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ABSTRACT

This report considers how to bound the power picked up by a wire inside a cavity with a slot in its
wall. The consideration is based on equivalent circuits and power conservation, and is general
enough for applications to real-world systems. The calculations compare favorably with
measurement data.
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1.0 INTRODUCTION

Recently some progress has been made on calculating the bounds of RF coupling to the
interior of a system [1-4]. The bounds are on the coupling cross section and the integral of it over
all wavelengths. It has been realized that some of these bounds, although rigorous, can be too
loose. Attempts have been made to tighten these bounds and it was found that several coupling
loss mechanisms would play certain important roles in the search for a better bound [4]. In this
report a similar study is taken up but, instead, it will focus on a "simple" canonical problem, a
problem that involves a cavity, an aperture in one surface of the cavity, and a pickup wire inside
the cavity. In Section 2 the problem will be defined precisely and the goal of the study spelled out
explicitly. In Section 3 a circuit approach to the problem is explored and many related questions
will be raised and answered. An approach based on power conservation law is discussed in
Section 4 and the resulting bound calculation is compared with available experimental data. Two
appendices are given, one on certain subtle differences and similarities of the reciprocity and optical . :
theorems, and the other on a general integral-equation approach to the Babinet principle.

Before embarking on the present study it is perhaps worthwhile to point out one direct
consequence of the bounding approach. Making use of the bound on the integral of the coupling
cross section over all wavelengths, one can write down the exact solution to a boundary-value
problem, which is not only a rarity in itself but also not easily achievable by other means. The
problem is one of calculating the total energy (W) transmitted by a step-function plane wave,

Einc = Eg u(t—x/c), through an aperture in an infinite, perfectly conducting ground plane.

The solution is
Wy =to Ho-a, -Hy—€5 Eq -, - Eq (1)

where E; and H, are the electric and magnetic field amplitudes of the incident step-function

wave, &, and @, are the electric and magnetic polarizability tensors of the aperture. Itis ‘



interesting to note that the maximum energy penetration occurs for broadside incidence, as is
evident from (1). By the Babinet principle, the total energy scattered (W) by the complementary
disk is

1 1
wsc=EeoEo'P'Eo+5uo H,-M-H, (2)

where P and M are the electric and magnetic polarizability tensors of the disk. Eq. (2) actually
holds for scatterers of any shapes and any constitutions provided that W, is interpreted to be the
sum of scattered and absorbed energy. Note thatforadisk P=4 a,, - M =4 a,. From (1) it

follows immediately that, among the principal components of @, and ap,, one has the inequality,

2 1 1
> +

®e aa ®m,bb Om,cc (3)

which is implied by the conjecture reported in [1], namely,

v
+

e aa Om,bb Cm,cc (4)



2.0 STATEMENT OF THE PROBLEM

Consider the problem of an electromagnetic wave incident on a cavity with a slot in its
surface. Inside the cavity is a wire terminated at or leading to a resistive load. Such a situation is
depicted in Fig. 1a. One wishes to calculate the power or energy picked up by the load Z; .

In order to proceed with the calculation one usually asks for additional information such as
the exact geometries of the wire, the slot and the cavity, the conductivity of the cavity walls and the
wire, etc. One may then set up two coupled integral equations for the magnetic current in the slot
and the electric current of the wire with Z; = 0, and proceeds to solve them on an electronic
computer. The next step is to calculate the input impedance or admittance looking out from the
load Z; . With the solutions of these two problems one then has a Thevenin or Norton equivalent

circuit attaching to the load Z; , from which the power or energy absorbed by Z; can be

determined. This is the conventional approach.

The conventional approach as just described, although tedious and difficult to obtain high
accuracy, is nevertheless straightforwward. Since the objective of the present problem is to
calculate power absorbed by the load, one has to make sure that the numerical results do not violate
the power conservation law, that is, the net power flow through the slot into the cavity must equal
the power absorbed by the load if the cavity walls and the wire are perfectly conducting. This
power conservation requirement is such a delicate balance and can be easily violated by numerical
solutions. One may argue that the requirement can be incorporated in the algorithm of the
computer codes written for the two problems, one for computing the short-circuit current on the
wire and the other the input driving-point impedance.

If, on the other hand, one puts the power conservation requirement up front in the
formulation of the problem, one may choose a different line of attack rather than the conventional
approach. If the problem asks only for the maximum power that could couple to the load for all

possible wire configurations and locations, one may even abandon the conventional approach ’
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Figure 1. (a) Geometry of the problem, (b) equivalent circuit, (c) Norton equivalent circuit
at A,B, and (d) Thévenin equivlent circuit at C, D.



altogether at the outset because the conventional approach becomes impractical in view of the
infinitely many possibilities for these paraméters, let alone the question of numerical accuracy
imposed by the power conservation law.

One may raise the question as to why the problem under consideration is so loosely posed
in the sense that the wire configuration and location are not precisely specified, nor are the
dimensions and shapes of the cavity and slot. The reason is that in a real-world system one never
has precise information on quesions of this sort. To make the results of the present study directly
usable for real systems one must formulate the solution in such a way that it be independent of or
insensitive to such "detailed"” information. This means that a solution in terms of bound and trend
is more useful than a numerical solution to a boundary-value problem with specific configuration
and dimensions. To rephrase the problem to be considered in the following: calculate the bound

on the power or energy picked up by a wire inside a cavity with an aperture in its wall.




3.0 CIRCUIT APPROACH

For the problem depicted in Fig. 1a the appropriate circuit for the power transfer from the

slot to the load Z; is given by Fig. 1b, and Fig. 1c is useful for estimating the total power
penetrated through the slot.

From Fig. 1c one can immediately write down the real power, P, that couples to a load

attached across A, B, namely,

P=Re(v*1) = Re{L‘Jz—Y- J

lYex + Yin|2 "

(5)

2
|ISC| . 4 GinGex < IISC,
4 Gex (Gin + Gex )2 + (Bin + Bex )2 4Gex

where Yoy = Gex —1Bex, Yip = Zﬂ,l = Gjp — iBjy, and I is the short circuit current that would
flow through a perfectly conducitng wire connecting A and B (see Fig. 1a). Note that I, and G,
contain the resonant properties of the slot and the external surfaces of the cavity. The question that
comes up time and again is, Can one approximate (5) by the solution to the problem of the same
slot in an infinite ground plane?

Consider for the moment the right-hand side of (5) and see what it will become for the case

of an infinite ground plane. With the aid of the Babinet principle one has

1 72

(6)

Isc =2Hipe hegr




where Z, = 120 & ohms, R, and h,¢ are respectively the radiation resistance and effective height of

the complementary dipole and have the values

R, = 73Q

5 (7)
hegg = —L

T

for a half-wavelength dipole with length L. Substitution of (6) and (7) in (5) gives the familiar

formula for the power absorption by a half-wavelength dipole or slot, viz.,

P < =L2S, (8)

1
2
with Sjpe = Eine H:nc . The total power penetrating into the cavity is actually bounded by twice
the value of the right-hand side of (8), namely LZSinc, which follows from the duality principle. A
rigorous consideration based on an integral equation formulation is given in Appendix B.
We now return to the original problem depicted in Fig. 1a and see which steps in the

infinite ground plane problem can be generalized to fit our original problem. When the (narrow)
slot is at half-wavelength resonance one may say that the field distribution in the slot is fixed and

only the amplitude of the aperture field can be changed by the external and internal environments of
the cavity. Thus one may say that the steps in (6) and (7) still hold approximately except that 2H;,.

should be replaced by H, the short-circuit field when the slot is completely covered with isotropic

conductor. With this slight modification we have, in rationalized mks units,

~ 200 (Hg ) )

where £ =L/2. At the low-frequency limit, I is well approximated by H¢. The provisional
bound for the power through the slot into the cavity is approximately given by 400 (Hscl)z. If the

only loss inside the cavity is due to the presence of the resistive part of Z; , then the power




absorption by Z;_is also bounded by 400 (Hscl)z. Obviously this bound can be far too loose
because the wire load may not be able to absorb all the upperbound power transmitted through the

slot. To make this point more explicit, recall that the absorption cross section of a wire averaged

over all angles of incidence and polarization is given by
6. =—q £ — = — (10)

where we have used the frequency that corresponds to a half-wavelength resonant slot. Fora

monopole of length L, 6, should be twice the value given by (10) if S;.. is used for power

calculation. Now, one has two cases to consider, namely, (a) all the power transmitted through the
slot (L2s-mc) will be absorbed by the wire load Z; , and (b) part of L2sinc will be absorbed and the
rest will be re-radiated through the slot into the space outside the cavity. This point will be picked
up further for discussion in Section 4.0.

Since the problem at hand is to bound the power absorbed by the load Z; , perhaps one
should focus on the Thévenin equivalent circuit (Fig. 1d) directly attached to Z; . The real power

P; absorbed by Z; is given by
P = [Vod| - - |v(',c|2 q 11
lZa + ZL|2 4Ra ( )
with
_ 4R, Ry
Za+ 2 (2

where R, and R, are repectively the real parts of Z, and Z; . Similarly, the real power P, lostin Z, is
T 2
' 12 Ra |V°°|
Py= [Vif? —Ra -
|Za + 24| 4RL,

q (13)



and the ratio of P to P, is the same as R; to R,. Without loss of generality for the discussion to

follow, let the reactance part of Z, tune out the reactance part of Z; (i.e., X| =- X,), or vice versa.
Then P and P, depend only on the variables R; and R, apart from V(',c . There are two distinct
cases, namely, one with R, fixed and varying R and the other with R; fixed and varying R.

These two cases lead to different values for maximum PL, ie.,

v 2
[Vee| . |
max P; = (fixed R,, varying R ) (14a)
4Rp
and
v 2
[Voe| .
max PL = TL_ (fixed R, varying R,) (14b)

Eq. (14a) is a familiar form and is obtained when Ry =R, whereas (14b) occurs at R, = 0.

However, it should be noted that if R, = 0, P|_should also be identically zero because an antenna

which does not radiate to far distances cannot, according to the reciprocity theorem, receive any

power from distant radiation.

A general procedure to calculate the receiving property of an antenna, especially an

electrically small antenna, is to assume, for convenience, R, = 0 (or more precisely, R; >> R,) and

to proceed with the calculation without encountering any fundamental difficulty. In this way, the
maximum real power that any load can extract from the incident wave is also given by (14b). It
must be borne in mind that, although R, can be very small in comparison to Ry , it is not zero;
otherwise P; = 0. This also means that R; cannot be zero in formula (14b), i.e., the maximum
power absorbed can never be infinite no matter what wire configurations and slot dimensions one

may choose.

Eq. (11) is plotted in Figs. 2a and 2b for the two distinci cases when the reactive parts of

Z; and Z, are tuned out of each other. Case (a) is for the situation where the configuration of the

geometry is fixed and the load can be varied, whereas case (b) is for fixed load and changing

10
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Figure 2. Power absorption P, as a function of (a) R /R, and (b) Ra/RL'



configuration. In the latter case, however, Vo is changing as well. Thus, one cannot say that

(14b) contradicts (14a). But the basic question still remains as to which of the two expressions

gives the maximum possible response, assuming that one has the freedom of either varying Z; or
Z, or both. Does one really have to go through all these cases in order to find out which gives the

maximum?




L4

' . 4.0 POWER CONSERVATION APPROACH
In a recent paper [5] it was suggested that a decomposition apl;roach may be a good
candidate for estimating the trends and bounds of the back-door coupling into a system. For

coupling through only one layer of shield (on which there are POE's) the approach makes use of

the following approximate formula for the absorption cross section (cp) of the pin:
AQ
Op = o (POE)) |'| —='|o

where o(POE,) is the penetration cross section of the i-th POE on the shield, excluding the re-

radiation out from the cavity, ©

w 1S the absorption cross section of the wire in the absence of the

shield with random angle of incidence, A is the wavelength, and V and Q are the volume and
‘ quality factor of the cavity within which the wire is located (cf. Fig. 1a).
Formula (15) can also be derived from a power conservation consideration. Notice that in

obtaining (15), the following relations have been used:

Q=5 (16)
w=3Y
c a7

where W and Py are, respectively, the total energy and power dissipated in the cavity (including
the loss in the shield and the loading of the wire) after the steady state is reached, S is the average

power density within the cavity, ® = 2nc/A, and c is the speed of light. With (16) and (17), (15)

can be re-written as

13



S-o
G, = 6 (POE;) .4
- [ oom] 22

= : -gl )
[? o(POEx)] on (18)

where O is the total absorption cross section including the losses inside the cavity, in the shield

walls, and re-radiation through the POE's into the outer space of the cavity. Eq. (18) also holds if

one includes re-radiation effect for 6(POE;,), while excluding re-radiation effect for oy. There are

various ways to look at (18). For example, the factor 0,,/o can be considered as the fraction of

penetrant power absorbed by the wire. On the other hand, the factor [20 (POE;)]/ o1 canbe
1

thought of as the shielding of the cavity.

By writing 01 = G, + Oy, one has from (18)
op = Y 6(POE;) —Ow
: Oy + O, (19)
Furthermore, since by definition

Ow Qw =071 Qr = 6; Qr = — | (20)

one has
-1

Qw :
O'(POEi) e Ea——
[2 ] Qu + Q'

Q
-]
i

r -

_ _ Q
= zi“cs(POEI)J L+ Q.

7 —1
= (ZC(POEi) (1_'__Q_w_] 3

Ll i Ql'

14




where the Q's are the corresponding quality factors.

To calculate o, Q,, etc. is generally difficult, especially for a real-world system. However,
under certain circumstances this is possible. For example, consider a wire inside a perfectly
conducting cavity with a thin slot in its surface (see Fig. 1a). If the length of the wire (£,,) is much
greater than the slot length (£), then at frequencies below the wire's fundamental resonance (f <
c/(4L,)), o1 = O,. Thatis, from (18), one has

G, = o(slot) - (22)

p

On the other hand, at frequencies greater that the slot's fundamental resonance (f > ¢/(2£,)) one has

01 =0w * Ogjat

=20, (23)

in the trend sense, where G, is the slot cross section when the polarization and the angle of
incidence are randomized. In other words, O, is the same as G, introduced in (19), which is
different from o(slot), the slot penetration cross section excluding re-radiation out of the cavity.

From (18) and (23), one then has

o, = 5 o(slot) (24)

When the upperbound of G(slot) is used, Eq. (24) provides a good estimate on the upperbound of

the pin absorption cross section, as indicated in Fig. 3 which shows the comparison between the

estimate and a measured result taken from Ref. 8 for L, =44 cm and ls = 10 cm. One thus

arrives at the following estimates:

upperbound of atslon) = £, at f=f; = c/(24;) = 1.5 GHz
= 2 (e/5), for f < f, (25)
2
=‘§(fs/f), for f2 f

15
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Figure 3. Comparison of measured data with a bounding estimate (o) for the absorption cross

section of Fig. 1a with a 10 cm thin slot. In the figure, various cross-section trends
used in the estimate calculation are also given (see Egs. (19), (25)-(27)).




v

upperbound of Ggy, = £2 /(47), at f=f
(26)
. ~ £2(£/5) 1 (4m), for £< £
= (£, /£)* /(4r), for £2f
upperbound of ¢, = l%, /m, at f=f, =c/(4Ly) =170 MHz
~ 12 (£/£y)? /7, for £< £, @7

& (£, /)2 /7, for £2f,

The bounding calculation curve given in Fig. 3 makes use of the approximate equations (18), (25),
(26) and (27) which appear to be violated only around 100 MHz and 8§ GHz. The violation around
100 MHz is due to the neglect of the body resonance, which can give a few dB enhancement. The
violation near 8 GHz may be due to the possibility that G, >> o, at that particular frequency, so

that Cp= o(slot) instead of ¢ = o(slot)/2 (notice that the underestimate is about 3 dB, a factor of

2). From the figure, it is also observed that over-estimations appear in several frequency ranges.

These over-estimations could have been avioded if the formulas given for o(slot), 6, and o,

slot

had allowed for more detailed frequency dependence than in the oversimplified equations (25),
(26) and (27).

The good agreement described above may be an indication that the effect of the cavity
loading of the aperture on the upperbound estimate is negligible. If this is true, the upperbound
estimate based on a power conservation consideration will be very useful. This is because the
estimates of penetration cross sections without the cavity loading effects are readily available for
many apertures. For example, in the same cylindrical structure as that in Fig. 1a with a

circumferential slot of diameter d instead of a 10 cm slot, one then has approximately

17



upperbound of & (circum slot) = %ndz , atf =f, =c/(dr) = 315 MHz

. ~3naer6)%, forfst,
4 (28)

nd%(f, /f)> forf2f,

Hlw

1
upperbound of Ocircum.siot = 6 nd?, atf=f,

l

Za%e/6,)4,  forfsf,

% a2(f, /)%, forf>f,

Applying (27), (28), and (29) to (18) one obtains the bounding estimate curve of Fig. 4, which

again is in good agreement with the measured data [8] except for a few disagreement points similar

to those shown in Fig. 3.

18
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Figure 4. Comparison of measured data and a bounding estimate (op) for the absorption cross-

section of Fig. 1a with a circumferential slot. In the figure, various cross-section trends

used in the estimate calculation are also given (see Egs. (19), (27)-(29)). The measusred
data for a lightly loaded cavity is included.
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APPENDIX A

RECIPROCITY AND OPTICAL THEOREMS

There is some striking similarity in the derivations of the reciprocity and optical theorems in

field theory. The former leads to '

).2
°a='&;GPq (A1)
while the latter yields
)"2 eilcr
G, +0. =— Re (11-A), ithE.=A —» r— o0 .
a7 n ) W s 4nr (A:2)

where G, and O, are the absorption and scattering Cross sections. In particle physics ¢, and o

are referred to, respectively, as elastic and inelastic scattering cross sections.

Consider Fig. A-1 where S, is the surface enclosing an antenna or scatterer and S is the

surface of a sphere with a very large radius. Then the Lorentz reciprocity theorem gives, for the

fields of the transmitting and receiving problem,

[(E x H —E xH,)-ndS=0

S +Sa (A-3)
while the power conservation gives, for the total field, E, . + ESC,
[ Re[(Bipe+ Eg)x (Hip + Hy)] -nds =0 (A-4)

Sm+SA

22




Source-Free Region

Figure A-1. The source-free region where the Gauss theorem is applied.
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Eqgs. (A-3) and (A-4) can be reduced to [4]

Vilg+Ve == [ (E x Hy-E,xH;)-ndS
See

(A-5)

Py +Py = [ Re[(Eipe x Hy +Eg x Hie)] -n ds (A6)
S

where (V,, [;) and (V, ) are the voltages and currents at the antenna's terminals of the
transmitting and receiving problem, P, and Py are the power absorbed and power scattered. To
evalutate the surface integrals over S_, the method of stationary phase is employed. There are two
stationary points: one is along the propagation direction of the incident wave 1, . (forward
scattering direction) and the other along the specular direction of the incident wave -1, .

(backward scattering direction). It is interesting to note that only the stationary point at —1; .

contributes to the integral (A-5), whereas only the stationary point at 1, . contributes to the
integral (A-6). At the stationary point 1;,.on S_, (E, x H,~ E, x H))-1;,. = 0 [6]. Atthe

stationary point —1; . on S_, Ej,. x H;c + Eg % H;nc has no real part [7]). Hence, Egs. (A-5)

and (A-6) give
XZ
Vil + Vi I = ? Sinc 11-F(~1inc) (A7)
}.2
P,+ P = — Sinc Re [1;°A1jpc)] (A-8)

where S;,. (= Eg / Zy) 1is the Poynting vector of the incident wave, and the amplitudes F and A

are defined as follows:

24



ikr

[
t CR (A-9)
e‘l
E, ~1E, A — .
s¢ ~1Eg P (A-10)

with E  being the amplitude of the incident plane wave.

The right-hand side of Eq. (A-6) can be transformed to another form. Since

VxE,=iopHg, - J, (A-11)

V x Hy, =-iweEg + J (A'12)

everywhere throughout all space, where J and J, are the electric and magnetic currents that give

rise to E. and Hsc, one has
Re V- (Ejpc X Hoe + Ec X Hipe) == Re (J™* Eine + Jin - Hine) (A-13)
By virtue of the Gauss theorem Eq. (A-6) can also be written as
Py +P = fRe (™ Einc + Jm - Hino) dV (A-14)

If P, and Py are the time-average power, the right—hand side should be halved.

25



APPENDIX B
INTEGRAL-EQUATION APPROACH TO THE BABINET PRINCIPLE

In this appendix we will derive using an integral equation formalism the receiving
characteristics of a slot antenna in an infinite planar screen from those of its complementary

antenna, simply called the strip dipole antenna in the following.

B-1. The Slot Problem
First, let us consider the slot antenna depicted in Fig. B.la. We are interested in finding the

open-circuit voltage, Vs »across a, b which may be connected to a two-wire line or a coaxial
cable. In addition, we want the input impedance Z3, , of the antenna across a,b. Let Eg., Hg,
be the scattered field satisfying the radiation condition at infinity. Then the Helmholtz
representation theorem says

HSC=fon'stcGdS'+;VxVxJ'n'xESCGdS' (B.1)

iop

where the time factor e ' has been suppressed, n' is the unit normal pointing into the region
containing the observation point; G‘ = cikl!—ﬂ / 4njr — | . Equation (B:1) can be derived most
easily from the vector potentials, A and A*, corresponding to the current sources, K and K*,
where K=n'xHg. and K*=n'XxEg.. The corresponding equation for E. will be given

below when treating the strip dipole antenna. Now we have

nx[VGx(n'xH)]=nxH §+nxn'(H-VG)=angS' )

sincen xn' =0 for a planar screen. Thus, by choosing (3G/dn") = 0 at the plane of the screen

(z = 0), we have
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1 \ :
nxHg = 2o nxVxVx“'Slot n'xEg. ¢ dS (B-2)

with ¢ = 4nG . On the illuminated side of the screen (z > 0) Hyya = Hipe + Hpes + He: , and

for z< 0 Higa = Hg, where H ¢ is the reflected field by the infinite screen. Matching

nx Hig = nxHigay and nxEj = nxEygy in the slot, and noting thatn x (E;,. +E ) =0
at z=0 we obtain
L nxVxVx [, nxEg @dS =- = pnx (Hpe+ H
2mmnx XV X ] ot M ¥Esc 9 dS' = Eunx( inc + Href)
(B-3)
= - pn x Hjye
Next, we introduce Vg and the effective height of the slot hS as follows (Fig. B-1a).
b b
\ R =—ja Eyl -ds=—ja (Eq + Eipe) - ds

(B-4)

=h5 Eic = ZoHjyc - (k xh5)

1
where K is the unit vector in the propagation direction of the incident wave and Z, = (u/g)2.

B-2. The Strip Problem
Now, we move on to the complementary strip dipole antenna shown in Fig. B-1b.
The Helmbholtz representation theorem gives
1
E,. =Vx|n'XE,.GdS'-—VxVx|n'x H_G dS'
sc J sc (e sc (B-5)

Again, we take (dG/on) =0 at z =0, so that

nxE¥ =-

nxVxVx[ . n'xHgods
. sm SC
2Time P (B-6)
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since, from symmetry, n X H., =0 in the aperture. At z =0+, (B-6) gives

nxVxVx n'x H ¢ dS'= —en x Eg,
2mio strip sc s
B-7
, =en X Ej;c (B7)
The total current, I‘Sic , induced across a', b' is given by
b - .
1 = [ (Him ~Hiw) - ds =2 (HE +Hyp)-ds  (since HE = HY)
1 ya__ 1 14
=—V,=—h"E; (B-8)
d 'oc inc
Zin Z?n

where we have introduced the effective height hd for the strip dipole. Comparing (B-3) and (B-7)

one can observe that if

IJ-Hinc A EEinc
(slot) (strip)
then
b by
—ja Ei - ds & ja, H.- ds
(slot) (strip)
which means
d
2V§c = I
that is,
(B-9)
kxh' == Z—g hd

in

which is one of the two results we have set out to seek.
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B-3. The Transmitting Problem
To find the relationship between the input impedance Z3, of the slot and Z?,, of the strip

dipole we consider Fig. B-2. From symmetry, H*=-H- and E* = E- for both problems.
The aperture electric field ES in the slot problem satisfies (c.f. Eq. (B-2))

1
2w

iy t8(t — 1) (B-10)

: . -_1
VxVxleans(pdS=uH =3

On the other hand, the tangential magnetic field in the strip dipole problem satisfies (c.f. Eq.(B-7))

1 d
V x V x nx HlodS = eV to(t—t .
i stip + ¢ oto(t—to) (B-11)

Upon comparing (B-10) and (B-11) we get

2 b 1 b o4
L E ds—afa, HY - ds (B12)

Let us recall the usual definition for the input impedance:

1 ¢b d V,
Zisn=1_.fa E®- ds, Zin =
N 2]3, HY - ds

where ES and Hi are evaluated at t=t,. Using (B-12) we immediately have

po e 2z8
or
1 (B-13)
Zisn Z?n - Z Zg
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When the slot antenna (Fig. B-1a) is used as a receiving antenna, it is physically more

appealing to think of the induced short-circuit current IS across a,b. Using (B-4), (B-9) and
(B-13) we get

1 z 72
IS =-ZTV§C = 20 Hype - (kxh%) = —2—h? Hp
in in In<in
q (B-14)
=2H;,-h

which is the dual to V& = Ejge- h9.
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