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The SEM Representation of Acoustic and Elastodynamic Scattering
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Abstract

The singularity expansion method (SEM) has been extensively applied to electromagnetic
scattering problems for target identification based on the aspect-independent natural frequencies. Similar
concepts have also been developed for acoustic and elastodynamic scattering. The associated pole
residues also have a useful factored form separating the dependence on incidence and scattering
directions. Acoustic and elastodynamic reciprocity is used in this paper to extend the residue
decomposition as done in electromagnetics to acoustic and elastodynamic pole residues. The resulting
factored form of the residues shows that there two angular functions, one scalar and one vector, that

characterize the elastodynamic residues.
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1. Introduction

Recent papers have considered the SEM (singularity expansion method) representation of
perf'ectly conducting and dielectric targets in lossy media (such as soil), in particular the behavior of the
pole terms (natural frequencies, natural modes, and coupling vectors) [9, 12]. As the incident field can be
approximated as a plane wave in the vicinity of the target and wavelengths (in the external medium) are
of the general order of the target dimensions, we can think of the determination of the SEM parameters

for identifying the target as EMSI (electromagnetic singularity identification).

An alternate technique applies to metal targets noting that they are not perfectly conducting and
have poles on the negative real axis of the s (complex frequency) plane, corresponding to simple
decaying exponentials in time domain [10, 11]. In this case, the incident field is the near magnetic field of
loop antennas and the wavelength (or skin depth) in the surrounding medium is much larger than the
distances from the antennas to the target so that the external medium has negligible influence on the
target response (as long as the external medium is not magnetic, i.e., has free-space permeability). The
frequencies of interest are quite low, corresponding to diffusion through the target. As such, we can
think of the determination of the SEM parameters of the targets (representing the magnetic polarizability
dyadic) as MSI (magnetic singularity identification).

The EMSI and MSI have their various advantages and limitations, depending on the
characteristics of the target and the surrounding medium. Another technique with yet different
advantages and limitations involves the scattering of sound waves from the target. This involves the
acoustic and elastodynamic properties of the medium surrounding the target, these properties varying
considerably from water to the various kinds of soils of potential interest. Since the sound waves satisfy a
wave equation in such media (approximated as uniform, isotropic, linear, and reciprocal) there are
similarities in the formal structure of the acoustic and elastodynamic scattering to the electromagnetic
scattering. It has been observed that there are resonances in the scattering of sound waves which can also
be used to identify targets in a manner similar to that which has been observed in the electromagnetic
case {27]. Since there has been a considerable development of the SEM formalism for electromagnetic
scattering [1, 2, 5-8, 16, 18, 20, 22, 23, 26], it should be helpful to apply this to acoustic/elastodynamic
scattering to aid in understanding the target-identification potential here. As will be exhibited in this
paper, the pole terms in the acoustic/elastodynamic scattering have a similar form involving natural
frequencies, natural modes, and coupling terms which are scalar or vector depending on the types of
waves (p and/or s ) involved. Let us call this type of target identification ASI (acoustic singularity

identification).



Figure 1.1 shows the scattering geometry. The target is located inside a minimum circumscribing

'sphere (radius a) centered on the coordinate origin (—r) = —(—))). The incident and scattered waves (whether p

or s" waves) propagate in directions

—_)

1ij = direction of incidence (plane wave)

.—>

1o = direction of scattering (outgoing spherical wave in the far field) 1.1)

direction to observer

These also describe the polarizations of the p (pressure) waves. Transverse to these directions are the s

(shear) waves, for which we can define.

“ « - - -
1; = 1 - 1; 1i = dyadic transverse to 1i (1.2)
o “ - - - ’
1o = 1 - 14 1, = dyadic transverse to 1,
Additional quantities are
> - - - - - - .
1 = 1x 1x + 1y 1y + lz 12z = ldenhty dyadlc
D - - © - -
1i 1; =0, 15 1o =20 (1.3)
Y - e d -
r=xlx+yly +21z =(zy,2)
r=1lrl
We also use the two-sided Laplace tranform as
fe) = | feyet at
s = Q + jw = Laplace- transform variable or complex frequency
f = time (14)
f(t) = ZLI f(s) e ds = inverse Laplace transform
i
Br = Bromwich contour in strip of convergence parallel to jo axis

By setting s = jw this is also called the Fourier transform.
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Fig. 1.1  Acoustic and Elastodynamic Scattering from a Target of Finite Linear
Dimensions in an Infinite, Homogeneous, Isotropic, Reciprocal, and
Linear Medium.




Acoustic Scattering

Consider first scalar acoustic scattering. In this case we have [21, 24, 25]

v(T.h = %E’(?,t) = particle velocity

(7,1

velocity potential
V(7,0 = V(7,0

_)
p(r.,t) = pressure
pa = mass density

1 dp, 1 dVv . . . .1
= — % = —— — = — fractional ch 1 t
Ka P vV actional change in volume per unit pressure
= compressibility
(7.1 = ~ pa %Cb(_r),t)

Note that p, is the undisturbed or background mass density. The wave parameters are assumed

sufficiently small to give a linearized form of the equations. The scalar form of the wave is a consequence

of the scalar form of the compressibility.

If the medium is dispersive, then one regards the compressibility k,(s) as a function of

frequency, since in time domain the compressibility is a convolution operator. Waves travel with speed

1

i~’a(s) = [’?a(s) pa] 2

1 (2.2)
Fals) = —— = s[Ka(s) pa]2 = propagation constant
Va(s)
One also have
o 1
= r,s - 2
20 = PL2 - iyl - [ 2]
v(r,s) a .
= characteristic acoustic impedance (2.3)

i

acoustic wave impedance

- ——) -_) .
where the pressure and velocity have are that of a uniform plane wave in the medium, #(r,s) 1i being

the vector velocity.



There is a wave equation

[V2 - 73(5)] &7,s) =0 2.4)
away from sources (i.e.,, away from the target). This can also be written in terms of the particle

displacement or the particle velocity. The Green’s function is given by

S ()77 @25)

2
{VZ -1 a_} ST = 0 2.6)

as the temporal wave equation, and

I—)
- — -
Go(7, 7it) = — P Pl @.7)

-
drlr—-7"1

as the temporal Green’s function which with convolution (over time) gives a temporal operator. This
Green’s function can be used to formulate integral equations for scattering, in this case for scalar acoustic

scattering [25].

_)
Divide the waves into an incident plane wave (direction 1;) and scattered spherical wave

—_
(direction 1, to observer) as indicated in fig. 1.1. Using superscripts inc (incident) and sc (scattered) and
subscript f for far field we have

- _';n(s)’ U s
cb}“)(_r’,s) = ‘34—/\(10, 1i;s) ¢‘"‘°)(6',5J

nr (2.8)

- o
A(1lyp, 1i;s) = scattering scalar {convolution operator in time domain)

This scattering coefficient is merely a statement of the linear relationship between the incident wave
- o -
(evaluated at r = 0) and the scattered far field evaluated in the direction 1,. This can also be applied

to other wave variables as



~ (sc) vi ~ (inc)
- "7:1(5)7 -~ = e d
Vi (79 = 1oe4——A(1o,'1’i;s)1; YV (@)
(s6) i (i) 2.9)
sC ~ mc
o - Y L 5 5 - et
W (7,9 = ToE—A(To, Ti;91i * 4 (0,9

4rr

If the sound speed is independent of frequency the scattering relationship can be conveniently written in

time domain as

- - incy, 2
ST, = AT, Tis00 @590, ¢~

Vg (2.10)
convolution with respect to time

(-]

where the velocity potential here can also be replaced by the particle velocity and displacement as used in
2.9). |

Of fundamental importance is the acoustic reciprocity theorem, which for scattering is [17, 24]

- > - - -

A(lo, 1i;8) = A= 14,- 19;5) 2.11)
This is similar to the case of electromagnetic scattering [5, 26], except that in electromagnetics, one has a

scattering dyadic which also undergoes a transpose on the interchange

- - - -

li -—)—10, 10——)—11' (212)

Le, an interchange of incidence and scattering directions with a change of sign (reversal of direction). For
the special case of backscattering we have
T —
o =—1i (2.13)
- = ~ =
Ap(1iss) = A= 14, 1i;s)



3. Elastodynamic Scattering

Elastodynamic waves are considerably more complicated than acoustic waves. The scalar

compressibility is replaced by a fourth-rank stiffness tensor as {13-15, 17, 24]

- = & -
7(7,9) = (Comex(s)) * V(7,9
= stress tensor (Laplace transformed)
(én,m,l,x(s)) = stiffness tensor
én,m,l,x(s) = 21 (5)111,171 1 + 22(5)[171,1 Imx + 1, 1m,t]
1 _[1for n=n’
mm 710 for n#n’

#1(s), 72(s) = Lame constants

- - - - T 3.1
- Lo d ~
T(7,s) = zlcs){v - 'z?(_r’,s)J 1 + B Vi(7,s) + [VZ’(?,s)J
. T
= ? (?,s)
This leads to two wave speeds
1
(7 +22, |2 '
Vy(s) = —% = p-wave speed (longitudinal wave speed)
- 2
1 (3.2)
_ (%, |2
Ve(s) = ;— = s-wave speed (transverse wave speed)
a

where p stands for pressure, and s for shear. For the case of frequency-independent (and thereby real

and positive) Lame constants the speeds are real and we have

vp > vs >0 (3.3)

One can go on to set up integral equations for scattering and the associated Green’s function for which

one can consult the references.

For far-field scattering we need bothp ands waves. In terms of the displacement, we have the

incident plane wave



_ (inc) :_)(inc) . (inc)
U (T =y (7.9 + ‘u’s (7,s)
- . (in 7.7 (inc) N

_ "'YP(S) 11 T‘)P (0,5) + e“;s(s) 1i- ;) (O/S)

34

. (inc)
. — 4
% (0,5 = 25"(0,9) 1
_,__,)(inc) S

u (0,s) * 1;

I
o

where the two propagation constants are

, Fpls) = =2 3.5)

Yp (S) = ;15 (S)

_S5
Vp(s)

The scattered far field is a spherical wave of the form

- (s0) - (50) - (so)
5770 5 S0 5 N
uf (r,s) = uf (r,s) + uf (r,s)

- -
r =r1lo

~{s0) - (s¢c)

u fr 7,9

(3.6)

—

wf, (7,9 1o

~ (sc)

-
:l-)fs (?,S) N 10

I
(o)

Relating the scattered far field to the incident field by linearity we have

(inc) - 5 5 - (mc)

-~ (s¢c) E—}"p(s)r
(O S)+Ap5(1o,11,5) Lls (0,5)

- - - - - - - 5
”fp (r,s) 107 /\P,p(lollx,'s)lx u

~ (sc) A O =GN -, = (inc) 5 ~ NN ~(mc)

wf, (79 = S| Aap(To, 1139 1i * sy (0,9) + Ass(lo, 1:9)° ds (0,9

drr (3.7)

- - -
Aps(lo,lz,s) 1, = 1

0
H - o -
l\ss(]o, 1i;s)° 11 =90
Note that the four scattering coefficients are variously scalar, vector, or dyadic depending on the various

combinations of p and s waves.

The reciprocity theorem for elastodynamic scattering is [17, 24]



- - - -
APP(]-OI]'IIS) App(_ 1il—10;s)
i 92(s) > R
Aps(lo,lz,S)—— S( Asp( 11,—10,5) (38)
Vp
s 5 5

As,s(lo, 11,5) = As s(-1i,— 1015)

Note that the s, s scattering is characterized by a dyadic which is transposed on the interchange

- - - -

1i 5 -1 , 1o - -1; (3.9

just as in electromagnetic scattering. Note also that the p waves are referenced positive with respect to
- -
their directions of propagation, 1; and 1,. Reversing these then reverses sign for the scalar function

describing the p wave. For the special case of backscattering we have

- -
lo = - 11
- - - NN
Abp,p(li;s) = App(=1i, 1i;s)
5 - 5 - 5 (5)-—+ 5 - 2(5)—) - (3.10)
AbP's(li,'S)= AP,S(—ll;llls)— 2 ASP('—lX;lI/S) = (11/5)
p(s) p(s)
~ ~T T

- - R
Ab (11/5) = ASS(—llillls) = ASS( lllllls) = A (11;5)

As in the electromagnetic case, the backscattering dyadic for s to s waves is symmetric.
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The SEM Representation for Pole Terms

. There can, in principle, be various kinds of singularities in the s plane, including poles, branch
cuts, and singularities at infinity (or entire functions). In the electromagnetic case for finite-size objects,
either perfectly conducting or comprised of suitably simple media, located in free space it is known that
there are no branch terms, i.e., there are only poles in the finite s plane [1-3]. However, if the
surrounding infinite medium is a lossy dielectric, a branch cut appears in the response [9]. In the acoustic
case scattering from acoustically hard and soft finite size targets in a medium with a frequency
independent wave speed v, (real and positive) also has no branch cut in the scattering [4]. Similar results
apply to elastodynamic scattering [19]. The important feature is that the Green’s function for the external
medium (three dimensional) not have any branch cut, implying that the propagation constants in (3.5) are
analytic functions of s in the finite s plane. This requirement is met for the case of constant, real, and

positive vp and vs.

Let us now consider the SEM form of the various scattering coefficients that appear in (3.7). In

particular, the pole terms can be exhibited as

-~ - o - -1
APIP(lUI 11;5) = Z A(C;;’p)(lor 11)[5_Sa]
o
+ other singularity terms

—{p.s)

s T — -
Ap,s(lo, 1i;5) = 2 Aa (10,11')[5*5(1] !
a

+ other singularity terms

_f BINCH ) RN 1

i1 =Y Aa (1o, 1)[s—sq|

+ other singularity terms 4.1)

(59

G - o —
As,s(1o, 14;8) = Z Aa (10,11')[S—Sa] 1
a

+ other singularity terms

Here, the poles are taken as first order, the typical case. However, as observed in electromagnetic
scattering, there are cases (involving resistive loading of the scatterer) when second order poles can
appear; these require a more general treatment (23]. As discussed above the other singularity terms can
include branch cuts in some cases, and entire functions in general (like in the electromagnetic case {7)).
While (4.1) is for the general case of elastodynamic scattering as in (3.7) it includes acoustic scattering as

in (2.9) as a special case, merely by considering RP/P as the only non-zero scattering coefficient.

11



The reciprocity relations in (3.18) can be directly applied to the pole residues as

- - - -
ABP(1,,10) = APP(-15,-10)

(p,s) =2 (s,p)

— - = vals - b d -

Ao (10,1i) = —#Aa (- 1i,- 10) (42)
Vp(sa)'

PINCR) RN <—>(5'S)T - -

Aa (10/1i)= A (-1ir—'10)

Consider now a non-degenerate natural mode with natural frequency s, . From a physical point
of view, we can regard a natural mode as the scattering response that can exist at s = s with no
excitation (i.e., no incident field). If one considers an integral equation, then as in the electromagnetic case
(e.g., see [1]) the natural mode is the solution of the integral equation in which the integral operator
(evaluated at sy ) operating on the mode is zero. Note that such a mode then has no dependence on the
incident field. The strength (or scalar coefficient) of the natural mode of course scales with the incident
field (evaluated at sg). In (3.7) then remove the delays, (4m)1, and (s - s4)71, and write the remaining

terms in the scattered far field for the ath pole as

) - = - .9 _.._)(inc)_) P ;(inc)

[dap + d&”} f(To) To=To|ABP(To, Ti) Ti* @s  (0,s)+ Aa (To, 13)° Hs (0,55
) N SEp) _.._)(inc)_) o) :)(iru:)_)

[da” + dé?)] folod=Aa (T, 1) Ti%p (0,5)+ Aa (To, 11)*us (0,5¢)

4.3)

for the p- and s-wave parts, respectively. Note the common coefficient dé,p) + dg? on the left sides
indicating that the p and s parts of the natural mode (i.e., f, and ?a ) must scale together for a non-
degenerate natural mode. Depending on symmetries in the target one may have degenerate modes
where two or more independent natural modes can exist for a particular sy, in which case a linear
combination of these is required. For the non-degenerate case linearity requires that the contributions of

p and s incident waves separate as

— - 2 S :)(inc) - ( )——> - _._)(inc) -
dP fo(To) = AEP (10,100 11 *Wp  (0,50) = ABP (1o, 1)%p  (0,54)
- S oL o NCH N

- - . —
4 fo(To) = Aa (10,10 1i"up (0,50) = Aa (1o, 1)Z5")(0,5,)

= N IR 1. N s
dg)fa(lo)z Aag (1p,1i) us (0,sq) .
> olss) o o, =lno) |

() 7
dg’ f o(10)

Aa (1Orll.).u5 (O,Sa)

—)

-2 S
fallo) 1o =0

il
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which gives some constraints among the various terms.

.._)
Consider first A(g’p). Noting that d((f ) contains the dependence on 1; we can write

d,(f) = ay ca(_l)i) ﬁg"':)(f),,sa), ag = scaling constant 4.5)
This then gives

- - - 2
AZPY (1o, 11) = ag fo(T1o)ca(11)

4.6)
- - - -
= AP 11, 10) = g fal= T ca(-10)
where the reciprocity relationship (4.2) has been used. This allows us to set
— -
g fa(10) = cul—14) 4.7)

- -
ABP) = = To)ea(1D)

where we have chosen the constant for convenience such that ¢y can be used without an extra scaling
constant. In this symmetric form cq gives the dependence on both incidence and scattering directions.
Only one scalar function with argument varying over 47 steradians is needed. This function can, in
principle, be determined from detailed scattering calculations and/or experiment.

(s,5)
> -
Second Aa also has a factored dependence on the two angles with the dependence on 1;

contained in d,(zs) which we write as
N -
i = b, Cal(1i) " %

- (inc)

o N Y .
Varying us overangles (polarizations) transverse to 1; allows us to write

._)
(0,54) , by = scaling constant (4.8)

H(S,S)__) - - - -
Ao (1,,17) = by fa(lo)ca(li) 4.9)
(s,97 '
« — - N e I -
= Ag (=1i,—-15) = by Ca(*lo)fa(—li)
where again reciprocity has been used. This allows us to set
- - -
ba fa(lo) = cqgl-1i) 4.10)
(—)(S'S)—) - - -
Aa (1o,1i) = cal-10) calli)

13



where the vector function ¢ ¢ is different from the scalar function Cq- It can also be determined from
detailed scattering calculations and/or experiment. Note that this dyadic form is just like that for

elec't-romagnetic scattering [5, 26].
Now consider the mixed-wave terms. From (4.4), (4.5), and (4.10) we have

(s,p)

- - - - -

Aa (10,1i)=%°i?a(-1o)ca(1,-) @.11)
x

_ (inc)
_)
Similarly from (4.4), (4.7), and (4.8), and varying _175 over angles transverse to 1; gives

(p.s)

- - - -

Aa (la,li)=Z—aca(—lo)?a(1i) (4.12)
(04

Applying reciprocity from (4.2) gives

[b_a]z kS ’
aa] | 2sq)
4.13)
by _ . ¥s(sa)
agy Gp(sa)

This interesting result may look strange at first. Consider the special case that sy is a pole on the
negative real axis of the s plane (54 = Qg , Wy =0). Then since scattering of real-valued temporal pulses

must give real valued temporal pulses, we conclude for such poles

Ag" (1o, 1i) = cgl=10) cg(1i) = real scalar

__)(P,S)_) - a~, = - -
Aa (10,1i) = =& cq (- 10) cg(1i) = real vector

(s,p) i (4.14)
SWSP) ag — - -
Ag (1a,1i)=b—ca(—~lo) cg(1{) = real vector
(04

(59 - - Y - L

Ag (10,1i) = Cal-19) calli) = real dyadic
The wave speeds also being real then bgjag. must be imaginary. If we further specify to backscattering
then
4.15)

- -
~10 = 1;

and we can distinguish two cases. The first case has

14



- -
cal(licg(1i) > 0

_)
cz{1i) = real scalar (4.16)

- -
Ta(1i) - ca (1) < 0

- 7 .
ce (1i) = imaginary vector, i.e.j times real vector

ba
A

]

positive or negative imaginary number depending
on choice of + or —real for ¢, and which of two

. -
choices for ¢, one takes

-
Note that the nondegenerate natural mode as expressed in (4.3) constrains the relation of fy to fy and

hence the relation of ¢ to T as expressed through bg/ag.. The second case has

— -
cq{1i) cu(li) < 0
_) . -
cg(1{) = imaginary scalar (4.17)
- —
Calli) - ?a(li) >0
e
?a (1) = real vector
with a similar constraint on the choice of bg/ag. Both of these caes satisfy (4.14). In the first case, the p-

wave scattering is positive while the s-wave scattering is negative, and the second case is the converse.

One can consider various simple cases of elastodynamic scattering to confirm this.

15



5. Concluding Remarks

- The four elastodynamic scattering-coefficient residues conveniently can be expressed as products
involving only two angular functions, one scalar and one vector. This simplifies the calculation of the
SEM pole terms and the measurement of these parameters. Note the similarity to the electromagnetic
case, except that there are now four residues for a given pole due to the combinations of p and s waves.
The present results apply to the case of non-degenerate natural modes, but can be extended to cases of

degenerate modes that occur with some target symmetries.

In the electromagnetic context, the properties of the residue dyadic have been determined from
an integral equation for the currents on the scatterer [5, 6, 26]. The incident wave propagating in the
dlrectlon 1, is multiplied by the current density and mtegrated over the object to give a coupling vector

Ca(l }. This has the same role as the ca(?,) and ca(l,) here. The current density is then
multlphed by a far-field Green’s function for scattering in the direction _1)0 to form a recoup]mg vector
Cra(l 0) = Ca(——)o) which is found to be the same as the coupling vector evaluated at - lo , the
reciprocity being 1mp11c1t in the integral equation. This recoupling vector has the same role as the
c a(——i}o) and cg(- l o) here. Allowing for scaling constants that come from the scattering integral
equations, we can regard the vector and scalar functions of li as coupling functions, and of —To as
recoupling functions. As this paper has demonstrated, this general decomposition can also be derived
without appeal to scattering integral equations. One needs, however, the general property of natural

modes being independent of excitation (direction of incidence and polarization) and reciprocity.

Here, we have not calculated the natural frequencies and angular functions for any specific
target. Rather we have developed the general form that the poles take under quite general scattering
conditions (linearity, reciprocity, passivity, and infinite uniform isotropic external medium). This needs

to be applied to various targets in media of interest.
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