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ABSTRACT

By generalizing the use of complex vector magnitude for incident and scattered fields to norms,

2in time domain can be similarly scalarized. The paper explores the use of appropriate norms for
for transient scattering. This allows one to optimize transient

-

S ! N
@%ﬂg- scattering length (or cross section)
b7 fields for maximum scattering.
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L Introduction

Historically electromagnetic scattering and its practical application, radar, have developed using
frequency domain concepts [8, 10]. Even here, however, transient characteristics have appeared
associated with bandwidth. Beginning in the 1960s, associated with the electromagnetic pulse (EMP)
program, much progress has been made in transient electromagnetic theory and associated antenna
design, pulser design, and interactior/scattering analysis. (See some reviews [1, 9] to name a few.) It
seems appropriate and constructive to apply some of the concepts and technology here to the more
general radar scattering problem. In fact, this application has been developing over some time now (an
example being the singularity expansion method (SEM) for target identification).

A common concept used in radar is that of a scattering area or cross section traditionally defined
by [10]
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This area relates the energy density scattered in a particular direction i+ atadistance r to that incident on
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the target from some direction '1'1. Note that A is in general also a function of the polarization of the
incident field (taken as a plane wave). Note that this definition applies to both monostatic (T,. = - 71 or

backscattering) and bistatic (T, # —'1'1) scattering.

Looking at this definition, let us convert it to something more convenient for our purposes, a
scattering length, defined by

= A"2 (1.2)

This is now first order (scales with) the scattered far field. Later this will sometimes be generalized to a

vector scattering length when the scattered field, at least in a maximal sense, has a particular orientation ?g
at the observer with '

=4, =77, [i]=1 (1.3) R}




noting that 1, may be complex.

One can construct a scattering operator relating the far scattered field to the incident field via the
free-space dyadic Green's function used in an integral equation to find the currents on the scatterer, and
in turn the scattered fields. This can in turn be used to expand the scattering, for frequency and time
domalins, in terms of SEM parameters (natural frequencies, etc.) [4, 5]. For our present purposes we
Pet':ell)c,i need to define a scattering dyad (or 2 x 2 matrix) which converts the incident field into a scattered
arfield as

= -7 = =
Ef(F.s) = CTE A(s) + Ejne(s) (1.4)

Note that A has the dimension of length (meters, like £). The factorof e™* /(427) is carried through from
the leading term in the Green's function for the far field [4, 5], but whether one includes the 1/(47) is

arbitrary. Not expressed, but included in I-{ are’l} and '1',, which for our present purposes will be
considered fixed, and often taken for backscattering.

In this form our scattering length is

L [Aj0) - Eie(jo) s
T [E(o] , |
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This is of course a function of frequency and polarization of the incident field. Noting that the complex
magnitude is the same as the 2-norm, we might ask how large ¢ might be. For a fixed frequency w this is

1 1=
L jw) = !A ‘(oﬂ
max (J@) T (jo) o
1 .
1 3y s, 2
= ﬁ—;[lmax(f\ (jo) - A(Jw))}z (1.6)
T = adjpint = *T = conjugate transpose
Amax = maximum eigenvalue (real and non negative)

where 2v means 2-norm in the vector (or matrix) sense [3]. The polarization of the incident field which
achieves this can be considered in some sense optimal and the polarization of the scattered field in this

condition can be used to define '1', for a given o. Maximizing over all ® we can define
{nax = Sgp Lmax (j@)

from the above. This is like an e-norm (peak) in a function sense (eof) (function of ) and a 2-norm in the
matrix sense (2v).



Il Scattering in Time Domain Via Norms

For some arbitrary (physical realizable) incident waveform in time domain, one may ask how to
generalize this concept of scattering length (or area). First note that the scattered waveformis notin
general the same as the incident waveform, but is related from (1.4) as

Bp(F, 1) = 7 K() ¢ E‘w(:-g)

o = convolution with respect to time (1)

noting that the far field is a function of retarcled time.

Second generalize the concept of scattering length from (1.2) to time domain as

t=+dr r [Iéf (t)l = A% (2.2)
Epne(t)}

where the norm to be used is as yet unspecified. Now, not only is £ afunctionof 34, 1,, and ., butaiso
of the actual detailed incident waveform with its multiplicity of shape-describing parameters instead of just
the single parameter, frequency.

Substituting from (2.1) we have
- = r
A1) 0 Ez‘nc(“'gjq

b o] (2.3)

so that for a given K(r) o scattering matrix operator, the scattering length is formulated in terms of the
various possible incident waveforms.

Of all the possible norms one may use, there are desirable properties one may wish to impose
based on various physical properties. One ray think of these as "natural” norms. The first property to
impose is time invariance, in the sense of time-invariant physical systems. This is a time-translation
symmetry in which we require

u Em(t—fj = E Ene(t) l (2.4)
i.e., it does not matter where the waveform is shifted on the time axis as far as the norm value is
concerned. This allows (2.3) to take the r-independent form
N ORR 20
L= B et el (2.5)
47 [Epne(0)]
A second property one may impose is time reversal symmetry, i.e.
|Binc(=)] = [Einc (o)} (2.6)




In this sense the "size" of the pulse is independent of which way one looks at it along the time axis.

Note that the scattered field is characterized by a particular direction of propagation ?,
(measurable) while the polarization can be anything perpendicular to this. In defining coordinates for

measurements, while one direction T, is natural, the two coordinates orthagonal to this can be arbitrarily
rotated about .. Similarly the incident field has a characteristic direction of propagation 14, but the

polarization 1, need only be perpendicular to this. For the case of backscattering (F = ~14) this

rotation of the transverse coordinates applies simultaneously to incident and scattered waves. So a third
property of a "natural” norm might be taken as invariance to rotation of the transverse (polarization)
coordinates. Note that for our far-field scattering problem the vectors are essentially two-dimensional (two
components orthogonal to the propagation direction) and so only two-dimensional rotational invariance is
postulated here.

In (2.5), for the present let us assume that the norms in numerator and denominator are the same
for simplicity. In that we can use these norms to account for various efficiencies in launching the incident
field from a transmitting antenna, and receiving the scattered field (in the presence of noise), one may
choose different norms for these two. However, one will still need to be concerned with some
normalization so that the units come out the same. Letting the two norms be the same then (2.5) is
suggestive of the norm of an operator [3, 7] in that

A@t)ol = sup - (2.7)
2 [Bnc@] = 0 JEmc(1)]
This allows us to find a maximum scattering length via
0S¢5 tax = —— JA() ] (2.8)
Q47z

An interesting question concerns what E;,. achieves this £may, this being a possible definition of

the optimum incident waveform. Note that in (2.5) our choice for our norm of E;nc also should be such

that all finite values of the norm correspond to physically realizable waveforms (this perhaps being only an
approximation). Let us then define a waveform efficiency as

L (2.9)

{max

il

n

For each norm one can determine the effectiveness of a given waveform in realizing the maximum
scattering length.



i Norms for Scattering -
A. p-Norm of Vector Waveforms .
Let us now consider some norms that might be appropriate for scattering length in time domain.

Begin with the p-norm of a vector function [3] given by

1
ﬂiz’(;)gp = {]’ 22;[5”(,){?4:}" (3.1)

—oon=1

where we have assumed the waveform to have two components (normal to the propagation direction) as
discussed previously. Here the waveform applies to both incident and far scattered fields.

Noting the commutativity of summation and integration in (3.1) the p-norm is clearly invariant to
time translation and time reversal for all p. However, this is not in general invariant to coordinate rotation
about the propagation axis. For a “natural” norm we would like the norm, in effect the length of the vector,
to be independent of the coordinate rotation around the propagation axis. Physically, the waveforms are
real vectors and the length represents a field strength. The only p-norm which preserves this rotational
invariance is the 2-norm which thus seems a "natural” norm, in particular for the vector aspects.

B. 2-norm of Vector Waveforms and Scattering Operators

Appendix A considers the 2-norm in detail. Summarizing

1
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H;{(,) 0[}2 = [Amax[(f\(jwmax)jf[
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‘Sn;x = Jar A(jomax) * Fmax ,Itﬁngx = [Sngx 32)

where omax Maximizes the maximum eigenvalue for all frequencies and #max is the corresponding
eigenvector (of the Hermitian product).

C. m-Norm of Vector Waveforms and Scattering Operators

Let us now define a norm based on the maximum electric-field magnitude. This has physical
significance from the point of view of electrical breakdown. One can also argue from the concept of
coordinate-rotation-invariance (around the propagation direction} for a plane wave (a property of a "natural”

normj that only a vector magnitude can be used. Viewed anotﬁer way consider for any fixed ¢ that E(t)
has an orientation angle (say w(t)) around the propagation axis. Then a real vector E(r) canbe

considered in terms of its magnitude and angle. In an angle-independent sense this leaves magnitude. )
This relates the norm to an «-norm (peak) over angle, similar to the so-norm over —oe < t < co. ‘I




Let us then define the m-norm as

2, = | e, |,

sup |E(2)

{HE(:) SO0 f}% (3.3)

This is clearly a norm [3, 7] with scalars factoring in magnitude sense and the sum rule (norm of sum < sum
of norms) applying. This norm is discussed in some detail in Appendix B. Also here we find the m-norm of
the scattering operator to have the bound

A0y < ﬁ A, |1f (3.4)

with equality at least for a restricted set of scattering operators.

A graphical illustration of this norm is given in Figure 1. Consider some vector waveform E(¢) with

magnitude and angle (about the propagation direction '1', for a scattered wave) both as functions of time.
One can consider this waveform as a function of time or space by noting the connection between distance

inthe T, direction and a snapshot for constant time by looking in space in the '1', direction interpreted as
retarded time t in spatial units ¢t (<< r) as indicated in the figure. Consider a circular cylinder of radius

Uﬁ(z)ﬂm (electric-field units) with axis along the propagation direction. The waveform is contained within

this cylinder, "touching” it at one point at least. Note that the coordinates for this field (transverse to '1',) are
specified by the orthogonal directions '1}, and -1',, for the two electric-field components.



Figure 1. llustration ¢f m-Norm.
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v. 2-Norm Scattering Length for Scatterer Characterized by a Single Pole Pair

As in Appendix A the scatterer is characterized by a single poie pair as

Als)

&fs-s1] + F:""[s—.s';]-1
(4.1)

51=8Q1+ jour,Q1<0

with [91[ assumed small as necessary. Then let us consider scattering length for various incident waves

E(r). Our scattering length is

lK(t)?E(t)l
r 2 . 4.2
ﬁ [EC), (42

(2 -

with a superscript to indicate the norm. A subscript can indicate the kind of exciting waveform. The
maximum scattering length for small Q4] is from (A.5)

2 = 7=k o, = =|RUoma)],

1

= Tl'[ 91]- [1max(c1 : 31)]5

Omax = O (4.3)
Ajor) = [-aq]
From (A.6) the maximizing eigenvector is
& - & - Emax = Amax Fmax . [fmax] = 1 (4.4)
giving
22, = T:,; fz\(ljwmax) * Fmax (4.5)

A. Step-Function Incident Field

First let the incident field take the form of a step rise with an exponential decay as



*

() = E, T, €u(s) , E(s) = E, Tp[s-Qo)"

Q <0, real , T, -1, =1
(4.6)

e, = Eo[—2§20]%

This is a special case of (A.2) and (A.3). Note that the exponential decay, even if small, is needed for the
2-norm to exist.

Now find the scattering norm in the same manner that is used in (A.11) by closing the contour in
the left half plane as

2

ni(t)?E'(:)H

94 = -3 2 =
, =5 BI, E(-s) - A(=s) - A(s) - E(s)ds
= B(-0,) - AT (-Q,) « A(Qo) - T Eo @4.7)

+ 2Re[E( 1) - AT (=s) - & - 5(81)]

Assuming that the operator is highly resonant, then let
(1] << [@f] . || << o (4.8)

giving

L ; 1 - 3 1
+ 2Re —— 1, - & [-2Q cf e, —
{—jm p - & [F2q] - & P J'm1]}
= £2{20;" 072 3, - e | - i) -
T*- [-—91]—‘l w1'2 -1.1, - Re [1T 31] . -{p}

By making ¢4/ sy imaginary so that 1:{(0) is zero (corresponding to the property of a real scatterer) the first
of the terms goes away giving

10
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!I{(:) 0 E‘(:)u =7, Re[af : 51] A N (4.10)

Alternately one could subtract off a constant dyad (small) in (4.1) to give zero DC content and obtain the

same result. Note that the real part of a Hermitian matrix is symmetric so that 1 canbe chosen as areal
eigenvector to maximize this scattering norm.

The scattering length for a step-funchon incident wave is

42) =0 (4.11)
by letting Q, — 0. The waveform efficiency is similarly

@) l( )

nf 1‘2) =0 (4.12)

B. Damped sinusoidal incident field

Choosing the incident waveform as

E(s) = -E—;- {-1;,]:.5'—50}—1 + -1'; [s—s:]-1} (4.13)

so=Qo+jmo,Qo<0,|'1'pl=1
then using the results of Appendix A the various norms are evaluated. For present purposes let 5, be
nearly matched to s1 in the sense of (A.12).

The scattering length from (A.14) is
1

1 -
- - Q 12 1
(2 - T- o -ef a3 {1 + Ej'} 5o + 53| (4.14)
So the waveform efficiency is
5 £2) -8 0.7 2 Q % -Q
IR g I R {1+_g} = (4.15)

11



Choosing .
Tp = Bmax » 5o = jox (4.16)

gives
5@ _ _1 -1 3
thax = g Pl & - %
(4.17)
7@ = 1
For s, near sy the more general result in (4.15) can be used. As a special case consider
So =514 1p = fmax (4.18)

This is the case that the incident-field and operator poles are matched giving a second order pole pair for
the scattered field. With optimum polarization this gives a waveform efficiency

7@ ~

"1 (4.19)

So one does not need an undamped incident wave to reasonably approach the maximum.

12




m-Norm Scattering Length for Scatterer Characterized by a Single Pole Pair

Again the scatterer is characterized by a single pole pair as

4 ~ ~1
A(s) = &fs-s] T, 'c';[s—s;]
- st

A(t) = {61 T+ el jl u(t)

S1=Q1+jw1,Q1<0,|Q1l<<|aJ1|

Our scattering length is

1 g}{(t) 4 EU)N
L N B "4 (5.2)
vaz RG]

5(”‘)

The maximum scattering length for the restricted case of & symmetric and a constant times a real dyad

gives from (B.20) (for small [Q4])

0 = gz Fod, = 143 o]

trae = 7z B0, = 247 o] il

- 2 -

# = 4, e &3
Tmax = eigenvector of ¢4 for maximum eigenvalue magnitude

with maximizing waveform a square wave of period 27/ w4.

A. Step-Function Incident Field

Let the incident field take the form

E(t) = E, T, e u(t) , Ey(s) = E, Tp [5-Qo]

Q, 0,7, real, 1, -, =1 (5.4)

In this case the m-norm exists for all non-positive Q,.

For the scattering we have

13



Als) - E(s) = Eo{&'1[s-s1]—1 + Ef[s—s;]-1} . :l;,[.s'—s,,]-1

e‘ﬁ‘ e’o‘ es;t esO‘ (5.5)
A() QE(t) = Ep{m2— g - T, + &Sz . 1,} u(s
) ) o S0~ 51 {4 5 —S; y4 ( )

For the case of small Q, and Q¢ we have

A0 B =2 {leio |y T, <[y T} ulo)

~Jja
Jjore =jott
_ 2E, . fo¢)| 5 . = s =
= - a)10 sm(—z—) e 2 & -Tp+e 2 & - 10 uft)
(5.6)
jot
_ 4E, . (o4 . 2 ,
= - w: sm(—z—) Rele 2 & - Tp | ult)
Forming the m-norm let
o
- "T - - - e d = bt
B GRS _ [6‘1 1p] [01 1p]

aclf = P 2 (5.7)

P 6'1 € - p !01 1p[
0<ac<1
giving
- 4E,
(] = 2 I
UA(t) E(t)ﬂm- p” |c1 1p|X
2 sin?(y) i(2
X% = sup — Re[aef( “”’m+1] (5.8)
| 4 .

_sinf(y) .
= szp — {a cos (2y+p)+1]}

14




By setling @ = 1, 8 = £ n weobtainthe largest X as 1. This corresponds to &y - '1'p being £ timesa
real vector. For a = 0 (circular scattered polarization) X is 1/4/2.

The scattering length for a step-function incident wave is

m) o |4 Eo 1z 5 ‘
£ s ‘/; =2 [ 7| X (5.9)

Using the maximum scattering length for the restricted &4 as in (5.3) gives a waveform efficiency

{(m) .9
nﬁ”‘) - L = g 2 IC1 1p| X

- (5.10)
lf.ggx ] Ic‘lngv
With 3, chosen as Tnax we have
(m) , o =54 (5.11)
ns =7 w1

B. Damped Sinusoidal Incident Field

Taking the incident waveform as

- E, |- =y STt
E(t) = —22-{1pesot + 1;e 0 } u(t)

E(s) = E?{-ip[s—so]_1 + 'i;[s—s;]q} (5.12)

-Qo+jwo,Qo<O,Fpl=1

[ 2
o
|

then from (B.4) we have
1
1+1,-1,]]2
=Eo{ rg Pl} (5.13)

Let s, be nearly matchedto sy asin (5.1) and (A.12).

|

m

For the pole-pair scatterer as in (B.16) we have
E,|. -1 . n s -1, 3 -1
(s) = —;—{c1[s—s1] + c;[s—s;]_ } . {1p[s—so] + 1;[s—s2] } (5.14)

With close matching of the poles

ryge

X(s) .

15




A(s) - E(s)

2

Eyf, = — - = -
?o{q Tpfs—s1] 1 [s -] 1 & - 1;[5'—51]'1 [s—s0] 1}

¢ st sit (5.15)
Ao By = e ‘S:o'_‘:' 5, + ‘:,::;_ & - ul)
For simplicity let
@o = @1, Qo =0 (5.16)
giving
X o E(r) =%—[-Q1]‘1{ef“’1‘{e“1‘ ~ta T+ ot ey ?P} (5.17)

The peak (m-norm) is (similar to (B.4))

- - E, -1 | jote = — faHE -k T
nA(:) 0 E(t)ﬂmz Sl:p —2—[—01] le1m1 ci-tp+e Jar & '1p

, |

+2 '1';-3174:'1-'1;, + e‘fzm‘i;.a;f.gr.i*}z

p
(5.18)
1
- “T - = 2
EO[Q-T - p ¢ D
= [~ & Tpf 11+ ———m—F
S
The scattering length for this matched case is
i ORY-0
£(m) =~ —_—
m = Jaz EGH
SN
i .z7.2.91|2 ~
o ) — , (5.19)
- el — |
Vazltr 1+ [, 7]
16




Considering the previous case of ¢4 a constant times a real dyad with '1',, as a real maximizing eigenvector
gives

(my . 1 ~1 +(m) _ 3
6 = Tin [ [l 2 = £ % (5.20)
which gives a waveform efficiency
(m)
m St .2
M = S 3 (5.21)
max

This is near 1 showing the relative efficiency of matchéd sinusoidal and square waveforms.

17



Vi Concluding Remarks ‘
We can now see that the use of norms to extend scattering length or cross section into time

- domain yields some useful results. It allows us to compare various incident waveforms for maximizing

these parameters. For highly resonant scatterers this optimal waveform is basically a sinusoid matched to

the resonant frequency with attention payed to optimum incident polarization.

The present discussion considers the problem of scattering in terms only of the scattering length
as a fundamental parameter. This analysis can be extended by including other transfer functions such as
those of transmitting and receiving antennas as well as data processing problems (such as signal-to-noise
ratio) in optimizing the design of the entire transmission and receiving system.

18




Appendix A. 2-Norm

The 2-norm of our vector waveforms takes the various forms [3]

(A.1)
1
1 -4 4 2
= Z_ﬂ{] IE(—S) . E(S) ds
5
The 2-norm then applies in both time and frequency (Parseval theorem).
Consider a waveform
E() = E, Re[?pe%‘ u(t)}
= Eo 1,5 + 3* eS:t u(t)
2 |7 p
£ ; o1 (A.2)
= g head bt
E(s) = —2‘-’- {1p[s—so] + 1p[s-so] }

So = Qo + jw, , Qo < 0, [T| =1

This damped sinusoidal waveform will often be considered as highly resonant (jQ,| << |a,|). Note that
the polarization '1;, can be in general complex giving elliptical spiral polarization [5]. The peak field

magnitude is roughly E, depending on 1,. Note thatas s — 0 the formula in {A.2) does not give zero (as
P

required for a radiated waveform). One can correct for this, but in general it is not important for present
purposes. Note the turn-on at zero time for convenience, the actual turn-on being a function of one's
choice of incident and scattered waveform coordinates [4, 5].

Following the procedure in [2] for scalar waveforms our damped sinusoidal vector waveform can
be evaluated for 2-norm by contour deformation with the residues in the left half s-plane as

19



{i - [otal » Sraa]"+ 5 [itznar e ]

2 - % f
_E Re['fp : [?p[-so]-‘ + 1;[.;:,]-1}] (A.3)
= -"; {re[-% - % 5] - >
(A4)

Note for highly resonant waveforms the second term is dominant giving

- E -
ga(:)ga =2 [-2,]2
which is conveniently independent of 1.
The scattering operator has the 2-norm
Ix(:) 0 E(z)l
2

lis’(t)gz

HA(t)ol? ) |§(fléz¢o

UK(,-;,) : E(f“’)lgﬂ

E( j:;ﬂ:mato ﬂé( jw)ﬂ

20

= K(jw)! = sup !K(jw)! (matrix sense)
2w () v

= A 'wmax"
(J ) 2v
1

-
P
2

et o) ()

= |t (Roman)) - (Rt ))H% |

Thus the operator norm is just the maximum value achieved by the 2-norm of its frequency-domain matrix
form. Furthermore the frequency wmax at which this maximum is achieved is the frequency which should




dominate the fieid waveform. Let the right eigenvector (arbitrary magnitude) of the Hermitian matrix be
imax s

(A(jwmax))f ‘ (K(meax)) + Bmax = Amax Fmax (A.6)

with & . as the left eigenvector with

[Emax| = 1 (A.7)

in this form we can choose our maximizing waveform by selecting

-

T, ® fmax + Qo = 0 - | (A8)

Assuming a bounded /'{( jw) with appropriate smoothness near wmay, this choice of incident waveform
crowds the important frequencies around = wmax in (A.5) giving the supremum value in the limiting case
asin (A.8). As a practical matter Q, = 0 since that would give an infinite 2-norm to both incident and
scattered waveforms. Then we have

2
2 =

ax 7::—; !K(z)'o I2

1

(jwmax))JF (A.9)

>

« i [ (R

-=(2 1 %, -
lr('n;x = vy A(jomax) - Fmax

Now let the scatterer be characterized by a single pole pair as

3 -1 -1
A(s) = & [s-s1] + ?:'1" [s-s;]
51 =Q1+ joy, Q21 <0 ) (A.10)
- st
Ar) = |5 + &et :I u(t)

which will again be often considered highly resonant (|Q4] << |w1]). The dyadic coefficients take various
special forms from SEM considerations [4, 5]. Note the turn-on at zero time for present convenience.
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The scattered waveform now takes the form A(r) ¢ E(¢). From (A.2) this has a 2-norm which can .

also be evaluated by contour integration closed in the left half plane. Following the procedure for scalar
waveforms in [2] we now have

2

HK(t)?E(l)L - 515 Bjé(-s) A (=s) - A(s) - E(s)as
= 2Re [E(-so)f\T(-s,,) As) - 3, -‘%’— (A11)

+ E-"(-s1) : XT("”) i 5(31)] :

This is an exact result, but a simpler approximate result is found by considering the case of nearly matched
highly resonant incident waveform and scattering operator. Specifically let

lso = st <<so| \ Jsif

50 = 5| << ool 4 I

(A.12)
0 < -Q, << [so] » |54

0 < -Qq << |so] s |sul

Then we have

2
Eq 3¢ . ; 1] A= - -1
— Ef 3% =t - - Qo +Q1 *‘2
piirul MR S B 0,0, I + 5
22




2
ES. - - - 2
@ aaferraried

Now form

HK(I)‘.’E(i)L:[-1'*.31".51_?]

Then choosing (as in (A.8)

Nf

1
e Sef? ol

So = jWo = jO = jOmay , Tp = Umax

makes (A.14) take the supremum result for the operator norm in (A.5).

23
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Appendix B. m-Norm

As in section Il define the m-norm or maximum norm of a vector function as
el = [ 1, |, = s (B
1 (B.1)
- {|§(:) : E(‘)Lf}z

with v indicating vector (or matrix) sense and f indicating function (or operator) sense [3]. Note that the
vector norm is taken before the function norm (noncommutative). The norm properties are satisfied in that

[F@] =0 () =0
76, = lal |7},
70 + B, =] 130 + 2o, | y
(B.2)
s| e, ol |
s "2v IL/ i Ef2 t)HZV L.f
= 7], + R0l
Consider the damped sinusoidal waveform as before
E@) = i—" {-1}, e’ + .1.; eszt} u(t) 53
So = Qp + j@p , Qo < 0, [T| =1
For a highly resonant waveform (Q, — 0-) we have
1
E(t)Em = sup 522- {Tp - 1,629 1 2 4 1 'f;:e'ja“’o‘}i
(B.4)
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. Thus the peak field magnitude varies between E, / V2 and E, depending on the complex polarization

vector '1;,. This shows some of the difference between linear and circular polarization.

The associated operator norm is
IK(:) 0 7(:)' "

At) o =

A lm lf(’l I;(,iim

[A)-Fe-ryar
0

m,

= sup

Fof,=0 10

m
For this purpose write (noting A(z) is real)

‘.{:(r;) + A() = Emax(t) Tmax(!) Tmax(t) + Emin(t)Tmin(t)Tmin(¢)

/‘ max(t) 2 Smin(t) 2 0 (B.6)
4

Fmaxl = Fminl =

and note that this is a real symmetric dyad (and therefore Hermitian) with real eigenvectors [6]. With this we
have

[A0),, = &3 (B.7)

For simplicity let K(t) be zero for negative time for present purposes. In actuality it can be causal and non
zero for some negative time depending on choice of time reference or coordinate reference in (1.4).

Then following the procedure in [7] for the similar scalar case we have

J' A)-Fle-r za < fﬂA fle=¢ H dt’ < T“A(")'m H}’(:-t')"m dr’
0

(B.8)

0‘-—-\8

- 1 o 1
A, [P0 @ = g 52, o @ = [F0] £ E2_ () dr

I
‘ noting in the above that the m-norm s over ¢ (not #). This establishes the inequality
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- 1 -
lK(t)olm s [e2 () & = fﬂK(z')ﬂzv dr’

(B.9)
= ﬂ lx(t)l2v |1f

Note the mixture of norms in this result. The "Inside” 2-norrn remains from (B.1) but the "outside” «-norm
is replaced by a 1-norm, a generalization of and consistent with the scalar results in [7].

In order to obtain an equality for the operator norm consider some restrictions on the operator.

‘Let A be symmetric (as in the case of backscattering, by reciprocity) so that it is also Hermitian with real
eigenvalues and eigenvectors [6] giving

At} = Cmax(t) ?max(‘) ?max(‘) + Lminr) .i-nin(‘) -i'nin(‘)

AT@) = A()
(B.10)
(8 = Emax(t) €2 (0) = EminF)

[Cmax (1) 2 [Cmin() 2 0 | ‘

where the real eigenvalues can now have either sign. Further assume that -fmax is a constant vector (not a
function of time) giving : :

A(t) = $max(t) Tmax Tmax + {min(t) Tmin Tmin (B.11)
This can be achieved for certain cases of symmetry of the s¢atterer with respect to the observer direction
(—-'1°1) [5] provided there is no interchange of roles between Imax and imin, i.€., the particular direction

of 'fmax has the dominant eigenvalue for all t. A thin-wire scatterer (negligible radius) meets this last
requirement as does a perfectly conducting disk (zero thickness) seen edge on.

Now choose f(¢) ina special way as
. + -1'max I $max(t’) > 0
fle=t) = 40 if Lmax(?’) = {minle) = 0 (B.12)

- ?max if Lmin(r’) < 0

This gives
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.’

el =17 L =] 1] -

TR - Fo-1) ,‘4 i ﬂ?lcmaml T &

Q m

= [lmax (e} @ = Kmax (Ol = ux(‘)l?-v I1f

Since this special chose of f is one possible choice in (B.5) we have
[A¢)o] = I IA(’)sz ﬂ1 ;

Combining with (B.9) gives for our restricted form of scattering operator in (B.11) the result

[A)o] = H {;x(:)ﬂ?v !v

Let the operator be characterized by a single pole pair as

o>
Ponm
t
N
1]

ls=st] + &s=s]"

[
L}

= Q1 + jay , Q1 <0, [Q4f << |ey|
Y o st e SyE
At = |5 & + & €1 | ur)

Let A(r) be symmetric (as in backscattering) so that &y is symmetric. Furthermore let

1= & = 5,elV G, real
giving

Alt) = 221 cos (w9t + v) u(t) &,

corresponding to the conditions in (B.11). Then we have
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(B.13)

(B.14)

(B.15)

(B.186)

(B.17)

(B.18)




{max() = 2% cos(ant + v) u(t) [Gily,

[A@) o |m = T];max(:){ dt (B.19)

Afe) - Tmax = $max(t) -{max

Assuming Q4 small one can average over the magnitude of the cosine as 2/ z giving

ey o], = 2 -0 iy, (8.20)

The maximizing waveform from’(B.12) is a square wave polarized inthe Tnay direction with period 27/ wy,
i.e. of frequency matched to the scatterer.

For ¢4 more general than in (B.17), then (B.9) indicates that (B.20) represents an upperbound.
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