Pr/o 24)

Once the average power density S is known, one may think of the wire being exposed to an

angular spectrum of plane waves that make up S. The average power absorbed by the wire is then

given by Sow, where o, has the form

Y 22 4RLR"I‘ 22
g = —q = — 0 S —
¥ 8t Y 8n 1Z, + ZTF 8n (25)

with Z__ being the input impedance of the wire in free space.
Recalling that P = (Y 6(POE,))S, _ one obtains from (21), (24), and (25)

o .. =P,/S, =(To(POE)) = q, (26)

AQ A2
pin 2nV 8=n

Comparing (18) with (26), one should have

12
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It is worthwhile in the future to investigate if (27) holds true.

An alternative way to derive (26) heuristically is to start with the time-domain Poyr:.ting
vector theorem, viz.,

9l 2.1 2) E=_-V.
at(zeE +2].|H +JE=-V-(ExH) 28)

which gives, upon integration over the volume V of the unfilled part of the cavity,

%W =P -P (29)
where W is the total energy stored inside V, PT is net flow of power into V through all the POEs,
and Py accounts for all the losses inside V. Eq. (29) is nothing more than a statement of power
conservation. When steady state is reached, and if the quality factor Q is introduced to relate Py
to the total energy content W, one obtains (22). If P, < is split into one part due to absorption
(Pab) by the wire's load and the other by the cavity, then

P =ﬂ+ﬂ“f. (30)
s”Q, " Q,

where Q_, = quality factor of the loaded wire, and Q,, = quality factor of the cavity. If there are
many loaded wires inside the cavity, one simply adds all the individual Q's in parallel to obtain the
total Q to be used in (26). From (30) the reccived power P, of the wire is

P2

P = P. 31
Torq, =T, T o
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If one makes the assumption that the loss due to re-radiation through all the POEs into the system's

exterior is small compared to all other losses, one may say that PT = [E io(POEi)]Sim . In this

case, one should have, on comparing (26) and (31),

Q,q, =16n°V /A (32)

The left-hand side contains parameters characteristic of the wire itself, in contradistinction to the
right-hand side, which is a function of the cavity volume V and wavelength A. Perhaps, the roles
that various types of losses come into play are more subtle than what has been assumed. This

should be investigated further in the future.

CONCLUDING REMARKS

It has been well recognized that accurate prediction of RF coupling to real systems is out of
reach. The most that one can hope for is to calculate its bound and/or to estimate its trend. In this
report various bounds on the absorption (or coupling) cross section have been discussed.
Consistency among some of the bounds has not been established. It is believed that most
difficulties that have been encountered here can be overcome if one canonical problem is solved
"rigorously.” One problem that offers such an opportunity is a cylindrical cavity with an
clectrically small rectangular slot in its outer surface and a wire monopole terminated at a 50 Q2
located within the cavity. This "simple" structure is also amenable to exact measurement and, if
one wishes, can be complicated by filling the cavity with various lossy material. The goal of
attacking such a problem is not to determine its “"exact” solution, but rather to find out the roles that
various losses(e.g., Rmd’ Ri,Rp Qc, Qw, etc.) play and how well the solution can be bounded by

the various expressions "derived” in this report. '
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APPENDIX A
DERIVATION OF EQUATION (1)

Let the far field scattered off from a target be

ikr

c
E—A-4;, I — oo (A'l)

The total cross section (Gy), that is, the sum of absorption (6) and scattering cross section, is

related to A via the optical theorem

1
G = - A) (A-2)

where Im denotes the imaginery part of the quantity following it, 1, is the unit vector in the

direction of the incident electric field, and Im (11- A) is evaluated along the direction of forward
' scattering, namely, l3 in Fig. 2. Let

AlsAl+iA15Rc(ll-A)+iIm(ll-A) (A.3)
Then, since the scattering process must satisfy the causality principle, A'1 and A; form a Hilbert
pair:

x -
—— A (x)dx
J‘o x2-@? !

Ao

Al(@) =

[T =2 5 dx
o x2—m2 ' (A.4)

aln

where the integral is understood to be the Cauchy principal value. Differentiating (A.4) twice with
‘ respect to o and evaluating the resulting equation at @=0, one obtains
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2.2 42
xn°c” d° ¢
> EG?AI((D)’ atw=0 (A-5)
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Recall that at the low frequency limit the scattered far field along the direction 13 is given by

E=-u mz[l x(1 xp)+-l-1 ><m]—CE
o 3773 c 3 4mr . (A.6)
Hence,
1-A=p 0?1l -p+ mzhl -m
1 o 1 c 2 (A7)
and
2.2 32
n°ct d ' .21
2 WAI((D)—TC (e—oll-p+Zolz-m)
= 2 .
=% V(Pu+M22) (A-8)

where the electric and magnetic polarizability tensors have been introduced, via the following

definitions:

p=e VPE_ , m=VMH_/Z (A9)

and |[E, !has been assumed to be unity.
Since 6 < Gy, one has from (A-5) and (A-8),

joadASn2V(Pu+M22) (A-10)
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