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Abstract-—— A newly developed solver (GLS3D) code, coupled
with the existing EAGLE grid generation: code, is nsed to nu-
merically solve for the potential and charge distributions of
a transmission line formed by two elliptical conductors. This
technique employs the finite-difference solution using boundary
fitted coordinates. Results obtained from this technique and the
fAnite-difference technique with a rectangular grid are presented.
Also, 2 comparison with theoretical results for circular and flat
conductors is made to illustrate the validity of the technigque.

1. INTRODUCTION

OR EMP applications, it is often desired to design a

transition section to match a low impedance source to an
electrically large wire siructure. Furthermore, it provides field
uniformity and polarization [1]. This design is accomplished
through the use of mansmission-iine theory. Thus, & transmis-
sion line formed by two elliptical conductors can be used as 2
transition section to provide a smooth transition between flat
and round conductors.

In general, the design and analysis of mansmission lines
requires a knowledge of the characteristic impedance. Accord-
ingly, both analytical and numerical solution techniques have
been employed to determine the characteristic impedance of
arbitrary-shaped conductors. The analytical techniques have
been restricted to simple geometries. However, the numer-
ical techniques are more powerful, but they may require a
great amount of computer memory and speed for complicated
geomeltries.

Several techniques are available to numerically solve for
the potential and charge distributions of a transmission line
formed by two elliptical conductors. The most commonly used
are the integral-equation [2], the finite-element [3], and the
finite-difference [4] techniques. The integral-equation method
makes use of the method of momenis to compute the charge
distribution around each conductor as well as the electric
potential. This is done by formulating an appropriate geometry
to describe the distances between source and observation
points on the conductor surfaces.

The finite-clement method discretizes the region of interest
inio subregions. These are usually polyhedral, and their edges
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define a network with N nodes, where the electric potential at
each node is 2 function of every other node. Accordingly,
the electric potential and/or the charge distribution can be
evaluated at each node by matrix inversion.

In the finite difference method, the region is covered by
a grid of points, generally equally spaced, and the potential
is obtained by systematically iterating the potential at every
node in terms of the neighboring nodes until convergence
occurs. However, this technique may not be accurate when
approximating the solution for the normal derivaiive of the
potential at an edge. It is of interest to note that the last two
techniques are limited by the configuration of the size of the
problem [5].

In this paper, an effective technique that employs the finite-
difference solution using boundary-fitted coordinates is used
to numerically solve for the potential and charge distributions
of a transmission line formed by two elliptical conductors.
This technique uses a newly developed solver code, Generic
Laplace Equation Solver for Three Dimensions (GLS3D),
that has been coupled with the existing EAGLE grid gen-
eration code to yield a system that is capable of solving for
the potential distribution for arbitrary shaped configurations
[6]-[8]. This existing code can be used to solve two- or
three-dimensional problems with complex geometry, including
conductive materials in the interested region, where direct
methods can not be applied.

Results obtained from this technigue are presented and
compared with the finite-difference results using a rectangular
grid for circular and flat conductors where the characteristic
impedance can be determined analytically. Elliptical conduc-
tors are also considered to demonstrate the application and
accuracy of the technique.

1. ANALYSIS

A. Charge Per Unit Length

1) Finite-Difference Solution Using a Rectangular Grid:
The potential at points near an arbitrarily shaped conductor
can be computed numerically by using a finite difference
approximation to Laplace’s equation [4]. Here, this method is
applied to an elliptical conductor near a perfect ground plane
in order to compute the two-dimensional potential distribution
about the condcutor. Accordingly, the charge on the ground
plane, which is equivalent to that on the conductor, is found
and then used 10 compute the characteristic impedance of the
conductor.
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Fig. 1. The elliptical conductor.

Applying this process requires that the plane in which
the potential values are to be found be overlaid by a grid.
Fig. 1 shows the boundary conditions and grid that is used
to compute the potential at points in the region around an
elliptical condutor. The symmetry about the y axis in this
problem is also utilized to arrive at boundary conditions along
the y axis.

The iterative process that is used in this problem is the
successive overrelaxation (SOR) scheme. In this process, an
arbitrary grid point (3,7) is adjusted on the nth iteration to
satisfy the following equation:

3y —
Vi = - KV + (K/9)
VTS VS A VESY + Vi,

ti=1,---, N and jF=1,--- .M (1)

where K is the SOR constant, jie, 1 < K <2, K =121is
used throughout, ¥ and M are the maximum size of the grid
in the z- and y-directions, and V;; is defined as

for

2)

The foregoing technique is applied at each point of the grid
that is not on the boundary. For points that are adjacent to
curved boundaries, i.e., points that do not fall on grid points,
some modifications to {1) are required [4]. The accuracy of
this process is limited by how fine the grid is and by how
many iterations are allowed hefore stopping the process. The
iterative process continues until all points in the nth iteration
satisfy [V - V" ™V| < TOL = 1075,

Vi, = V(z,y) where zx=¢A and y=jA.

To simplify the calculation of the charge on the ground
plane, NV and M are set equal in this process. Also, the voltage
on the elliptical boundary is set at a constant 1 V {see Fig. 1}.
However, caution must be used to ensure that: 1) the upper
and right boundaries are at least 32 to 4a away from the
origin, where 2 is the semimajor axis, 2} the height of the
conductor, ki, is small (such as 30% or less of the length of
a side boundary), and 3) the tolerance used for stopping the
iteration, TOL, is small enough to require several iterations (at
least 6NN} to occur before the solution converges.

The charge per umit length on the elliptical conductor of
Fig. 1 can be found by integrating the normal derivative of
the potential around the conductor to give

v
Q—fca:;df

An easier approach, however, is to integrate the normal
derivative of the potential across the ground plane below
the conductor, since this charge is the same as that on the
conductor. Accordingly, the charge can be obtained by simply
summing the values of the potentials in the row just above the
ground plane of Fig. 1.

2) Finite-Difference Solution Using Boundary-Finted Coor-
dinates: A more versatile technique to solve for the charge
distribution of an arbitrary-shaped body is through boundary
fitted coordinates [6). [7). iIn this fechnique, a curvilinear
coordinate system is defined in the region of interest such that
all boundaries in the region are coincident with coordinate
surfaces. The coordinate system that describes the region is

3)
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then transformed into 2 fixed rectangular computational region
with a square mesh. The resulting system in the transformed
plane counsists of simply described boundary conditions. The
equations to be solved in the computational region are, in
general, more complex than those in the original region, but
the precise representation of the boundary conditions yields ac-
curate solution. The finite-difference solution is then obtained
using only grid points so that no interpolation between grid
points is required.

For corvilinear coordinates (£%,§ = 1,2, 3), the Laplacian in
nonconservative form is

3 3
VIV = z ZgﬁVE‘E’ + (Vifi)VEa

@
i=1 j=3
where g'/ is the contravariant metric tensor given by [6]
g¥=a'-a? ')
where
@d=ve (i=1,2,3). ©)

Moreover, the grid generation system of the EAGLE grid
generation code [8] described by

Vit =g*P.  (k=1,2,3) %)
can be introduced so that Laplace’s eguation in curvilinear
coordinates can be stated as

ZEQJV;EEJ+29 PiVen = 0.

i=1 j=3

The EAGLE code is a general three-dimensional grid genera-
tion code based on composite structure [8], []. [t can operate
either as an algebraic-generation system or as an elliptic-
geperation system. It is designed to discretize the domain
in or around any arbitrary three-dimensional region. The
finite—difference method is then used to solve the governing
equation over the domain of interest for both two- and three-
dimensional cases with proper boundary conditions. The input
is structured to be user oriented. The EAGLE code can be
operated on any machine which bas 2 standard Fortran 77
compiler. This code is in public domain with proper approval
from the U.S. Air Force.

Equation (8) above fornms a system of equations that is
solved numerically to calculate the potential distribution over
the region of interest. The control functions, Py, are evaluated
in the course of the grid generation and are then available to
the Laplace solver as coefficients with fixed values at each grid
point. This equation is solved by point SOR iteration [10].

The initial conditions for the entire region are set to zero
except those at the boundaries, which are set 1o the Neumann
boundary conditions in this case. The electric potential V is
then computed iteratively by sweeping across the grid points,
such that all the adjacent points with lower indices are updated
first before calculating the current value. This procedure will
continue until it converges to the given tolerance. A tolerance
value of 10~% is also used here. Accordingly, if the maximum

(8)

residue in the region is less than the tolerance, the solution in
the region converges.

In the current problem, the potential at some particular
points, lines, or surfaces may be assigned certain values, e.g.,
a value of I V is assigned for the elliptical conductor and 2
value of QV to the ground conductor. In the GLS3D solver
code, any particular value can be assigned to these special
segments in the input run-stream and the code will preserve
these fixed values throughout the calcularion.

The Neumann boundary condition (8V/8n) = 0 is then
applied to all the far-field boundaries since it is assumed that
the potential has zero gradient on the outer boundaries. From
Fig. 2, the normal derivative to the coordinate surface on which
& is constant is given by

= Zs% =0. ®
gu

With the curvilinear coordinate that is constant on the desig-
nated surface £V, this becomes

mZg Ve =0 (10)

j=1

where N here stands for the normal boundary. This yields

3
> §" Ve =0 )
j=1

This summation can be expanded to the form

M Ven + g7 V2V, + gV Ven =0 (12)

where £ and €M are the curvilinear coordinates that vary
on the surface. Using central differences for Ven, and Vv,
and one-side differences for Vi~ yields the following:

QNN:V:QN:. +QN-N2I’EN= +gN_N'
'[V(E”I LNz gNg1) = V(ENlrgﬂerN)] =0. (13)

Finally, the potential on the Neumann boundaries can be
expressed as

1
Viem gra gny = o
'[Q‘NNIV.'EN:. +QNN:1GN2 +9NNV'(£N;'£N,,EN+1)}.

(14)

Once the iteration process converges, the result for the poten-

tial distribution can be used to calculate the surface charge,
Q. on the elliptical conductor. Accordingly, the numerical
expression for @ defined in (3) becomes

imen—1

Q=¢ >

=1

- 20Riss — Rel + Re = Ri ]

\/T ZQ‘JT/E,

=1
(15)

where ima, is the maximum number of grid points along the
conductor surface, ie., ima,, = 201 is used, and R; is the
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Fig. 2. The coordinate system on either side of a surface discontinuity.

position vector (see Fig. 3). Note that the numerical expression
for Q as in equation (13) is obtained from (3) with

)%

Q

(16)

S

ﬁ]

and

1
dé = EHR'H-I — Ri| +|R; — R;4]]. a7

B. Characteristic Impedance of the Transmission Line

From basic fleld theory [11], the characteristic impedance
of a lossless transmission line is

L

2. = o

(18)
whers L and C are the inductance and capacitance, respec-

tively, per unit length of the transmission line. Equation (18)
can also be written as

NS

Ze= C

(19)

where g and ¢ are the permeability and permittivity of the
medium, respectively.

The charge per unit length on the transmission line can be
expressed in terms of C and the potential difference between
the conductors, 1V, as

Q = CV,. (20
In the case of Fig. 1, ¥, is set to 1 V. This yields Q@ = C.
Accordingly, (19) becomes

(21}

Knowing the charge per unit length from (3) or (15), the char-

acteristic impedance of a two-wire wansmission lne formed
by two elliptical conductors, separated by a distance of 2 h,
is then computed.

381

C. Characteristic Losses

For a two-were line with circular cross-section conductors,
the internal impedance per unit length is [12]

1+ _ Wi
- (]

where a is the wire radius and 24 is the center-to-center wire
separation. Here, the real part of z* is the wire resistance
per unit length and the imaginary part is the inductance per
unit length that arises from the magnetic flux inside the wire.
Note that the internal impedance grows without bouand as the
wire separation approaches zero. This occurs because the line
current tends to accumulate on the portion of the wire surface
nearest the other conductor.

For thin flat parallel conductors, generally called a two-
conductor suip line, the intermal impedance is [13]

.1:[1 +z+7—2ln (%)]

1 —_—
Ed |wu-es =

2145) [fwu
‘sr': s — - 23
2 lsteip w 2c l1+z+In(l+2) 23
where
™
=% 24
and

= 1+£)2—1+(1+t 14+ ’ 1 (@5
= (1++ D) - ‘

where w is the plate width, 2h is the plaie separation, and ¢ is
the plate thickness. The characteristic impedance of the strip
line is [13]

= J* il _ .
Zc_‘/?l+—.r+1n(1+:r:)' 26)

In order to compare the loss characteristics of strip conductors

to circular conductors, the width of the plates is constrained
to have the same circumnference, ie., 2w = 2xa, and the
characteristic line impedances are required to be equal. With
these conditions, the ratio of the internal impedances is

2z[l+z+r—2]n(%)]
l1+z4+In(l+x)

z is:rips _
z*|wires

-() @

For a 50! characteristic impedance, the spacing, h/a, is
1.08807 for circular conductors and x is 19.66 for flat strip
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Fig. 3. Graphical representation of a line integrai %%d! for an erbitrary
geometry.

conductors. In addition, for the comparison, let « be 4.79, then

Fleteips _ 14 (28)

lewi.re.l
Clearly for the parameters selected, the ohmic losses of the
strip line greatly exceed those of the circular-conductor two-
wire transmission line. This is expected since the current
distribution on thin strip conductors is highly nonuniform with
most of the current in narow sections at the edges [14].
Consequently, to minimize power losses, it is desirable to use
circular conductors whenever possible.

For 2 mansmission line formed by two elliptical conductors,
the conductor cross section can be continuously varied from
flat strips to circnlar cross sections while simultaneously
increasing the conductors separation to yield an exponen-
tially increasing characteristic impedance [1]. This increases
the power handling capability and provides low ohmic loss
charactenistics.

III. RESULTS

In order to illustrate the validity of the numerical techniques,
three cases are considered. A comparison of the characteristic
impedance obtained from the different techniques is then made
and, whenever applicable, a relative error figure is determined
to check their accuracy.

Case I: In this case, a circular conductor withe = b= 1.0
cm and h = 1.5 cm is considered first. For circular conductors,
the characteristic impedance can be expressed as in {19) where

TABLE I
CHARACTERISTIC IMPEDANCE COMPARISON FOR CTRCULAR CONDUCTORS
Method Characteristic Percentage Number of
Impedance Relative Iterations
Ermor
Abalytice] 11540
Finite difference 1119 0} 3.0 20849
nsing 2
rectangular grid
Finite difference 1114 0 3.47 23500
using boundary
fitted
coordinates
C is given by [15]
o
C= (29)
h+ VBRI bf]
o b

Here, ¢ is the permittivity of free space. This yields a charac-
teristic Impedance of 115.4€2. Table I shows the characteristic
impedances computed using the rwo numerical approaches.
According to Table I, emrors of 3% and 3.47% are obtained
using the two humerical methods. Fig. 4 shows the electric
potential contours and Fig. 5 illustrates the charge disaibution
on the circular conductors obtained from the fnite-difference
technique using boundary fitted coordinates. Note that moving
along the circular conductor swface, from point G, to point
G}, the corresponding charge distribution of Fig. 5 follows a
path that is opposite in direction, i.e., from point @, to point
Q.

It is also of interest to examine the perforrnance of the
presented technique as opposed to the well-known integral
equation method [2]. Although no direct comparison is made,
a similar case was presented by Clements e7 al. [16]. They used
the integral egquation method to solve for the capacitance of
two circular, closely spaced, parallel conductors of known po-
tential. Accordingly, an error of about 3% was achieved when
10-12 barmonic functions per wire were used. In addition,
lower errors were obtained as the number of expansion func-
tions per wire increased. Similarly, the presented techrique
can yield better results if smaller grid sizes are used.

Case 2: Here, an elliptical conductor with a = 1.746 cm,
b = 0.16 ¢cm, and A = 0.45 cm is used. In this case, the
elliptical conductor can be modelled as a flat conductor. For
infinitely thin conductors, the characteristic impedance can be
obtained from [11}

o
v () -la(§2-n() -1

i

(o4
0g§-52.2, DSESO.T (30)
w bl
where d is the separation berween the conductors and w is the
width. Table I shows the characieristic impedances computed
using the rwo numerical approaches. According to Table I,
errors of 3.6% and 4% are obtained using the two numerical
methods.
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Fig. 4. Elecuic potential distribution on the circular conductor.
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Fig. 5. Charge disuibution on the circular conductor.

Case 3: A tansmission line formed from two elliptical poses. The characteristic impedance obtained from the finite-
conductors with a = 1.654 cm, b = 0.7 cm, and A = 1.5 difference technique with boundary fitted coordinates is found
cm is used. These parameters are chosen for illustrative pur- to be about 113.9 2 (= 5000 iterations) compared to 112.0 &2
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Fig. 7. Charge distribution on the elliptical conductor.

that is determined from the finite difference using a rectangular  agree quite well in computing the characteristic impedance.
grid (31562 iterations). Although no theoretical nor experi- Figs. 6 and 7 ilustrate the corresponding electric potential
mental result is available for this case, both numerical methods  contours and the charge distribution on the elliptical conductor.
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TABLE I
CHARACTERISTIC IMPEDANCE COMPARISCN FOR. FLAT CONDUCTORS
Method Characteristic Percentage Mumber of
Impedance Relative Iterations
_ Emor

Analytical 50 Q2
Finite difference 432 0 36 38771

using a

rectangular grid
Finite difference 520 4 24000

usmg boundary
fitted coordinates

IV. CONCLUSION

A versatile numerical technique has been used to determine
the potential and charge disuibutions of a transmission line
formed by two elliptical conductors. This technique employs
the finite-difference solution using boundary fitted coordinates
1o model arbitrary and complex structures. Accordingly, the
characteristic impedance for different wire configurations is
determined and compared with the finite difference results
using a rectangular grid to determine the applicability and
accuracy of the technigue. Results have shown good agree-
ment with theoretical values for circular and flat conductors.
Furthermore, the finite difference methed with boundary-fitted
coordinates is found to be a more reliable technigue for
determining the charge distribution around the conductor and
tends to converge much faster.
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