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Abstract

Inthe SEM representation of various electromagnetic response parameters there is in general an
entire function included for cc mpleteness. Conditions for presence and absence of this entire function are
developed here. Forthe surface current density on a finite-size perfectly conducting object in free space
entire-function-free representations are possible in both class-1 and class-2 forms of the coupling
coefficients. For the far scattering from such an object, however, the class-1 form leads to the necessary
inclusion of such an ¢ntire function which can be quantified. This class-1 form is still useful and
appropriate for late-time representation and associated target identification. However, for scattering-
length (or cross-section) calculations the class-2 form (with no additional entire function) is more suitable.
in this case the coefficients are frequency dependent for each pole associated with a natural mode.
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l. Introduction
O Continuing on from recent papers [7,8,21,25] this paper considers some of the properties of the
' eigenmode expansion method (EEM) and singularity expansion method (SEM) with emphasis on the far
scattered fields. The general scattering object is described in fig. 1.1 with surface S in @ minimum

circumscribing sphere of radius a. The incident field is a plane wave as
= (inc) T =
E(rs, ) Eof(s) 77T,

- fir T

= direction of incidence (1.1)
- % = dyadic transverse to incidence
= direction of polarization

Tp=%.7,-%=0
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s = Laplace - transform variable (2 sided) or compiex frequency
1

c=(uog,) 2 =speed of light

~= Laplace transform (two sided)

The incident polarization is represented by a linear combination of the two usual (for radar) polarization

unit vectors
t\ 1, = horizontal polarization

1, ="vertical" polarization

ix?h=?1,?hx?1=-{v,?1x.1‘v=?h (12)

The surface current density is related to the incident electric field through the impedance or E-field
integral equation as

E{I(7 5)= (é:(a,r;:sﬁ(f;,s))

Si()BG) L Raes

B() =1-%(%) (%) (1.3)
15 (7s) = unit normal to S (outward) at 7

Z,(rs,rs;s) (%) (rs,rs, 5)-15(7)

=suo1s( )-&o(FTis)- s (%)
Z‘r ().{[_2;-3_24—2] §1R1R+[4"3+C‘2+C'] [1-1R1R]}'7S(7s')
R=lf;-7] . (=R
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Fig. 1.1. Finite-Size Scatterer in Free Space llluminated by Plane Wave
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Z,= (%2) = wave impedance of free space
(4]

The formal solutionto (1.3) is

=, 2 4/ = (inc)
Ts(Fers)=({ 2, (75, B s E (75 8) (1.4)

Besides the surface currents on the body we are interested in the scattered far fields. As
indicated in Fig. 1.1 the far field is assumed to be observed propagating in the 3, and the component in

the 1,, direction measured with

11 =0 (1.5)
Of course ?,,, can be decomposed into two orthogonal polarizations. The far field is expressed as

= sue~ ¥/l 17 2,

() =- 2" (167515, (7.) (16

1 =1-1.1, =dyadic transverse to scattering direction

For plane-wave incidence asin (1.1) we have
E,:(F,Q:# (1, 1‘ s)-E(0 ))
= EH(5) 2 yp (1, His) T | (1.7)

where the scattering dyadic (2x2 in terms of the transverse components of incident and far-scattered
fields) is

K('i,,'i‘;s) = —suo<°1',e71";3 ;2-';1(?3,?;’, ) ’ﬂe‘711'F5> = }:\T(—ﬂ,—i,;s) (reciprocity) (1.8)
For the important ase of monostatic or back scattering [3] we have
==}
%= - - TG T A VNG | AR
A(11 s) ( H,Hs )-—suo He .24 (75.75hs) e (1.9)
( ) (symmetric)

For comparison to other standard forms [9] we have (in frequency domain) the scatiering length

oiim Fr (i)

1
lE(mc (7, Jw)l =42 10

A = cross section
In more general form we have

o kis) T, (1.11)



A(i,ﬂ;s) = ?(131;5) * 32(1,71;-5)
which for s = jo reduces to
AT Hj0) =13 % jo) £+ (T %) =|Z(131; jco')l f (1.12)

For backscattering (1.9) applies.

Figure 1.1 also gives some characteristic dimensions for the scatterer which define associated
times as

L
tf x—infront time (1.13)
c

= time (negative) incident wave first reaches body
ip= %— = back time
= time (positive) incident wave passes body (reaches back)
(Note incident, not total field )
lo= %"- = transit time for maximum linear dimension
tg2s
a=radius of a minimum circumscribing sphere (establishing coordinate center)
Another time is the latest time that any place on S {exterior) is reached by the total field as
= -Lci = [atest (total) excitation time
= first time after which surface current density has been
excited on all of S (eﬁterior) ' (1.14)
=t

For a body that is loaded on S so that waves can pass through S (with attenuation, but no delay)
then ¢,, is the same as ¢;. For perfectly conducting bodies ¢,, is larger due to the geodesic path on and/or
outside S waves must propagate to reach points on the backside (side shadowed from the incident wave
propagating in '1'1 direction). Similar comments apply to the volume V surrounded by S if filled with a
medium with propagation speed less than ¢ (in high-frequency limiting sense). Note some relationships
among the various times and distances




O 0 H b —&f o

t,=8upty—t
0 3 f

-4<17<0
OsLy< %
Ly s 2-3- (with equality defining a special class of scatterers [13)) (1.15)

As discussed in [7,8,21,25] the eigenmode-expansion-method (EEM) and singularity-expansion-
method (SEM) parameters can be written for both surface current density and scattering dyadic. Various
properties of the scattering dyadic are developed in terms of the natural modes based on symmetries in
the scatterer and presence or lack of modal degencracy. The present paper considers some additional
results for the eigenmodes in the far field, as well as convergence properties of various forms that these
series expansions can take. Appendices consider the perfectly conducting sphere as an illustration of

these results.



Il. Eigenmode Representation

The eigenmodes diagonalize the impedance integral equation as

(Burriok g (7,5)) = 2p1(s)isg (o)

= (f’sﬁ (%, s);Z-',('r;.,‘r;’; s)) symmetric (2.1)
Z.'p (s)= (}-’sﬁ ) é,('r;.a';s);j’sp (7, s)> = eigenimpedances

Tp(s)= 251(s) = eigenadmittances

?SB (7;,s) = eigenmodes

(}?sm (7 S):j"sﬁa (E}’,s)) =1g, 8, (orthonormal)

This gives

Z "s»’so ZZB Jsl; ’s'S)]sp(’s:) (2.2)

which includes representations for the inverse and identity on S.

The surface current density is now written as

is(’.'..s's) = 22-51(5)<E(w)(’7s’- 5);57.5';3 (ﬁ,s))?sﬁ (Fsrs) (2.3)
B

which for an incident plane wave as in (1.1} is
To(Fs)= Eof(s Zz (Y, - Ca (o5)p (ns) . (2.4)

Ca(s) =(‘1¢'“‘"‘ Top 7))
As in [6] the eigenmodes are well behaved (bounded) provided the symmetric product for
orthogonalization of the given mode as in (2.1) is non zero. Then note that natural frequencies are the
zeros of the eigenimpedances as

Zg(sppr)=0 (2.5)
giving some set of natural frequencies associated with each eigenimpedance. These include interior
natural frequencies which, for closed perfectly conducting objects, are all first order and located on the jw
axis of the s plane [1]. The exterior natural frequencies are all in the left half plane (LHP) away from the
jo axis and are usually first order, although it is noted that special cases of resistively loaded bodies can

have second order poles [3,22].

Now the interior natural frequencies for a closed perfectly conducting object cannot appear as
such in the external scattering. This requires that the first order zero of Zﬁ (s) onthe jo axis be canceled .

S mA Sl AL - - e e S e
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by a zero (at least first order) as

Ca(.5p,8/) =0 for Re[sﬁ,ﬁ:] =0 (2.6)
Note that this resutt is for all zl'p and '1'1 (or in general for more complicated (non-plane-wave) gxterior
incident fields). Normally we expect such zeros as in (2.6) to be first order (e.g. the sphere), except that in
some cases for special % and 1p this vector function can be zero for all frequencies. So in general we

have
ZF(:)E‘p (is) =analytic vector function near interior sg g+ for all % (2.7)

and the surface current density is well behaved near interior natural frequencies for external incident
fields. Stated another way the eigenterm in (2.7) exhibits only exterior poles.

The far-scattering dyadic in (1.8) has the eigenmode form
.7\(-1.,. ,.1.1;.9) ==—si, z 251(S)é'ﬁ (5, S)C-B (3, S)
B

G, (3.5)=Cs(-7,. =<“ YRES (R >
rﬁ(1r ) ﬁ( r s) e Js'/g("s s) (2.8)
Asin (2.6) the 6’5 also has a zero (for all '1',) at all interior sp,p’- Thus for each eigenterm in (2.8) we

have a zero (at least first order) as

%‘1 (s)f,p (1,s)5ﬁ (?1,5') =0 for Re[s[;'ﬁf] =0 (2.9)
This says that each far-scattering eigenterm has poles at the associated exterior natural frequencies and
r h i intern ral fr igs (at lest first order). Of course, the sum over the
eigenterms in (2.8) will not in general be zero at such interior SB.B" but this may help in sorting out
eigenmoges in ex_perimental data. Note that for backscattering (2.8) takes the simpler form
K(.ﬂ,s) = R(—-ﬂ,.ﬂ;s)-suogz"?(s)ép(-ﬂ.s)aﬁ@,s) (2.10)

This zero for each eigenterm in the far scattered field at associated interior natural frequencies is
expected to normally be of first order, since a second or higher order zero would require that both the
integral over S (for first order) and its derivative with respect to s (in (2.4) giving éﬁ) be zero at the interior
sg,p’- Considering the case of the perfectly conducting sphere (Appendix D) we find that these zeros are

first order.

The asymptotic behavior of the eigenterms in the s plane has been considered in [6]. The

eigenimpedances behave asymptotically as

%zo in RHP

Za(s)=
A=) o (ert) in LHP

(2.11)




RHP (right half plane) => Re[s]— +
LHP (left half plane) => Re[s]— oo .)
where (as in Appendix A) the O, (exponential order) symbol gives the exponent of e in the asymptotic

bound, neglecting a multiplying function bounded (above and below in this case) by some power of s. So

we also have [6] ,
Ta(s)=25"(s)= % (2.12)
BYI=2p W)= Oc(1L,) in LHP '

Inverting the eigenadmittance into time domain gives a cenvolution operator, the kernel YB(I) of which can

be found by closure of the Bromwich contour as

closure in RHP fort <0
(for which }’ﬁ(t) =0) (2.13)

. L
closure in LHP for > -, = - =2

So there exists a time window ¢, > 0 during which the contour can be closed in either half ptane.

The inverse Kernel as in (2.2) is

27 (R 7) = 3 B ()g () ig (7o) (2.14)
B

The fth term has asymptotic estimates as in (2.12) with the slowly varying (with 5) eigenmodes [6] giving

0¢(0) in RHP
o

175 (S)j.sb (F_g»-");sﬁ 0.(0) in LHP

{(2.15)
So at least considering the individual eigenterms the result in (2.13) applies. However, there are
questions concerning the relative order of performing surnmation and integration. Appendix B goes
further into these asymptotic estimates. Provided 7 # 7; the Bromwich contour can be closed in both

RHP and LHP for -¢, <t <0.

The numerator termns behave like
Oc(-1f) in RHP

Cp(h.s)= Oulerky ) LHP (2.16)

For the surface current density the eigenterms as in (2.4} (neglecting E,f(s)) behave like
L. Oc(=1f) in RHP
Y5(s)Cgl %,8)J;,, (Fers) = (2.17)
(512 {%s) 35(%) Oc(¥(Lo-Lp)) in LHP
In time domain this gives a time ¢ £ before which the result is zero (closing inversion contour in RHP) and ‘

atime ¢, ~¢, after which the contour can be closed in the LHP. Note that

10




t; =surface time window

--[[tb-to]—tf]=-c[-Lf+Lb-LO]EO (2.18)
so that there exists a time window (1) between ¢, -, and ¢ with closure possible in both half planes
(and giving zero response) [12,13,14,16]. Varying this over all'1'1 gives special cases with equality (zero
window in (2.18)) when '1'1 is aligned along the maximum linear dimension (or axis, one or more) of the

body. (See fig. 1.1). The sphere is a special case of this. The Bromwich contour for inversion of the
Laplace transform lies in Re[s] > 0 (strip of convergence) and can even move to the left to the first

singularity in the term of concern.

This asymptotic consideration can now be extended to the far scattering via the eigenterms in the
far-scattering dyadic in (2.8). This can be applied in the bistatic case if we evaluate 5,13 (T,) asin(2.16)

with new Ly and L, depending on '1',. For simplicity the monostatic (backscattering) terms as in (2.10) go

like
; O.(-21Ly) in RHP

-su0251(s)5,3 (3.5) G (Fs)= 0u(r{to-2Ly) i LiP (2.19)

O

(again neglecting powers of s in the order symbols). In time domain this gives a time 2¢¢ betore which the
result is zero (closing inversion contour in RHP), and a time 213, - ¢,, after which the contour can be closed

in the LHP. This gives
15, =backscattering time window

- -[[2tb -1,]- 2tf] = -%[-2Lf +2Ly - Lo] (2.20)

Note that depending on shape and orientation of the scatterer this time can be positive or negative. Fora
positive time window with times between 21, ~¢, and 2t the contour can be closed in either half plane.

Objects which permit this include disk-like ("{lat") scatterers with ’1’1 normal (broadside) to the plane of the
scatterer. Thenasin (1.12) L £ and Ly can both be near zero giving a positive tbg oft, (orl,/c).

However, rotating such an object until 71 is along the L, dimension ("axis") of the object gives a negative
tp; Of -t (0r -L, /). Inthis latter case thent, represents the time for which the contour can be closed
in peither half plane. For such "flat” or "thin" objects then there exist critical orientations for whichtbs =0.
For sufficiently "fat" objects there may be no orientations with positive 7, . For example a sphere has a
tp; Of -1, =-t3 (=-a/c) independent of orientation with respect to %. See also [18,19,20,23,24].

So there seems to be an essential difference between the properties of the surface current
density and the far fields. One can also look at the forms of the solution taken directly from the integrals
in (1.4) and (1.8), and obtain the same kind of results by looking at the inverse kernel as in {15} and

evaluating the integrals over the incident field as done here. In this case contour closure in the LHP is
done by a succession of contours (— radius «) threading between the poles in the LHP. Note that the

11



full inverse kernel includes all the eigenmodes and has ar infinite number of poles, including those from
all of the infinity of eigenvalues (the pole locations in the LHP in general now extending to - ). The .)
closure of the Bromwich contour in the RHP and LHP can be applied to the inverse kernel and surface

current density (as in (1.4)) and the back-scattering dyadic (in {1.9)) with the various times the same as in

this section.

12
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1. SEM Representation: Class 1

The SEM representation begins with the natural frequencies and modes from the impedance

integral equation as
(EutFisa) Toq (7)) =0
=<fs(?s);2:(?s.?s':m)> ) (3.1)
Jsg (7¢) = natural modes (not functions of s)

sg = natural frequencies

Connecting this to the EEM form in (2.1) and (2.5) we have
a=(B,B’) (index set)

Sa = Sﬁnﬁ'
.-i.Sa (FS) = -]:Sﬂ'ﬁl (;';') = ua?sﬁ (sﬁ'ﬁ’)
Ug =Ug gr = normalization constant

(3.2)

where the normalization constant is chosen for convenience (e.g. to make the natural mode have a

particular peak magnitude, such as unity).

The inverse kernel can be expressed (for 7/ = %) as
-{ 5~ t:
e (S Sa) i -

ZFurss) = Z—'S—_Tua Jsor (% )Jsq ()

+ possible entire function

—st: —Sati .~ = L
=e s“zz_sa Ua Jsg ("s)jsa (7s)

+ possible entire function

-1
;.-f.sa (Fs’)>

Ug = <75a (Fs)-%zt (Ev:;:s'is)

S=Scx
-2

-1
=y2| L7
ua {BS ﬁ(S).S‘:Sﬁ.ijl

where we have assumed the usual case of first-order poles. (Second and higher order poles are

discussed in [22].) The parameter
= % = initial time or turn-on-time (3.4)

is included for later use. This corresponds to a time shift of the scatterer response, recognizing that the
initial time that the wave reaches the scatterer is an arbitrary definition. Note that the choice of ¢; does not

affect the residues at any of the poles. (Lets— eachsy). Note that in time domain

13



e"(“-’a i

-5t y(t—1;) (3.5)

S~Sa
so that the late-time behavior is not affected. However, in time domain the inverse kernel as in (1.4) is a
convolution operator.

Now from (2.15) the contour can be closed as in (2.13) in both half planes with a time window ¢,.
Hence a particular eigenterm as in (2.12) or (2.15) can be written with no entire function. So in (3.3) if we
choose -1, <t; <0 an entire function is not needed for each (fth) eigenterm (summing over 8’ for given
B). Then summing over 8 one can construct the inverse kernel. Similarly an individual (8tk)
eigenadmittance ca(n be constructed as
—{5s=5q 5. 8§
- s—- sﬂ'ﬁ ) Ue

B’ B.B

+ possible entire function

+ other potential singularities (3.6)

/.--_.~

-1
- d 3 s
FSﬁ.ﬁ':l ={ I lfespp g 2T isg (s pr)
S-Sﬂyﬁ'
Again the entire function can be neglected by the choice of ¢; in the above time window. Of course one ‘;

can simplify matters by choosing ¢, as zero (or 0_, allowing for7{=7;). The "other potential singularities”
allow for potential branch points in the Zp(s) which is still somewhat open [17]. However, such do not

exist in the complege sum (3.3}, and are not important for present purposes.

Considering the convergence properties of the pole series as in [13] we have
Ua = Oe(}'aLo) = Oe(Sato) as Re[.Ya] —) —00

esali = Oe(sat;) as Re[sa] — —o0 (3.7)
Then we can think of the series as
Z,(7 Fis) = e~ Y Ou(salti+10)) (3.8)
a

+ possible entire function
Consider for the present purposes that the sum over a is {aken in the sense of sweeping to the left in the
s plane and summing the poles as they are successively passed. Then provided the density of the poles,
including the functions multiplying the exponentials (all e°% (s +"’)) is bounded by a function growing to the
left slower than any exponentiai (e.g. a power of s) then this series converges provided '
;+1,>0 (3.9)

This is in general the case provided .

14
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> "to (3.1 0)
Where ¢, > 0 is given by the scatterer geometry.

Convergence of the pole series is not in general the same as the criteria for lack of an entire
function. As in (2.15) one can close the Bromwich contour in both RHP and LHP in this time window. So
summing over 8,8’ up to some finite B is allowed, but one needs to be concerned with 8 — = and |s| = «
along with interchange of the order of summation and integration. As discussed in Appendix B there are
other ways to obtain an asymptotic estimate of the inverse kernel involving 7; and 7’ which avoid this
problem. Fortunately for 7 # 7y’ one can choose ¢; = 0 and be consistent with the results in Appendix B.

Similarly write the surface current density in (1.4) an d{1.1) for an incident plane wave as
S-Sa t‘

Js ) of ze 5~ 5g (?1:'. )Jsa("s)

+ possible entire function
‘(S"Sa tl

= oz S 5q f Sa)ﬂa(ﬂjp)fsa (7s)
+ smgularmes from £(s)
+ possible entire function (3.11)

N, 1p) ( ~Ta kT -'sa(Fs')>

= coupling coefficient
This is the class-1 form where in time domain the Bromwich contour is closed on J:S in the LHP to give
simple complex vectors (no frequency dependence) as residues except for the possible time shift ¢;
allowing for arrival time of the incident wave. Let us then consider the convergence properties of this
series as in [13].

in the numerators in this pole series we have

(e‘Ya L (F_;)>=Oe(-—yaLb) = Op(-satp) as Re[sy]— — (3.12)
The series then behaves as
j s(Fos) = Eof(s)e™ Y Op(sa(ti =ty + 1)) as Re[sg] = ~e0 (3.13)
a

with convergence provided

L=ty +t;>0 (3.14)
Here let us consider the sumin (3.13) as over B’ for the eigenterms, and then over 8 to some large but
finite B and finally letting 8 — «. Comparing ; to first arrival of the incident wave on the scatterer we

have the condition for convergence

15



li=tf>=ty+tp=t, ==t <0 {3.15)

In a worst-case sense when 7 is aligned along L, then we require .)
>t ' (3.16)

or starting the series just after the wave touches the body, with perhaps ; taken as ¢ as a limiting

acceptable case. For cases that ?1 is oriented with Ly — Ly < L, then ¢; can be taken as ¢y or even allittle

earlier with convergence of the series. For times earlier than ¢; the pole series is identically zero as is the

surface current density. For positions 7; away from the pcint the incident wave first contacts the scatterer

one can choose ¢; later than ¢¢ but on or before the surface current density begins at 7; with series

convergence for all times ¢; and later.

Compare (3.15) for ¢; —¢ £ 10 (2.18) for the time window ¢ for closure of the Bromwich contour in
both half planes. A positive #; corresponds to ¢; -ty which (as discussed above) occurs as long as we do
not have both 7; at first contact point of the incident wave and '1'1 aligned along L,. So pole-series
convergence and times for which the contour can be closed in the LHP are tied together. Closure in the
LHP means the pole series completely represents the surface current density (no entire function for such
times). If the contour is closed in the LHP for times while the surface current density is zero and the pole
series gives zero then there is no entire function at all.

For the far-scattering dyadic we can apply this pracedure for convergence of the pole series to .}

(1.8) for bistatic scattering or to (1.9) for monostatic scattering. Taking the latter case we have (9]
S—=Sq f‘

Affvs) = Z———Ca(i)cé(?)

+ possible entire function (3.17)
Ea(i) = Waéa(-{!)

Cal#)= (4% 5o, )
Wa = W¢2z =-satoUg

= 'Saﬁo<jsa (Fs) 'éié ("s’s- )s

=Sa;j8a {;:;’)>

Considering the behavior of individual poles in the LHP we have
Wa =0,(YaLo) = Oc(sato) s Re[sg] -~

Ea(-i‘]) = Oe(" 7aLb) = Oé (—Satb) as Re{Sa] —_ =0 (3-18)
The serigs then behaves as
K('ﬂ,s) = 20,(.;0, (t; - 2tp +¢,))as Re[sg]—> —oo (3.19)
a

with convergence provided

16




-2p+1,>0 (3.20)
Comparing ¢; 1o first arrival 21 of the backscatter signal we have the convergence condition

t"-2tf>2[—tf+tb]-to =—lps (3.21)

Note that the right-hand side is the negative of the backscattering time window 3 in (2.20).

If one constrains ¢; to be less than or-equal to the first signal return time 2¢, then this requires

that ¢, be positive. As we found in Section !l this occurs under conditions in which one has a "flat" or

"thin" object with near broadside incidence. As the scatterer is rotated 7, becomes negative and ¢; must
be later than 2:¢ (up to an amount ¢, later) for the series to converge. Constraining 1; to assure

convergence means that the backscattering response between ¢; and 2ty is not represented by a pole
series, and as such can be regarded as an gntire function of width up to ¢, (in time domain) depending on

scatterer orientation.

17



IV. SEM Representation: Class 2

)
In the class-2 form of the SEM representation ong2 begins with the inverse kernel as in (3.3) with .
the choice of zero for ¢; as ,

Z; 1 "s»"s- Z[S sa] Ua Jsa "s)fsa (’s) (4.1)

where as discussed in Appendnx B for 7; # 7y we can close the contour in both RHP and LHP and thereby
have no remaining entire function. The convergence properties of this sum are discussed in Section lil,
Now substitute (4.1} into (1.4) to give

;s(a's) = Z[S - 'sa]-1 Ua (E(‘m)(’s' );jsa (?S’)>75a (E’)

o

—Eof(s)zua §= Sa] Ca(‘t S)Jsa (%) (4.2)

Eulfus) = (7.7, )

for an incident plane wave as in {1.1). As with (4.1) there is no additional entire function aside from those
in the symmetric products which are frequency-dependent coefficients of the poles. In time domain this is
a convolution form where the symmetric products represent successive illumination and contribution to the
integral as the incident wave passes over the scatterer. As often observed this class-2 form involves a

smoothing which increases the convergence rate of the series, at the cost of a more complicated form of
the series (frequency- or time-dependent residues). )

Similarly the scattering dyadic can be found by operating on the term e~ Y75 for the scattered
field. For bistatic scattering (1.8) gives

1:‘((-‘1‘,,?1:.9) = Z [s-5¢ ]—1Waéa(—1 ,s)éa (-{,,s) ‘ (4.3)
04
which for moncsta’txc (back) scattering reduces to i ‘
A(H.s) “( -4, %; s) Z[s—sa] WaCa(ﬁ,s)éa(ﬂ,s) (4.4)
21

These forms involve no additional entire functions beyond those in the éa (ﬂs) In time domain, of

course, this involves a fot of convolution. However, in freqquency domain (more generally in s plane) we
gain the distinct advantage of not having the additional entire function required in (3.17) (class-1 form)
which must be present for at least some scatterer orientations. Except in special cases then the class-2
form has much to offer for calculation of scattering tength anEi cross section (as in (1.11) and (1.12).

One could consider various hybrids of class-1 and class-2 forms depending on how the various
terms in (4.3) and (4.4) are separately treated, but it is not clear whether any improvement in calculational .

18




@

@

convenience would be achieved. f one goes to the trouble of integrating over S to find 50, ('1'15) ateachs

for each natural mode of interest, then applying it to both parts of the dyadic is not much more difficult, at
least in frequency domain. For backscattering, of course, the symmetry (reciprocity) means that both
vectors in each dyad are the same and in the integral need be done but once.
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V. Some Characteristics of Entire Functions

- i
By an entire function is meant a function f(s) which has no singularities in the entire s plane .
[28,30]. Let us use the same applation for £(¢), to which the entire function corresponds in time domain,

these two being related by the two-sided Laplace transform. While the present discussion uses a scalar
notation, it applies to vector-valued and dyadic-valued functions as well, since the Laplace-transform pair
relating s and ¢ can be thought of as applying to each component.

A special, but important, type of entire function might be termed a “time-limited" or "gate" entire

function, defined by
f(t)=0fort<yandt>to

H>1r (5.1)
For the "gate” between ¢ and r one might postulate a boundedness, but all one really needs is

integrability in the sense that
° —st 2+ —st
£&)=["_alesar= f,aea (5.2)

exists for all finite s. This allows for§ functions and higher order distributions. Note then that such an
f(s) is an entire function.

That this is an entire function is also seen from the asymptotic evaluation for high frequencies as ‘}

. [0e(-s1) inRHP
Fle)= O, (-st2) in LHP 63

This implies that one can close the Bromwich contour in the RHP for ¢ <4 and obtain zero, and in the LHP
similarly for ¢ > 12, as required. Refining this somewhat, let f({t) have step-like behavior at the "end

points”™ # and 2 giving
-st
f(t1e e in RHP
fs)= (5.4)

-st
1(t2.)8=2 in LHP

as leading terms in the asymptotic expansions. Another kind of behavior at the end points, such as &
function behavior, changes the power of s which multiplies the exponentials in (5.4).

Note that this type of "gate* entire function corresponds to the entire-function behavior discussed

in Sections ll-and Ili. In particular for the backscattered field we have observed that for each gigenmode
there is a backscattering time window ¢, in (2.20) which, if negative, implies that for the time duration

—tps an entire-function representation is required. Letting the response be divided into three time

regimes we have first zero response, second an entire function, and third a pole series (class 1). Let .
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¢ and 1> as above divide these three time regions, indicating that such a "gate" entire function can

represent the middle time region.

This is not the only kind of entire function. A sufficient condition is that f(¢) decay to zero for both

positive and negative t faster than any exponential. An example of this is the Gaussian func’gion

:

2
f(t)=e_(") >0
ST 2
Fs)=vme e(?) (5.5)
This can be closed in neither RHP nor LHP for any time. However, the inverse-transform integral can be
readily performed along the jo axis of the s plane.
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V1. Time for Targst Identification in Backscattering

One application of the foregoing results concerns the problem of target identification via the
determination of the extermnal natural frequencies [21]. As discussed in Section [lf there can be a time
window (after first backscatter return) during which the pole series does not converge (at least not
independent of grouping terms in some special way). As such an attempt to fit the data with the correct
pole series for thé target in this time regime will likely be troublesome. Without knowledge of the target
aspect (orientation with respect to the direction of incidence and polarization) one will have difficulty
computing the class-2 form of the pole serigs for convergence in this region (except possibly trying all

possible aspects) which involves integration over the target. Fortunately the class-1 form does converge
after a time ¢, which is worst case for ali aspects. Note that ¢, can be known in advance for selected ‘

types of targets, merely based on the maximum linear dimension L,,.

Another consideration is the time for the incident wave to reach all the scatterer and return
information to the observer. Even after a time ¢, (or less depending on orientation) for which the class-1
pole series will converge there is still the question of which target, and hence which pole series, to use.
One can hypothesize two targets with the same shape on the front (i.e. facing the radar) but different back

shapes. If the target consisted of a non-perfectly-conducting surface § (i.e. transparent) then there is a
time of 2[:,, -t f] from first signal return to have information from all of the target. This represents a lower

bound on what might be termed an identification time. Varying over all directions of incidence this gives
2t, as the maximum of this time. Compare this to ¢, for worst case class-1 series convergence.

For perfectly conducting scatterers the time to discriminate the target is further increased by
increased propagation distances for the total fields (and hence surface current density) to reach the back
side of the target. As defined in (1.14) and illustrated in fig. 6.1, ¢y represents the latest time for such
fields to arrive at any point on S. This point is designated 7 , but there could be more than one such point
on S. Note that the propagation path to 7; is not in general a straight line, but includes diffracted and
creeping rays. So the minimum time for target identification (after first signal return) is increased to

tg =2ty —tr| =20+ 20ty - 15]> 21, (6.1)
As illustrated in fig. 6.1 one can perform a gedanken experiment by altering the shape of S near 7; so as
to increase ty. This can be accomplished by a protrustion (moving local S farther back), or by a reentrant
depression which still increases ¢;,. For the perfectly conciuc}ing sphere ¢ is mt, /2 and one may expect
t¢ to be generally less than this. However, for some shapes (e.g. reentrant) ¢, can exceed this. The
relationship of these various signal retum times is also exhibited in fig. 6.1. Note that fig. 6.1is a
simplified description due to the three-dimensional shape of S. Ray paths can also go around S in the

senses of into and out of the page.
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VIl. Concluding Remarks

Here we have alternative forms for representing surface currents and far scattering. The class-1 .
form corresponds to a pole expansion in the strict sense, i.2. no frequency dependence in the residues
(which can be scalars, vectors, or dyadics for representing the physical problem at hand). For the surface
current density class 1 is adequate and convenient. However, for early times or high frequencies other
kinds of representations (not discussed here) are more efficient

For target discrimination class 1 is also appropriate. Even though the representation is valid only
for late time it still gives a set of complex natural frequencies (and residues if desired) which can be used
as an identifying characteristic, particularly since the natural frequencies are aspect independent. Here
we have some estimates of what constitutes late time for this purpose including time for the pole series to
converge and time to return signals from all of the target. This will also be influenced by the waveform of
the incident-field pulse, this being convolved with the target impulse response. Special discriminating
waveforms (filters) such as the K/E pulse can also be convolved with the signal returning from the target
[21]. These also impact what one should think of as late time.

For the computation of scattering length (or cross section) the use of class-1 residues introduces

an entire function which complicates matters. Using the class-2 form in the pole series this particular .
problem goes away. However, there is a price for this. Each Cy, ('1'1.:) needs to be computed for all '

frequencies of interest, instead of only at the associated natural frequency s,. Fortunately, the natural
mode ]’sa (7;) need be computed only once and can be used for all selections of s (=jw typically for

scattering length) and directions of incidence ¥. Note that variation of % is equivalent to rotation of the

scatterer and hence rotation of the natural modes in space.
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Appendix A. Order Symbols

For asymptotic evaluation one often uses the order symbol O defined by

F(s)= O(é(s)) ass— s, (A1)
as shorthand for
Iﬁ (s)l < alG'(s)I forall js—s,|<b
a>0
b > 0 but sufficiently small (A.2)

This is extended to = by requiring
for all |s| > b (sufficiently large) (A.3)

with possible restriction on the direction that s — <, €.g.
Re]s] — +e0 or RHP (right half plane)

Rejs] = — or LHP (left half plane) (A.4)

So this order symbeol is an asymptotic upper bound.

We can similarly define an asymptotic lower bound via
F(s)= 0_(G(s)) )
lﬁ(s)] 2 a|C';(s)l for all fs—s,|<b

a>0
b > 0 but sufficiently small (A.5)

which also applies for s — . If one wishes, for symmetry O can be thought of as 0, Note that (A.5)
implies
F(5)=0(G7\(s)) (A6)

and conversely.

For some purposes it is convenient to introduce the concept of exponential order O, as
F(s)= 0,((-}(5')) ass—s, (A7)

with s, as some form of s — o as above. This means that
lf (s)l = 0[£é(s)+x[s}) = exMO(eé(s)J ass—s,
forally>0 (A.8)

Essentially, besides the exponential we allow any function which grows less rapidly toward e than any
exponential function. This allows for powers of s (including non-integer powers) and emphasizes the

important exponential part. Often one deals with a function of order 1 [28,30] such as
e =0,(st") = 0.(Re[s)") for ¢’ real (A.9)

indicating in effect the power of s in the exponent.
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Similarly a lower bound can be defined via
F(s)= Oe_(é(s)) ass—s,

[F(s)= o_(eé(’)‘xl‘i) forall >0 A0

Again this allows for functions which multiply eG(S) and which decay more slowly than any exponential.
Note that
F(s)= 0¢-(6(s)) = F'(s) = 0(~6(s)) (A11)

and conversely. Again O, can be regarded as O,,..

These order symbois can also be applied to vectors and matrices. The upper bounds can be
applied to all the vector or matrix components (all functions of s here). They can also be applied to the
norms of such vectors and matrices [5,10], these norms being the generalization of complex magnitude.
For lower bounds such norms can also be used. Inverses as in (A.6) and (A.11) are not defined for
vectors, but are defined for matrices, in which case the use of norms is appropriate.
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Appendix B. Asymptotic Behavior of Kernel and Inverse Kernel for Perfectly Conducting Object

An important term in the present considerations is the kernel of the impedance or E-field integral

equation in (1.3). This is closely related ot the dyadic Green's function of free space and gives the fields
at 7, from a point current source (tangential to S) at 7y. As such we have the asymptotic estimate

Z,(F 7i5) = Op(~ ¥, - 7]) in RHP and LHP (B.1)
While this strictly requires 7; = 7y, the singularity here is integrable [11]. Hence, when operating on a

bounded surface current density the above estimate applies.

For the inverse kernel [15] has

- O (=77 =74]) in RHP

27 (FeFlss) = (B:2)
Oc(1frs74)) n LHP

with the assumption of a convex body. Note that this is defined so that the solution for the surface current

is

TilFos) = (B i h ) .) ®3)

This suggests that one look at special forms of the incident field and see what surface currently density is

produced.

As in fig. B.1 let there be some source close to but not exactly on S at 7/. This can be some
current (small antenna) or equivalent magnetic current {magnetic frill). In time domain let this be turned

on at t=0. Fields then propagate away from this source with causality (speed of light) limitation for their
arrival somewhere else (i.e. 7;) on the body. Since § is assumed perfectly conducting no energy can

penetrate through it. Letting the source be just gutside S at 7, the first surface current density (exterior)
at 7, begins at L&) / ¢ where as in fig. B.1 L(“)(?s,?;) is the minimum distance for a signal to propagate

between 7; and 7y by an appropriate geodesic path outside S. Then we have
G Oe(—ﬂ,(ex)(?;,?:;)) on RHP
L) (7, 7) 2 F; -7 (path outside S) (B.4)
Similarly a source turned on at 7y’ just inside S gives for the surface current density (interior)
T4 (7,,5) = 0 (-7, %)) on RHP

L)(7.%) 27, - 7] (path inside S) o
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Fig. B.1. Object in Free Space with Perfectly Conducting Closed Surface S Surrounding Volume V

-
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This suggests that one might define some effective inverse kernel as having the property

z',(“)—1(i;.?,§s) = oe(_yL(“)(?;,a';s)) in RHP

240777, 745) = O (- ™ (5 ) i RHP &5)
When used with some general E(W) (external or internal but not both), these asympotic estimates give
the correct estimate for the surface current deﬁsity. These are tighter RHP bounds then implied by (B.2).
The difference accounts for cancellation of fields on the straight-line path by contributions from surface
current density on intervening parts of S. If, however, § is not perfectly conducting but impedance loaded
(non zero}, then as in [22] 2:", is modified by the addition of the impedance loading (possibly a function of
7s). Inthis case signals can propagate from 7 to 7y along the straight-line path and (B.2) applies in the

RHP.

In the LHP (B.2) indicates that closure of the Bromwich contour can occur after a time —|7; - %}/ ¢

which varies over the body from zero to -L, / c. Comparing this to the EEM form in Section Il we have
the form in (2.14) where the eigenadmittances }"p(s) are 0, (1L, ) which is the smallest of the bounds in

(B.2) corresponding to maximum |7 - 7]. Of course, this applies to finite § for each eigenterm, and not
necessarily to the infinite sum. First summing the poles over B’ for each B and thereby constructing

eigenterms seems to improve the convergence properties.
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Appendix C: Waves in Spherical Coordinates

Summarizing [1,4,6, 26 27,29,31] we have the Legendre functions
(o) 2_4"
Bal8) =B (E) = ldé,,[e 1
-1€&<1,n=0,12.-

R = [-67]2 Zone)

(C.1)
with special values we will use as

1 for m=0
P™) ={
n 0 for 1smsn
P(1)(cos(9)) _n(n+1)

d (1 i "
'd_gpts)(cos(e))9=o=91-l-r:0 sin(6) T 2

P(1)(cos(6)) = lim _ PS)(COS(G» =(—{ #+1 n{n+1)

dg'n g=n €7  sin(6) 2

(C.2)

The spherical Bessel functions are

(n+p)!
Zop'(n p)! .
in(0)= { w(-0)+(- )"*‘k,,(r:)} | ©3)

The k,(1r) give outgoing waves while k,(—y) give incoming waves. These have asymptotic behavior for

large arguments

ka(2)= —[1+0 ;‘“)} in RHP and LHP

[1+0(§'1)] in RHP
in(C) = -
0" [1+o(§")} in LHP
[Sa(Q)] =" [1+o(;“)} in RHP and LHP
, é[wo(g“)} in RHP

[Qn(g)] =

e ; {1+o(g")] in LHP )

where the prime indicates ditferentiation with respect to the argument of the Bessel functions. For small

arguments we have .
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ka(8)= (2= 1+ 0(¢)] as ¢ - 0

in(c)=(%ﬁ[1+o(c2)] as {0

[C’Cn(f)]’ =~n(2n =Y [140(¢)] as -0

n+1

(6O g1+ 0[c2) s £ 0

There are the Wronskian relations
W{in($) ka($)} = in(Okn($) = in(C)kn($) = €2
W{gin(;)n Ckn (;)} =-1

First one constructs the spherical harmonics
v v (6,6) P(m)( ( 9)) cos(m¢)
= @)= cos(m
n,m,o nvmlae n Sin(m¢)
{e:eos(rmp) (even, upper)

O=3sin(m¢) (odd, lower)

I-;n,m,c}'(e’ ¢) = Yn,m.O’(el ¢)1

én,m.o(ev ¢) = V6.¢Yn,m,o(9r ¢) = V9,¢ [-ir : ﬁn,m,d(e’ ¢)]

) NI
= b 20 Yn,m,a(9'¢)+ 1¢ sin(e) a¢ Yn,m.d(e'd’)

_i|mn-m+n) R 5?1) cos(8) (n+1)(n+m) P,Eﬁ) cos(8) |[cos(m)

T 2n+1 sin(6)  2n+1 sin(6) sin(m¢)
< P,E'") cos(6) [~sin(m¢)

T sin(6) | cos(mg)

En,m.a(e"P) = V9.¢ x [-{rYn,m.O‘(ev¢)] = V6,¢ XFn,m.O’(e' ¢)
)

e P,Em) cos(6) | -sin(ms

=T sin(6) cos(m¢)

2| _anmme) P 005(6) (s e m) AT cos(e) | [eostms)
Y 2n+1 sin(6) 2n+1 sin(6) sin(mp)

Vg,¢ = surface gradient (V) on unit sphere
én.m,d(e- ¢)=1,x ﬁn.m.a(e,tﬁ)
En,m.o(e»‘P) = ‘?r X Qn,m,o(et ¢)

(C.6)

(C.7)

The three types of vector functions are mutually orthogonal on the unit sphere. They are each orthogonal

to another of the same type if any indices (subscripts) are different as
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_CL ”Pn,m,a(e»¢)'1’n', o(8,9)sin(6)d¢d8
_[‘H- le. o~ Yoo 0m]2n+1§: ;I nntmm o6

2n . =
[ 1" Bumo(6.0)- G o (8.6)sin(0)dgae

27 .
= [T [T Ramio(6,6): Bt (0.9)sin(0)dipa0

n{n+1) (n+m)i Al o
2n+1 (n—m)l T tmmlo,0

=[1+[te,o—To,0 Jlom 27 c8)

Note that the 0 and R functions are zero for n=0. Then one constructs the wave functions
(2 -] £
28 (R =20 (r.6.0)= FO(r)bnma(8.0)

Y (f)a%vsﬁﬁ,,,a(f)

On,m,o(6,9)

, ©
= £ (PPumot0.0)+ 27

longitudinal modes (non-zero divergence)
MmO (1) an{Eg,)’l’a(ﬁ)=-%Vxﬁ(‘) () (C.9)

nm, nmQC
= 1) R0 (6.9)
H modes (when representing E)
R o (F)= VXML, (47)

nmC nm,Cc

[#n)]
r

. —n(n+1) Pn m,o‘(e:¢)+ Qn,m,d'(e'(p)

E modes (when representing E)

£O0r)
'

The superscript £ corresponds to different choices of the spherical Bessel functions, where we let

f,s1)(s) =i,({) analytic at { = O (for incident wave}
f,sz)(s) = k() for outgoing wave

f(:3 (&) = kn(~¢) for incoming wave (C.10)

with various linear combinations of the above also possible.
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With these we can construct a dyadic plane wave with angles 8y, ¢4 for propagation direction as
1’ [1.27]

% = sin(6y) cos(¢1) T + sin(6y)sin(g1) T, + cos(6) 7,

__ (1 00) _
Tt oo 1 0 |YHT

0 0 1 :
-3 S S [e-tom)-1"(2n 1>§n+'"§!{ Famo(61o0E) ()
n=0 m=0 o=¢,0
1 I5 ¢ U
g B O 00 07~ G010, o 7)) N

. (
Note the rotation symmetry in that one can always rotate the coordinates to make '1'1 coincide with '1'2

Then we have

e ¥ = 2(— 2n+1{ Z() L)+ (C.12)

LR ES 7 O a3l 7 ey 70 (o
n(n+1)[ [ n‘lo(w)"'Nn,‘l,e(yr)]'*'1)’[Mn,1,e(7r)+Nn,1.o(7r)
Here only particular choices of m (0 for L and 1for # and N) remain and for n =0 the # and N are

identically zero. Note that for a transverse electromagnetic plane wave we can use

' L=1-1L =11+, (C.13)
A,

e = Z NG 2n+1{ [-ﬁp(x?,o(f)*'ﬁr(:%e(f)]

+1[ A7)+ A ) )

from which any polarization transverse to '1} can be constructed. For example, let the incident wave in

(1.1) be s.pecified as
EWe)(7,5)= E,f(s)ixe ™™

n=1 ' ' (C.14)
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Appendix D: The Perfectly Conducting Sphere ' '

Figure D.1 gives the sphere of radius a with apposite coordinates. it has characteristic

dimensionstimes (as in (1.13) and (1.14))
Lf=-a , Lp=a L,=2a

=2
Ly=7a (D.1)
with this L, applying to the perfectly conducting sphere. On the sphere surface we have
F=at , K=a¥ , L(R)=1
i -7=aft - ¥ (D.2)

The eigenimpedances are [6]
Zen(s)=T}(s) = =2, ain(10)] 16Ky (16)] E modes
Zhn(s) =Yy, 1(5) = =2 tin (1) ekn(16)] H modes (D.3)

B= (ﬁ,n) = eigenmode index set

a=(8.p)= (ﬁ.ﬁ,ﬁ’) = natural frequency index set

For large 1a we have

- : %—[1-&-0((}0)'1):! in RHP .)

% (_1)n+1 8-2711[1 +0((‘}ﬁ)-1 )] in LHP

'_ 22—0[1+o(( mﬁ)] in RHP

%’-(—1)"e‘27"[1+o((;u)“ )] in LHP

Zh,n(s) =1

(D.4)
For fow frequencies we have
Zon(s)= -Sé—n[w 0((70)2 )] capacitive
22t
" n(n+1)°
Zy a(s)= sL,,[‘I + 0(( ;u)z )} inductive
= Hol x
nT 2n+1 i} (D.5)
showing a d:stlnctly difterent behavior for the two types of modes. Note that both types contain internal
(i, and [juz,,] related) and extemal (k, and [)ak,,] related) natural frequencies.
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Fig. D.1. The Sphere
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Noting that }S(Fs,s) has contributions from both incident an scattered fields with the scattered field
inside the sphere the negative of the incident field, then using [1] we can define external and internal parts
of the eigenimpedances by the ratio of electric field to surface current density on respective sides of § (or
by considering each surface current density mode as a source and using {C.9) directly). For £ modes we
have

2= (-2, [l

Yakn(13)
ﬂm(ﬂ %m)k) Lanbw[
1in{ 1)
?e,n(s)zfle(,n)() Y(‘" (s) (paraflel combination) (D.6)
and for H modes we have
2 (5)= 7§52 -z, 112,
[Wkn(W)]
Z(m (8)= Y(m) 1(s) Z, —wi)—-
[Wln(?a)}
Tpnls)= 1»’;2 n)(s)+Y(‘")(s) (paraltel combination) (D.7)

where the parallet combinations can be verified by a Wronskian in (C.6). These functions are all p.r.
(positive real) as required of passive impedances and adrmittances. The external parts have a finite
number (= n} tirst-order 2zeros and first-order poles, a way of ordering the eigenmodes. The internal parts
have an infinite number of first-order zeros and first-order poles altemating on the jo axis of the s plane

as this ns a reactance function (Foster's theorem). The external and internal parts are related with

() #(e5)

Zo ;,,; (s)

.o Zothn (5) (D.8)

thereby establishing some relationship between the E and H# modes. For large 1 these are
={ex) 1+0| (1 1 in RHP
2 (Ge)™")

éw() #(in)
z

Zo uo@mrgmuw

Z',(:::) (s) _ 1+O((7n)'1) in RHP
Zo —1+0(()u)'1) in LHP

(D.9)
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Note how much better these are behaved in the LHP as compared to (D.4). For low frequencies we have

2(5‘) (s)
en _
= 7':2'[1+ 0(1)]
2075
Zen ) 2301+ 0{(a)? )|
Z, " (D.10)
This can be used to decompose the capacitances and inductances in (D.5) as
(ex) _ £04 (in) _ €08
Cn n Cn n+1
(ex) _ Hoa (in) _ Mot
b= SR R (D.11)

which is a quite symmetrical relationship between the E and H modes.

The eigenmodes are the vector spherical harmonics weighted to be orthonormal as in (2.1) giving

from (C.8)
1

Ise,n,m,c
}.’sh'n'm, o (%)= -a”! v;gz oRnm,c(6,6) Hmodes
(D.12)
B= {i n,m,c} index set
n=12,--
0<msn , o=¢0
Vamo =[1+[le,o - 1,,,6]10,m]2z-"-§-':—?%
These E and H modes are related via [4]
Tonmmo 5= % X Jsg o )
Jsgmmos) =T Jz's,,,,,,,,,,g (7s) (D.13)

Note that the modes in this case are not a function of frequency. However, they are degenerate with n+1
of these associated with each eigenimpedance.

With the above results one can construct the surface current density on the sphere via (2.4) with

the additional term
Ep(ﬂ,s)=<ie‘7‘1'75';}’sﬂ (r";’,s)> (D.14)
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This integral can be expressed explicitly via (C.11). Noting the symmetry a simpler form is found from
(C.14) by specializing the direction of incidence to the z axis, with the incident electric field parallel to the x

axis as
1 .
z < 2n+1 3z |raig(m)] 5
Ce,n,1.e(1z's) = ( )n (n +1) avi?.‘l,e L-_w__]— %
Enmto(Tos) = (- 2221 o2 ()
i h n(n+1) Y0
Vot =Vniomd [nz(n+1) ]
nle = Valo=2n —o T
2n+1 (D.15)
In terms of the vector surface harmonics as in (D.12) we have the simpler form
2, E, 2, \ 2n+1 1 1 =
Js(Fr8) = z—of(s)z(-ﬁnm e T On1e(6.9)
o n=1 A [Wkn('ya)]
1 1 =
-y Rn(6,9)
2 n,le
(1)° kn(1) ] (D.18)
This is treated for its SEM formin [1,2].
Note the asymptotic forms for low frequency (contributed to from n=1) as
)= 2 0] .61 O o s
3
_E{R“1°(0'¢)+O(W) forH modes]} as —>70 (D.17)

where the two terms correspond to the induced electric an magnetic dipoles. For large s we have

JilFus)= 22 s)z 1 2"”{ = [10((0)")] Gurel0.6)

(n+1)| 12

;:a [1+O(( va)~ )]R.n,te(a‘?)} in RHP and LHP

(D.18)
Considering this sum one eigenmode at a time note that (neglecting f‘(s)) the Bromwich contour can be

closed in the RHP (giving zero) fort<~a/c. Fort>-a/¢ the contour can be closed in the LHP giving a
finite number of poles (with class-1 coupling coefficients).

Shifting the time reference to ¢+ a/ ¢ note that the frequency dependence goes as (ya)‘1 so there
is no pole at = (i.e. no entire function). There is even some leeway in including f‘(s) as say st {for

integer £) in the pole expansion (class 1). Step-function incidence (£ = —1) does not produce a pole at
s=0, but £=-2 (ramp function) does produce such a pole. Positive £ such as £=1 (a doublet) gives a
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constant behavior as s — « which does require an extra constant term (due to the finite number of poles
k for each B). While the above considerations apply for each eigenterm, there is still the sum over B which

as s — « and in time domain can diverge such as when aitempting to produce a distribution such as a

delta function.
The far-field scattering is giving by a scattering dyadic as in (1.8) or the far field as in (1.7). For
the special case of +z propagaﬁon and +x polarization of the incident wave in (C.14) we have

Ef(?,s) = ‘EO 720 2 [ze n(s)é’e.nJ,e (-1;' 's)ée.nﬂ,e (-{z's) ’ :i"

n=

+z-1 C’h,n,1o(1’ s)Ch ,1'10(12 s) ] 019
é’e,n,1,e (-{’"s) = ée,n,1,e("i-» ) <1r e‘}"lr -."jse,n,te (7, s))

2ne1 7 [min(19)]
n2 (n+ 1)2 e 1o

c:’:’h,n,to (.1.,,5) = éh:"ﬂ,o (—:I""S) <1r e”’ 'Jsh nle (rs,s)>

=(-)*'2 Onte(n-0,0% )

n“(n+1)
’ where the angles in the vector harmonics are associated with -7, where 1, is the direction to the

1
a vs,toin(ya)Rnﬂ,a(”‘ 6,0t ﬂ)

observer.

For backscattering the symmetry makes the far-scattering dyadic proportional to the transverse
dyadic. It can be evaluated from the far field on the -z axis for which the vector coefficients reduce to
those in (D.15) giving

K1) T 120 B 220 el ansel]

n=1 )]
ol

A(Ts)=T2maz, Y (2n+1)-2;]

n=1

‘Z-;;L(S)Wlf(W)] (D.20)

I ’

+Zh nch n,1.o( Ch ni, o

CTomS [rain(1)] __in(ra)
=T2m Y (2n+1) .-
rél ' L W[Tain('}u)] 1kn( 1)

. = i2mi(2n +1) (w)zkn(w)[wkn(w)]' ]-1

n=1 -

again using a WronsKian. Note that, with the result separated into E-mode and H-mode terms, the interior
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natural frequencies are first-order zeros of the scattering dyadic. The exterior natural frequencies are first !

order poles. However, at least for backscattering, combining the two Kinds of modes for each » gives no )
zeros except t s=0

For low frequency only the n=1 term (electric and magnetic dipoles) contributes giving
K('fz,s)=-6m(7u)2'1', aswu—0 (D.21)

For high frequencies the individual eigenterms behave like

i -e:—:[1+0((}u)'1)] in RHP

1] 1ain (0)] %{:Ho(ﬁa)"‘)] in LHP

o) -f—:{uo((m)")} in RHP

rekalre) ('2:1 go((;a)")] in LHP

(D.22)

This exhibits the closure of the Bromwich contour in the RHP for ¢ < -2a /¢, and in the LHP for¢ > 0.
However, if we consider the combination of these terms ta form the nth term we have

»9—1 2}12
[(‘}u)zk,,()u)[}akn(m)] ] =--eT,a--[wo(()«z)‘1 ﬂ in RHP and LHP (D.23)
for which the contour can be closed in the LHP for¢ > ~2a/¢. Infact this nth term can be expressed as a .

finite number of poles times ez?“, requiring no additional entire function. It would be interesting to
understand whether this result applies to other shapes or is peculiar to the sphere.

Considering the high-frequency behavior of f{ one can obtain the well-known result for a sphere

[31]. Considering the curvature of the surface where the wave first strikes the sphere, the scattered field
falls off as a/(2r) where a/ 2 is the distance of the effective apex of the expanding wave behind the

surface of the sphere. In our present notation this gives

A(L.s) - 27?7, inRHP (D.24)
which also applies on the jw axis (for large @ ). This can be interpreted as a scattering length in (1.10) as
£— -J7ae?” in RHP and on jw axis as @ —» e (D.25)
or backscattering cross section
A= Mz —> 722 on jo axis as @ —> e (D.26)
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