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ABSTRACT

This report is an attempt to treat the problem of bounding the energy coupled to or
scattered by a system by an impulsive or a step-function incident wave. For an impulse
incident wave the high-frequency limit of the forward scattering amplitude is needed,
whereas its low-frequency limit is required for a step-function incident wave. The report
starts with some circuit representation of a generic coupling problem, in which the
positive-real properties of driving impedance or admittance can be immediately invoked.
A particular case, namely, a thin wire antenna, is then treated, for which the induced wire
current can be represented approximately by an analytical expression, allowing for a
detailed demonstration of some of the ideas involved. Finally, a general approach is
discussed for obtaining the forward scattering amplitude at the low- and high-frequency
limit. The latter case encounters certain fundamental difficulties, which are discussed in
some detail.
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INTRODUCTION

In a previous effort [1], the total extinction cross section, o¢, is shown to be

related to the real part of the forward scattering amplitude by the following integral

relationship
7 ax= A @) 1)
0o X“—-m 2m

where

A;=Re(l;- A)  in the forward scattering direction
and
eikr

E.= A—
¢ 4rr

with A normalized to an incident electric field of unit amplitude in the direction of unit
vector 11.
For low frequencies (1) gives

o0

[ oua)an =72 (A1 / 02)gs0 @
o
(A = wavelength), and for high frequencies it yields

oo

[ o1(w) do =-= (A'l )W 3)

The right side of (2) is related to the polarizabilities of the scatterer, since A for dipole
radiation is proportional to w2. Recognizing that the absorption cross section never
exceeds the total cross section and that the left side of (2) is directly related to the total
energy absorbed and scattered by a step-function plane wave, one can then bound the

energy absorbed by any object for a step-function incident wave [2, 3].




In this report we will focus on (3), i.e., the integral of the total cross section over

all frequencies. We must bear in mind that if 6 has a limiting value, say Geo, fOr @0 — oo,

the integrand in (3) should be replaced by ¢ (®) — Cee.




CIRCUIT CONSIDERATIONS

There is an analogue to (1) in circuit theory. Let Z and Y be driving impedance
and admittance, and Z=R + jX and Y= G +jB.

Then [4]
2 7 R(x) 2 £ xX(x)
X(w)=—w dx, R{w)=— dx 4
(©) T ,[XZ_O)ZX (©) nixz—co?‘ @
and similarly for G and B.
When ® — oo, one has
2 1 ¢ 1
~— — | R(x)dx = lim X(®)— —-—
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R(w)dw =— 5
{ (0)do == (52)

which is known as the resistance-integral theorem [3].

At the low-frequency limit when @ — 0, one gets

—2—co '[ R(;) dx = lim X(w)— oL
T o X -0
or
~ R(w)
do ==L (5b)

which is equivalent to
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Similarly for G and B we have

o

{ G(w) do =% ® = oo (62)
[ 4y -Zc ® 0 (6b)
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It goes without saying that the necessary condition for (6a) and (6b) to hold is the
existence of the integrals.

Let us illustrate how equations (5) and (6) can be used, first in the case of a
transmitting antenna and then coupling to cavity through a slot.

Suppose an antenna is excited by a voltage source V(t). If V is an impulse, i.e.,

V() = V§ 6(t), then from (6a) we have

oo 2
Total Radiated Energy = 2j QV(m)lzG(jco) df = Z—E (72)

(o)

(0 = 2wf) meaning that the total radiated energy is limited by the inductance. If, on the

other hand, the voltage source is a step function, i.e., V(t) = Vg u(t), then (6b) gives
Total Radiated Energy = 2 v2 5@ af = % cva (7b)
0
(8}

implying that the capacitance sets the limit for the total radiated energy.

If the antenna is excited by a current source such as opening a switch, equations
(5a) and (5b) can be utilized to derive limits on the total radiated energy for impulse and
step-function sources, with C and L being the capacitance and inductance of the driving-
point impedance.

Let us now consider the problem of coupling to a wire inside a slotted cavity,
which has been studied in a previous report [5]. Supposing the voltage induced across
the slot at A, B as shown in Fig. 1 is either an impulse or a step-function pulse, one asks

for the upperbound energy picked up by the resistive load of the wire in either case.

When the cavity and the wire are perfectly conducting, there are two kinds of irreversible




- e e
’—"'— S~

-~ L d

~~--_———-—’

inc ” £33 R

Figure 1. Coupling to a wire inside a slotted cavity.




energy loss, with one to radiation to infinity and the other to the resistive load of the wire.
Then one may say, with the aid of (7a) and (7b),

2
v
Energy Coupled to Wire Load < %, for impulse

®)

< -% C VE, for step — function pulse

The inductance L and capacitance C are the combination of the external and internal
inductances and capacitances across A, B.
In the Appendix we will work out all the details of (7a) and 7b) foran L, R, C

circuit, where the elements are frequency-independent, lumped circuit parameters.

"




In this section we consider the application of (3) to thin wires. In particular, we

specialize the wires to straight thin wires and consider a delta-function incident wave.
Let us first consider a straight thin perfectly conducting wire of length £, Using

the method of natural modes we may write for the induced current 1(z,s) [6]

I(z,s) = Anc Y 1 [Jtsin(nnz'/ﬂ) Ei, (z‘,s)dz'}s'm(mtz/ £) )
ZoQt < s-spy LYo ¢

where n =1, 12, -, Q = 2¢n (¢/a), Zo =120% ohms, ¢ = free-space speed of light, and
the natural frequency sy is given by
. _C [ . -2
sy =innc/f o7 [Cin(2|n|r ) +i Sl(2n7c)]+0(£2 )

with Si (x) being the sine integral and

1—cost
t

dt

Cin (x) = jx
o

We now proceed to evalutate the forward scattering amplitude A'I for @ — e,
Recalling that the scattering amplitude A is given by

t M [
=—-iou lrx[lrxj e_lklf'rl(r') dz':l (10)
0

we obtain, by substituting (9) in (10), setting s =—iw and noting that 1; - ' = 0 in the

forward direction,

- dmcp . 402 1
A = - E —, n==*1,+£3,--.-

an




where Eg is the amplitude of the incident electric field parallel to the axis of ther ;x;ire. .

The integral of o; over all frequencies is then given by

Tcch

én(f/a) (12)

fzst(cn) dw =

Let us now take another route to evaluate the integral of o over all frequencies,
first calculating the energy spectrum via the EMF method and then evaluating the
scattered energy by integrating over all frequencies. Denoting the energy spectrum by Py

we then have

Py = Re [ I(2) Ejpe(z)dz

; 2
=_i1t_cE% 2 Re( 1 + 1 ) 4£2 _}2_
2,28 n=i3s.. \$-%a $=8q) 7" n
Since o is defined to be Py, / (EZ / Z, ), we have
J' o () dco=£% J P, dw
0 EO o
_16ct _17 f Re( 1,1 ]dm
Qn n=135.. 07 75 \S~7Sp S—S.q (13)
where
Re( 1, 1 ]_ 4o, (0 -0ty )
$-8p $78.n ((02 -0+ oc%)2 +40w?
2
- 4030) » for small o
2 2 2 .2
(c:) —wn) + 4o
Noting that [7]
2 Afocncn2

2
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we finally obtain from (13)

) 2
16¢4 1 et
o(w)dow =—— — = (14)
Jo ‘ Q n%,s... 2 n(¢/a)

which is identical to (12). We have just simply verified the correctness of (3).

One may make use of (14) to calculate the total scattered energy for an impulsive

incident plane wave. Let E, be the amplitude of the impulse. Then

2
Total Scattered Energy = 2 - -;—0 . f o (w)df
0 o

n2ct _ (Eoi’)2
£n(¢/a) 2L (15)

_E2

L.
Zy, =

where L = |10 £/(4), the inductance of the wire. It is interesting to note the similarity
between (15) and (7a).

Up to now our considerations have been restricted to a perfectly conducting wire
without any impedance loading. Suppose the wire acts as a receiving antenna with a load
Z, across a gap at, say, z = z,. We ask, what is the total extinction cross section for this
case? To answer this question we will seek a relation between the forward scattering
amplitudes of the receiving problem (with Z1 ) and the parasitic problem (with Zy = 0).

Let
E; = total field in the receiving problem with Zj

E; = total field in the transmitting problem
with E; = -V 1., 8 (z-z,) on antenna surface

Ep = total field in the parasitic problem with Zy, = 0.
By superposition we then have
Er=Ep+ocEt (16)
everywhere outside and on the antenna surface. To determine o we make use of the

boundary conditions on the antenna surface, namely,
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|E,dz=V,, [E,dz=-V,, Epu=0 (17)

and we get

(18)

where I, is the short-circuit current of the parasitic problem at z = z, and Zt is the
antenna driving-point impedance.
In the far zone, r — oo, we write

r
E, > Ei.+A —
r mc 1'4

eIikr
E.—-E, . +A —
e = Eing + Ap — (19)
ikr
E, > A, —
4mr
from which we have
Ar=Ap+0o A, 20)

We now invoke the reciprocity theorem to say

i
Velp=-—Einc- A Q1)

With (18) and (21) we obtain from (20)

. Zy Z 2
Einc' Ar =Ejpe - Ap —ikZ, # I (22)
which is what we set out to seek.
12




Let us carefully examine the second term on the right hand side of (22). At low
frequencies, I ~ . Thus, the second term goes as @3 unless both Z; and Zt behave like
a capacitance, in which case it goes as @2. At high frequencies, Ip ~ @1 and thus the
term goes as ! unless both ZT and Z1_ behave like an inductance, in which case it

reduces to a constant. To sum up, we have from (22)

(11 Ar)y e = (L Ap) (232)
unless both ZT and Z1 behave like an inductance as ® — o, and
( 1 ;- A ) ( 1 1,-A ) 7 7 (23b)
= 1;- =|—1;
®> ' w—0 ®? P w—0

unless both Z and Zp behave like a capacitance as ® — 0. Equations (23a) and (23b)
mean that for impulsive or step-function incident waves, the total energy absorbed plus
the total energy scattered is equal to the total energy scattered by the same antenna
without impedance loading. Perhaps, the no-load case sets the upper limit for the loading

case at least for these two types of waveforms.

13




GENERAL CONSIDERATIONS

In this section we will explore ways to calculate the foward scattering amplitude

A'l introduced in (1). The scatterer is of general shape and perfectly conducting. In

terms of the surface currents K, A is given by
A=—iopl, X [h x [e7iklr r'K(r’)dS} (24)
S

which reduces to (10) for the case of a thin wire. Let 1; be the unit vector parallel to the

electric field of the incident plane wave. Then

All = Re(11 . A) = - I:Im-" 11 K e—iklr' r' ds} (25)
S

Let us first examine the low-frequency case where we know what (25) should
give. Expanding the exponential in small argument and keeping only the first two terms

we get
[ n-Kek ¥ as = [ 1;-Kas' - ik [ (11 -K) (1, ) ds’
S S S

The first term is just the dipole term, namely,

[ 1-Kds'=-i01;p (26)
S

To work out the second term we let, without loss of generality, 1; in the x-direction

and 1; in th z-direction. Then expanding

14




(1;-K) (1;-¥) = 2Ky

=%(Z'KX -x'K,) + % (ZKx +x'Ky)
we have
1
[ (1K) (1;-r)dS' = m, y =5 10Qx 27)

where my is the magnetic dipole moment in the y-direction and Qy is the xz-component
of the quadrupole moment Q. Substitution of (26) and (27) in (25) gives

2
Aj=o?ulp+ 2R 1, .m+0? (28)
C

in agreement of previous results [1].
To evaluate the forward scattermg amplitude at the high- frequency limit we will

start with the expressmn for the scattered field that makes no approximations on the

phase function, namely,
11 . Esc = 103“ .[ K eiklr—r'l dsy

— 1(0” J' K10 el k(z'+r- rl)dS'
(29)

In the latter expression of (29) the propagation factor of the incident wave has been
factored out (see Fig.2). The phase function f(x',y") for observation points on the z-axis,

i.e., along the direction of propagation, is given by

£(x,y) = 24(z-2) + x 2+ y2 (30)
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Figure 2. Stationary points at x'=0, y'=0, z'=+ a and
on circle: xZ+ y‘2 =a®— a*/4z?), z > 0.
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In what follows we will work out the stationary-phase evaluation of (29) for a

sphere of radius a. That is, we will evaluate the integral

I=[Kjo e'kfds'  fork — e

where
f(x',y) =2z ++/22 -222' +a2

Differentiating f with respectto x' one gets

of x' z

== == -1

ox Z \/ 72 —277'+a2

2t _ 1, x? z o
ox™ z z° \/ 2% —227'+a?

_(zf a
z (22—222'+a2)3/2

€2

(32)

(33)

(34)

The expressions for the derivatives with respect to y' can be obtained from (33) and (34)

with x' replaced by y'. Setting

of of
— =0 and — =
axt an ayl

one obtains the following stationary points:

and

7' =a2/(2z), x2 +y?2 = a2 —a%/(4z2) (z>0)

17
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Since the surface current Kjgat x'=0, y'=0, z==a is zero when k — o we will ignore
this stationary point in the following discussions.
At the stationary point x' =0, y' =0, z'=-a (Fig.2), the phase function (32) takes

the form

1z }2_11( 2z _, g2
2 \|z+4q| 2 al\l|z+a

1 x2 1 y? .
=z + — +— z > 0 (forward scattering) (36a)
2 z+a 2 z+a
x!z y12
= -7 + — + — z — —o (backscattering) (36b)
a a

The latter expression (36b) leads to na2 for the backscatter cross section of a sphere at the
high-frequency limit, as it should.

The evaluation of the integral in (29) with (36a) gives

1;-Eg = —E, e'¥?, z>0 (372)

where K;9 =2H, = 2Ey/Z, has been taken. Thus in the forward scattering direction, the
scattered field is just the negative of the incident field from the contribution of the

stationary point x'=0, y' =0, z = —a. To be more accurate, (37a) should be replaced by

1;-Eg = _(14-%) E, ¢X%, 250 (37b)

The stationary points given by (35b) lie cn the circle formed by the spherical
surface and the plane z' = a%/(2z) perpendicular to the direction of incidence (Fig. 2).
To evaluate the contributions of these stationary points to the integral in (29) we revert to

the spherical coordinates. The stationary points defined by (35b) are now described by

18




cosby =a/(2z), 0<o'<2n (38)

and the phase function (32) is now expressed as

t — l— 2 e
£(0',0 )—f(90,¢)+2 307 | (6'-6, )"+
2
~ 2 _(g-0.\
=z- (6'-6,)" + (39)

With (39) a stationary-phase evaluation of (29) gives, for k — o and in the forward

scattering direction,

1 -E, =1 'k x/nka jz K10 (66,0') o' ,, (40)

From the discussions of [9] it is possible that Ko (8, ¢') goes to zero faster than k™2,

Thus the stationary points on the circle defined by (35b) would not contribute to the
forward scattering at the optical limit.

From the second term of (37b) and setting Eo = 1 we find A'I =—47a forthe real
part of the normalized forward scattering amplitude at the optical limit. Finally,

N [Gt((o)—Zﬂ:a2]dco =2cn’a (41)

for the case of a perfectly conducting sphere.
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APPENDIX

In this Appendix we will work out the energy loss to the resistor R of a simple
L, R, C circuit using (7a) and (7b) for an impulsive as well as a step-function voltage
source. The circuit elements L, R, C are constant parameters, although (7a) and (7b)
work even for frequency-dependent parameters. The circuit is shown in Fig. A.

First, let v(t) = Vg u(t), i.e., the voltage source is a battery and the switch S is
closed at t = 0. Using Equations (8), (9) and (10) in Symthe [8] for q(t), the charge in C
at time t, we find i from q and calculate the total energy loss to R by direct integration

to get
R [ i th%cvl% (A1)
8]

which is predicted by (7b). We now want to use, instead, the left-hand side of (7b) to
calculate the energy loss. The conductance G is given by

2
G(®) = Re Y(0) = = 2 (A-2)
L (0?-0f) +R%? /17
where mg = (LC)-12, We find
> 2 G(w) 1.2 R & do
ZJV“ 2df=_V“£7 2 2 22 .2
o “’ T (co -mo) +R*w” /L
2 oo
_lp2 R QU dx
T b2 RI 2 N2, .2
o (ax —1) +x
_lcvz
2 " (A-3)

since the integral has the value /2 for a > 0. Again, (7b) is confirmed.
Let us now take an impulsive voltage source, v(t) =Vg§ 6(t). The left-hand side of

(7a) is

20




o0 1 o
2 [ V& G(w)df = — \ jo G(w)da
(o)

_1V Rf w2dw
T '8 2 2

T o (0 -0d) + R%? /12
v

2L

(A-4)

since the integral has the value & /(2R/L) [7]. Equation (7a) is thus verified for the simple
L, R, Ccircuit shown in Fig. A.

21




Figure A. Simple L, R, C circuit.
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