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Introduction

The singularity expansion method (SEM) is by now well established as a way to represent and
efficiently calculate the interaction and scattering of electromagnetic fields in the time and frequency domains
(with emphasis on the resonance region) [5,7,21,22,27,28]. Considered in the general context of complex-
variable theory (vis a vis the complex frequency s), there are various ways to represent a function of a complex
variable. There are power (Taylor) series around some point, say s, in the complex plane, converging within
some radius given by the nearest singularity. In the electromagnetic context, this can be applied with sg = 0.
to obtain a series expansion of the scattering (Rayleigh scattering or low-frequency method {LFM)). One can
use the singularities (poles, branch cuts, singularity at oo (entire function)) to represent the response (hence
SEM). As s — oo (in appropriate directions) one can obtain various high-frequency asymptotic expansions

(e.g. GTD, UTD, etc.) to give a high frequency method (HFM).

In this paper, we explore the connection of LFM and SEM for electromagnetic scattering. At
low frequencies, it is well known that the induced dipole moments (electric and magnetic) of the target
dominate the scattering and give a scattering dyadic proportional to s2. This suggests a hybrid expansion
in which the dipole terms are first pulled out, and then the SEM is applied in an appropriate fashion to
give a representation which is accurate for low frequencies up through the first few resonances and requires
a minimum number of terms for reasonable accuracy. This paper approaches this problem by removing

successive powers of s (in a multiplicative sense) and then applying the SEM to the resulting functions.

The appendices apply the theory to two classical scatterers, the thin wire and the thin circular loop.
Various comparisons are made to indicate the range of applicability of this approach. Some preliminary

results of this study were reported in [23].



2. Modified Pole Series
Consider some F(t) and its two-sided Laplace transform F(s) which is written in its SEM represen-
tation

F(s) = Z Fye~(72a)ti [s — 54]7" 4+ other singularities

F(t)

Z Fae*@tu(t —t;) + other singularities (2.1)

where the starting or initial time for the pole terms is ¢;, noting that for our problems of interest, time-
translation symmetry makes the definition of t = 0 arbitrary. Typically F(¢) is assumed real, making f’(s)
conjugate symmetric. While the above notation is for scalars, the results will apply for vectors and dyadics
as well. Note that the poles here are assumed to be first order, but that the analysis can be extended to

higher order poles using the techniques in [28].

As discussed in [4], modified poles are introduced to shift the pole terms by subtraction of the value

at s = 0. In our more general form in (2.1) with an initial time t;, let us first change the series to

F'(s) = e"iF(s) = Z F. [s—sa]™' + other singularities
F,, = e'®liFq (2.2)
F'(t) = F(t+1) Z Flea! + other singularities

where for some applications we can assume the F'(2) is zero for negative t. In the complex frequency domain,

this has the form for modified poles as

F'(s) = Z F), [[s —sa] ' + sgt| + F'(0) + other singularities
= Z F' — [s —sa]”! 4+ F'(0) + other singularities (2.3)
F(s) = Z Foye (- aa)t, — [s —sa]” " + e~*t F'(0) + other singularities

In this form, the term corresponding to s = 0 clearly represents I:‘(s) well near s = 0, in effect making the
series more rapidly convergent near there. Note that this term also includes any contribution for s = 0 from
any other singularity terms, such as an entire function. Of course, this assumes that ﬁ'(s) exists at s = 0 and
is continuous near there. Suppose then that we kIIIOW that F(0) = 0 (e.g. in far-field scattering). Then the
pole series has the convenient property that each term is zero at s = 0, and one does not have the numerical

problem of summing comparatively large magnitude numbers to get a small number for s near zero.




In the time domain, this modified pole series introduces a set of delta functions at ¢ = ¢;, one for
each pole term and one for F-‘(O) However, after t = t;, the series gives the same result as for unmodified

poles.

Now let us generalize the foregoing by subtracting successive powers of s from each term in the pole

(2] s+ [ 2]t = (2] e (2.4

Sa S Sa

series. Note first that
so subtracting the term proportional to s™ just changes the exponent to n + 1. Then applying this to F"(s)
including terms up to sP~! gives

s™ + other singularities

n=0

. s=0
order of representation (2.5)

(

p

= Integer > 0

with the power series up to s?~! taking care of the behavior near s = 0. Again sufficient analytic properties

of F'(s) near s = 0 are required. In terms of F(s), we have

2 ( ) | S F 1 L ~
F — F —(s—sga)t; | . - il [ sty F J -8t
+ other singularities : ‘ (2:6)

Now if successive derivatives with respect to s up through-p — 1 are known to be zero, this gives an efficient
representation for low frequencies. At high frequencies, however, if say i"(s) is to be bounded for s = jw (or
more generally in the right half plane), then the pole terms behave as s~ ! and the series may not converge

as well. This corresponds to the higher order distributions (doublets, etc.) introduced in the time domain.



3. Alternate Approach: Pole Expansion of s~? F (s)

Now consider the SEM representation of s~? F(s). Using s‘Pf"(s), the pole series in (2.5) is directly
produced with s™7 contributing to the residues as sg”. Multiplying through by sP gives the form in (2.5)
and subsequently (2.6). So instead of thinking of successive corrections at s = 0, one can recast the problem

as the SEM expansion of s™P times the original function.

In this new approach, we have the problem of what happens near s = 0 since s~7 is a pth order pole
there. Multiplying (2.5) and (2.6) by s~? shows the form the expansion takes near s = 0 with terms from

s~P up to s, and these formulas can be considered one way to find this expansion.

Next, restrict F(s) to have only poles and an entire function. This leaves the parameter ¢; which
one can choose so as to minimize the entire function in some sense, or in some cases even remove it. Suppose

that there is some time window between say t = ¢’ and ¢ = t” with
tw=t'—-t' >0 (3.1)

for which the Bromwich contour for the inverse transform of ﬁ'(s) can be closed in both half planes. Assuming

no singularities in the RHP, then

0 fort < t"”

D Faetatu(t —t;) witht' <t; <t” (3.2)
o

F(t)_ =

with both representations applicable for ¢ in-the the time window. The initial time ¢; is the time in the time

window one chooses to close in the LHP. As discussed in [11], this is associated with the high frequency

behavior as

- Oe(—st’) in RHP (Re[s}] — +00)

F(s) =

Oe(st”) in LHP (Re[s] — —o0)
RHP = right half plane (3.3)
LHP = left half plane

where the Oe(exponential order) symbol bounds the function by the exponential of the argument times some

function which grows slower than any exponential. Note that for this restricted class of functions, there is

no additional entire function required in (3.2) or in the corresponding frequency form

F(s) = Z Fpe~(—2ali [g _ 5,170 (3.4)




Note that the term “entire function” (as the term “pole”) applies strictly in the s-domain, but is applied by

extension to its corresponding time-domain form.

Applying these results to s"’f‘(s), note that for high frequencies we still have

. Oe(—st') in RHP

sPF(s) = .
Flo) Oe(st”) in LHP (3:5)

the power —p not contributing to the exponential order. Then we can apply the result for the case of the
closure-time window %y (still positive) and obtain the result in (2.6) (or (2.5)) with no “other singularities,”
noting, of course, the presence of the s~P term at zero with which to be dealt. Multiplying across by s? we

have

P p-1 n
2 — —(s—2a)tj i _ -1 l d sty —st: 1
FG) = 3 Fas (2] s S o e B e
with ¢/ < t; < ¢ (3.6)

As previously noted, this can also be expressed in the time domain by including distributions at ¢ = ¢;. For

t > t;, the usual series of complex exponentials is obtained.

This form is valid for general integer p > 0 and can be extended to negative integer p if desired. One
motivation for constructing such a form is to improve the convergence rate for low frequencies, particularly

if F.’(s) and some number of successive derivatives with respect to s are zero there. Suppose we know that

F(s) = O(s?) as s =0 (3.7)
Then we can use
P
F(s) = z.,: Fae-(s—2a)t [i] [s — sq]™' with#/ <t <t (3.8)

Alternately, we can explicitly call out the first non-zero term as

F(s) = O(s) as s—0
3 —(s—sa)t; | S Pt -1 dpl 7 —at: '
F(s) = ) Fae al)t ; [s—sa]™ + 7 F(s)| 775 (3.9)
a s=0
p’ = integer > 0



4. Surface Current Density on Perfectly Conducting Scatterers

Consider a perfectly conducting scatterer as in fig. 4.1. Summarizing from [11], we have the

impedance integral equation

z'(inc) — = — —..l = —/
Et. (7‘5,3) = Zt("'s;"s;s)§ Js(rsvs)
T
1

— S E(inc)(',;,'s’ s)
TS (rs) = - _l.s (ts) —1'5 (Ts) (transverse dyad to S at 75)
> . S L =
Js(rs,s) = Z; (rs,rg;8); E(rg,s) (4.1)
-

rs, Ts € S (restricted choices of T)

The inverse kernel can be written in SEM form as

e-—(a-—aa)ti - ’ R

= re— 2 — 2 —/
z, Yrs,7gs) = Z T;Ua]aa(rs)J-!a(rs)

a

- o a < L
Ug = <J.ga(7's); a Zt('l‘s,‘l‘s;S)

8 = 8x

S L - - - = S L
Zy(rs,Tsi5a); Jaq(Ts)) =0=( 7s,(7Ts); Zi(rs, Ts;5a)

‘with t; taken as zero if desired, but in general

~L
0>¢ > —tg = p 0, c = gg = speed of light (4.3)

and with due care to summing over the poles by eigenterms where

a = (B,6') = natural mode index
8 = eigenmode index (4.4)
B = index for zeros of Bth eigenvalue

As illustrated in fig. 4.1, we have characteristic dimensions and times for the scatterer

L . .
ly = I = front time (negative)
c
L . -
ty, = =b = back time (positive) (4.5)
c .
Ly = ¢tp = maximum liner dimension-




— Minimum

- = circumscribing
sphere

-~ ~

Time reference
plane for
\ backscattering

Figure 4.1. Finite-size scatterer in free space illuminated by a plane wave.



The surface current density can be written in class-1 form as [11]

~ e~ (s—saly

Js(Tsis) = Eof(s) ) — 5. Te(li 1p) 7 sa(Ts)
] 1
@
-—»‘ — . — __yai._'_;,s - —/
na(l;, 1p) = Ualp-(e 1 ’ Jsa("'s)
= coupling coeflicient
=, - " = 1’ -
E(n)(T,s) = Eof(s)ipe 7 it
= incident plane wave (4.6)
—fi = direction of incidence
lp = polarization (L _1.1)
vy = g propagation constant
c
where now t; is constrained by
t; —tg> by + 1ty —tg = —t5 <0 (4.7)

and should be no larger than when currents first begin at the observer at 5. Often a convenient choice for

the is time is when the wave first reaches the objective
t = tg (4.8)
At zero frequency, the surface current density can be found in principle from the integral equation

(4.1). However, this is not the most efficient approach due to the singularity of the kernel. By various

techniques (including the H-field integral equation), one can establish the surface current density as [4]

= e ., =S
Js(7s,0) = js (rs)- H™(0,0) (4.9)
where for plane-wave incidence
= inc)— 1= ey, ~ Ey z, ;7 = 1.7
H(mc)(r,s) = —1; x E(mc)(r,s) = -—Of(s)li X 1pe—711-1‘ (4.10)
Zy Zg
The dyadic magnetostatic mode is
-_’(0) - —.'(0) o = —_»(0) o - —3(0) I
Js (rs) =Jsg (7s)lx+ Jsy (rs)ly+ Js, (7s)1e (4.11)

where the three vector surface-current-density modes correspond to the response to a unit incident magnetic

10




field in each of the three orthogonal coordinate directions. Of course, one can normalize these any way one
wishes. Note, however, that this response is not proportional to the incident electric field at #=0, but

rather to its curl, the incident magnetic field. Note that these modes have the property

—{0) _,
Vg js, (rs) = 0 for&=x,y2
=(0) _, -
Vg jg (rs) = 0 (4.12)

For later convenience, we have the magnetic moment associated with each mode as
S0 1/5 =0
my = §<7's >;<Js£ (rs) : (4.13)

and we assume that the coordinates are oriented (rotated) such that

— — 0 — —
el my mgo) =mP 1, , m{P <0 for t=x,y,z
Ty-mg = 0 fort## : (4.14)

Effectively, this means that the magnetic polarizability dyadic (symmetric and real) has been diagonalized

with real eigenvalues and real eigenvectors (our unit vectors) [30] as

M = (Mam)

s
8
H

0 form#n (4.15)

-

M. H(inc)(a,s) as s — 0

3L
i

There is a non-zero divergence term corresponding to s = 0, but via the equation of continuity
= — ~ —
Vg - Js(rs,8) = —spg(rs,s) . (4.16)

this is a higher-order term. The surface charge density can be similarly written for zero frequency in terms

of the incident electric field

~ T 2J’inc Iy —(1) -
ps(7s,0) = g EU™)N(0,s)-pg (T) (4.17)
The vector electrostatic mode is
—0(1) — —>(1) - —b(l) —_ —4(1) —
ps (7s) =ps, (rs)lp+ Psy ("S)ly"i' Ps, (7)1, (4.18)

where the three scalar surface-charge-density modes correspond to the response to a unit incident electric

11



displacement (D, so as to make the modes dimensionless). Note that x/, y’, z’ indicate coordinate directions

which may or may not correspond with x, y, z as convenient.

For later use, we have the electric-dipole moment associated with each mode as

—(1) ! .y
Pt = <"'s ) P(slt)(rs)>
1 —_-(1) i ,
= ;/ s, (rg,8)dS for £ =x',y' 7 (4.19)
s

with the usual integration by parts with the current confined to a domain of finite linear dimensions [1,26].

Noting that
-0 - (1)

Vs is, (Tss) = —spg)(Ts) (4.20)

These surface-current-density modes are electrostatic and go to zero as s — 0, so interpret this in a limiting

sense. These are not the same as the previous (magnetostatic) modes which have zero divergence. Again,

!

we assume that the coordinates (say x, y’, 2’ ) are chosen (rotated) such that

—_ — 1 — 1 —_—

T8¢, B = Py 1y, B 20 fore=xy'

— —(1

l,- pgf) = 0 ford#2 ' (4.21)

This corresponds to the diagonalization of the electric polarizability tensor with real eigenvalues and real

eigenvectors [30] as

P = (Pum)
Pom = 0 form#n (4.22)
;(s) = € ; . E(i“)(ﬁ',s) as s — 0

Applying the results of sections 2 and 3 to the class-1 form of the surface current density gives a

p = 1 representation for plane-wave incidence as

~

= = (s—se)t: S - - = o
Js(7s,5) = Eof(s) Y0 e 07N = [s — 5a] 7! ma(15; 1) 5o(Ts)
[
=4
Eq ;- —st: <) _, g =
+ o fe)e s (7o) [Tix 1) . (4.23)
1/2
Zy = [“—0] = wave impedance of free space
€0

One can also form a similar representation for the surface charge density using (4.4) and the surface-charge-

density natural modes via the equation of continuity.

12




In class-2 form, we have [11]

2’ —_ ’ r -1 7 :' 7 _: oy
Is(rs,s) = Eof(-’)z Uals—3sa]™" 1p- Ca(lis) js, (7s)
a
Cal(l;s) = <Ti e 7l Ts G (‘r"s)> (4.24)

where the coupling coefficients now take the well-known frequency dependent form. In order to formap=1

representation, we can go back to find a class-1 form of the inverse kernel as

—_ !

":'_1 ! —(s—sq)t; s -1 - - 2 —/ —at: z’—1
Zt (7‘5,"'5;3):23 1—[3—-8a] Ua ]sa("'s)]sa(rs) + e 1 Zt (TS’TS;O) (425)

)
a [«

where the term for s = 0 is interpreted in a formal sense as that thing which when operating on the incident
electric field gives the current density for s = 0. In particular, it can be taken in a limiting sense along with

the electric field as s — 0.

For an incident plane wave,
o . — - — — —
Em) (75, 8) = Eof(s) 1p |1 —v1lj-Ts + O(s?) as s — 0 (4.26)

since 75 is bounded. If one were to integrate the first term (a constant) over a magnetostatic mode, the
result would be zero due to the fact that these have zero divergence and give no electric-dipole contribution
[1,26]. So if we attempt to expand the inverse kernel in terms of the magnetostatic modes, we need the next
term proportioﬁal to s. This is consistent with the kernel being O(s~!) as s — 0 [11]. So expand the inverse
kernel in the symmetrical form |

-0 _, = _,

& o
Zt_l(rs,rs;s) = Z Yy js, (7s) is, (7s) as s —0 (4.27)

{=x,y,s

with the notion of taking a limit as s — 0 when operating on the incident field.

Consider the #th term in (4.27). Integrating over the second term in (4.26) gives an integral of the
form [26,29]

- —.-(0) ! — —t —.'(0) ot
<1i'7's; J s, (Ts)> .1i' Tsy Js, (rs)

1— ! _..(0) .
_Elix<rs>7<]st (7‘5)>

— _.0
I (4.28

I

This last term is a normalized magnetic dipole moment as in (4.13). Then equating the low frequency forms

13




in (4.9) and (4.27) with (4.26) gives

Js(Ts,O) = ]S (Ts) . H(mc)((],ﬂ) = -Z—O- Js (7'5)' [llx E(mc)(0,0):l
z =0, = = (o)
= Eyf(s)y Z Yy js, (7s) lp-[lix my ] (4.29)
{=x,y,3
The coefficient of the £th magnetostatic mode gives
1 — — — — —_ _'(0)
Z_O [li X lp] 1y = Ylp- [li X my
_,(0) — —
= 7Y, my - [li X lp} (4.30)
or, varying Ti and Yp,
—~(0) 1 -
Yy, m = ——1
£ 1y 77, 4
Y, = - [7m§°)zo] (4.31)
due to the assumed diagonal form. So now we ha.\-le
S -1 (0} _, (0} _,,
Zi T, Tgi8) = — Z [’ymgo)Zo] js, (7s) i, (rs) ass—0 (4.32)

i=x,y,2

- to include in (4.25). Interpreting this as a limit of s — 0 gives the p = 1, class-1 form in (4.23). Viewed
& .
another way, look at (4.25) as a pole expansion for s~! Z; picking up what is effectively a first order pole at

s = 0. Combining terms, we have

1':'4_1 - = —(s—3qx)t; s -1 - - !
Zt (rs,7s;8) = Ze 1;—[s—sa] Ua js, (rs) 7 se (rg)
¢4
a
-5t -1 "'(0) — —:(0) —t :
—e "4 Z [’Ymgo)ZOJ Js, (rs) Jsy (rs) (4.33)
{=x,y,2

as the p = 1, class-1 form of the inverse kernel.

Now we have the p = 1, class-2 form of the surface current density by setting ¢; = 0 and operating

on the incident electric field to obtain

= L - s T
To(Tsys) = Eof(s>{2 Zlo-sal Tp Ca(Tiis) Tou (72)
Sl S ()
- Y rmi20] 7 Tp €059 74, () (4.34)

{=x,y,z

14




= o 1 /e _ 3.7 =0y
C;O)(li,s) = 5 <1ie '7117'3, s, (7'5)>
1 [ _ 7.7 =) _.
= ;<lie 711r5—1,]sl (7'5)>

The last form uses the fact that the integral over the magnetostatic modes is zero (no contribution to the

electric dipole moment).

The forms of the kernel developed in this section have been for the purpose of representing the
surface current density on the scatterer. The dominant term as s — 0 are those associated with the
induced magnetic-dipole moment (and higher order magnetic moments) of the scatterer. The present form
is suitable for a perfectly conducting scatterer for which the }TS) (?IS) are non-zero. The surface charge

density (involving a divergence) contributes to the induced electric dipole moment and is discussed in the

next section in the context of the far scattered fields.

15



5. Far Scattering

As discussed in [11], the far scattered field takes the from

=, e~ 1T &L S z'(inc) = ,
Efr,s) = yym A{lo,1;;8)- BV™)0,s)
-~ e—’Y" ;:’ — -— —
= Eyf(s) A(lo,1558) - 1p (5.1)

where 1, is the direction to the observer (at 7). The scattering dyadic ( 2 x 2 in terms of the transverse

components of incident and far-scattered fields) is

&L - O -SSP o 1.7

A(lo,15;8) = —spg ( lo€” "8, Z ' (rs,rg;8); lje 7717"8 (5.2)
1; = 1 —1;1; = incidence transverse dyadic
lo = 1 — 1o1p;= scattering transverse dyadic

For monostatic or backscattering, this reduces to the symmetric dyadic

&S — ot R —
Ab(li,s) = A(—liy lia ) 5) .
I CR - S
= —spg ( lje T8, ZEN(rs, rgs); 1y (5.3)

At low frequencies, the scattering is dominated by the induced electric and magnetic dipole moments

which give far fields [1] as

=, e~ - ~ 1
Egr,s) = ppen po 8% 1o - [— p(s) + - 1o x m(s)] ass — 0 (5.4)

These induced dipole moments are described in terms of polarizability dyadics as in (4.15) and (4.22). Thus,

for low frequencies, the scattering dyadic is

(1o, 1;;8) = 72 [—TO-P-Ti + 1ox M xTi] as s — 0 (5.5)

«— — — — — — —
Ap(l;;8) = —? l:li-P-li + 1;x M Xli] ass—0 ' (5.6)
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The class-1 form of the backscattering dyadic [11] is

~

=~ e—(-‘—'a)*i

Ab(_l.i; s) = Z P Ca (Tl) Ca (Tl) + possible entire function
o
€a(lj) = waCa(lj)

— — — _ —.__"" - —!
Ca(li) = <lie Ta 11 7‘5; _']Sa(rs)> (5.7)
Woa = wf, = —sq pugUa
- —! i
H Jaa("'s)

—

T =8
= —Sopp ( Js.(7s); 3s Zy(rs, Tg;8)

3 = 3

There is a requirement on ¢; for series convergence as
t — 2ty > 2[—ty + tb] — tg = —tp (5.8)

where the various times are in (4.5) and fig. 4.1. If the backscatter time window 1, is positive, then t;
can be chosen as earlier (less) than 2t;, the time of the first backscatter signal. Under this condition, the
Bromwich contour can be closed in both half planes around ¢ = ¢; with the result that there is no entire

function. This occurs for “flat” or “thin” scatterers with near-broadside illumination.

For the class-1 representation, we have a modified pole series

& — P Y — - —
Ap(li;8) = Z-e‘(’_"a)’i (i) [s — sa]™' Ca (1) €a (1;) + possible entire function

S
o a

forp=10,1,2 - (5.9)

where again the entire function is zero within the above restrictions. Even with a negative t (requiring an

entire function), the above entire function goes to zero at s = 0 at least as 0(s?). For p = 3, we have

~ 3
— —(s—3 . s -1 — -, = -
Ap(lizs) = e (el (E) [s - sa]™" a (1;) Ca (1)

a

- - e — e

—e "t 42 [li-P-li + 1;x M x1;

+ possible entire function (5.10)

Now the entire function is O(s®) as s — 0, and zero under the previous restrictions. These can be extended

to bistatic cases by replacing [9,10,32]

Ca(1;) — ©rq(lo) = wa Crq (1) = ca (—10)
1, - -1o (5.11)
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— —_ - T = —/ - hnd
Cra(lo) = <10e_7a 10'7‘5; Jsa(r5)> =Ca (_10)

for the first term in each dyad. However, this will change the convergence criterion in (5.8), along with the

conditions for a positive time window for #; for closure in both the RHP and LHP.

For a class-2 form, we have but to integrate the incident wave over the class-2 form of the surface

current density as in (4.24) and (4.33), giving

"'\"’ — — s P —1 ::' — :7 —
A(lo, 15,58) = 3 (;) [s —5a] ' Wa Ca(—10,8) Calli,s) forp=0,1,2 (5.12)

a

Using [11] and with t; taken as zero, this has no additional entire function.

~

For p = 3, note the pole of s~3 X at s = 0 which comes from the induced dipoles. In section 4,
only the magnetostatic modes and associated magnetic-dipole coefficients appeared at s = 0 in the current
density. Here, however, we need the electric dipole as well. For this purpose, take the electrostatic modes
denoted by superscript 1. Now, since the surface charge density goes to zero as s — 0, then from (4.20) we.
have

—(1) _, (1) _,
js; (7s,8) = s5js, (rs) = O(s) ass—0 (5.13)

and we note that these have zero curl (due to describing electrostatic response). The electric dipole moment

is

P(s) = € P EW)(0,5) =P . Dne)(q, s)
-/ 1) =/ 7 ginc -
= Z <rs, p(st)(rs)> 1g2- D)0, 5)
t=x'y',2'
—(1) _, — & -
= Z 1/ ]sl(r;,s)dS' 1y Dln)( g, 5)
t=x'y' z' s Js
—(1) , &S0
= Z /_751 rs,s ) dS 1£ . D)0, 8)  ass—0 (5.14)
_xly z’

where the coordinates are those which diagonalize the electric polarizability dyadic. Noting the symmetric

form of this dyadic and (4.21), we have

- ~) - -1 (1) ()
P = Y pg 1= ZP(I) Pt Py

t=x',y',3" {=x',y',2'
-1 —»(1) — —:(1) —/
= Z s—ngl) I:/; jsl (rs,s) dS] [/S J s, (rs,s) dsl]
L=xl'yl,zl '
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—(1)

= 3 pgl)" Us is, (Ts) dS] [/S }":)'(‘r"s) dS’] ass—0 (5.15)

{=x'y' 5

In this form, both the incident and scattered field can be integrated over the domain of the scatterer in a

manner consistent with (5.12). Removing the integral signs, we can define

- . - =) o),
P(7s,7s)= 3. o s, (Fs)ds, (Fs) (5.16)
Lt=x',y',3'

as the appropriate polarizability kernel.

The corresponding magnetic-dipole moment from (4.15) gives

= M. HO%)(0,s)

B T= 3 w7 B my) (5.17)

{=x,y,3 {=x,y,2

Ih;
o
[

For use in a class-2 representation, one can use the surface current density in (4.29) or the inverse kernel as

in (4.33) as s — 0 to obtain the representation of the magnetic polarizability kernel. From (5.5), we have

. e o G fe T o= (0 - T o= L)
lox M x1; = Z 7—2m50) <10e710-1‘s; jsz(rs)><loe"7 11-7'5; jsl(rls)>
{=x,y,2

ass — 0 (5.18)

noting from before that this is really not a pole since the integral of the magnetostatic modes is zero. So

define a kernel to be used with the class-2 form as
v =(0) = (0) _,

-l _ -
M (7s,7) = Y. v2mdT 5, (Ts) is, (Ts) (5.19)

{=x,y,2

The p = 3 class-2 representation is now

~ 3
— - —_ — — —
A(lo, 1358) = Y (si) [s— sa] ' Wa Ca (—1o,8) ca (1}, 5)
a [+
+92 94— 3 P c(-To,5) Cc(T,s)
{=x',y',3'
+ S w7 e(-Te,5) S(T1,9) (5.20)
i=x,y,3
S T - ¢
ci(1y,8) = <1¢ TS, (rs)>
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—’:)0 — _ — _ _]: __" __.(0) 7
c(1;,8) = 7 1<14 e THTS g, (rs)>

For backscattering, merely replace — 1o by 1j in the above.

20



6. Concluding Remarks

This paper has generalized the concept of modified pole series to arbitrary non-negative integer
powefs of s times [s — sq] ™1, applicable to scalar, vector, and dyadic functions of s. Incorporating this with
the SEM leads to various forms of pole series for currents on a target and for scattering. This is especially
useful for low frequencies (below first resonance) and can be combined with electric- and magnetic-dipole

terms for most accurate results.

Differences between the results for class-1 and class-2 forms have been observed. Class-1 is the
simplest because no spatial convolutions over the target are required. However, there is a restricted domain
of incidence directions for which the series converges at early-time in the case of far-field scattering. Class-
2 requires much more extensive computations, but avoids this convergence issue in the scattering sense.
However, as we have seen, there is a problem when the target inverse kernel contains a pole at s = 0. This
can be eventually remedied, at least in part, by a more careful treatment of this pole term which is actually

not a true pole in the scattered field, the scattering behaving as s here.

The extensive cases illustrated here may lead the reader to perhaps new questions for resolution

concerning both analytical and numerical aspects.
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Appendix A. Backscattering from a Thin Wire

As indicated in fig. A.1, let there be a plane wave incident on a thin wire of length £ = 2h, radius

b, aligned along the z axis, and centered on the origin. Due to the rotational symmetry (Ceoq), let us take

—» |l«— 2b

——h

Figure A.1. A thin wire of length 2h and radius &.

the x,z plane as the plane of incidence. Furthermore, let the incident (and backscattered) electric field be
parallel to the x,z plane (E wave), since the orthogonal polarization produces only small scattering. So the

incident field is described by

~

BT, 5) = Bof(s)Tee 1T

E(inc)(ZTz,s) — EO f(s) _l.ee—'yz cos(Ginc)

le = —cos(fipe) 1x + sin(6ipe) 1z (A1)
1; = —1lo = —sin(fpc) 1x — cos(fipe) 1z
1; = 1; — 1;1; , 1;j-1le = 1le
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A.1 Polarizability

Since the important current is parallel to the z axis, the electric dipole moment is in the z direction,

and the electric polarizability tensor (dyad) is
P= Pz,zlsz ) Pz,z = Pz(l) (A.2)

and the magnetic polarizability tensor is negligible. Identifying 6;,. as  in what is to follow, the electric-

dipole term in the backscattering dyad (in (5.10)) takes the form

T; P-1; = sin?(6)P,; 151¢ (A.3)

Tele (A.4)

[ (2h -t
= —wh3 |fn <T) - 1] as %—»0 (thin wire) (A.5)

Substituting these results in (5.10) with
t; = —h cos(6) (A.6)
gives the results for class-1 backscattering for p = 3.

For class-2 backscattering as in (5.20) with p = 3, we need to evaluate the integrals associated with

electric-dipole term. Noting that only £ =z gives a significant contribution, we have

Pz(l) = Pipg
=~ —

c(1;,9)

Cz(——l'o, s)  (backscattering) (A7)
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P O A O
= <1ie 7117‘5; J sa (1'5)>

For a thin wire, the low-frequency current is a line current proportional to cos(7z/£). Noting the frequency

dependence of low frequencies in (5.13) we have

h

o 1 Py ! /
Cgl)(liys) = —15Cy sin(e)/ e—72 cos(8) o (%) dz’

~h

- h 7z’
= —14Cy sin(G)/ cosh(yz' cos(6)) cos (E) dz’
-k
Evaluating the constant, let s — 0 and obtain,

= — — h !
Cgl)(li,O) = —14Cy sin(G)/h cos (g—;) dz’

- 4h
= - 10 CO ?Sln(e)

(A.9)

Now equate the results for s — 0 from (5.10) with (A.3) (class-1) to that from (5.2) with (A.6) and (A.8)

(class-2) giving

13+ P-1; = Pygsin®(f) 1415= P, 1C3 (—) sin?(f) 14514
’ ™
T
CO = EPZIZ
So define .

- 3 wz
_ h ’ fs !

Jo(s) ih /:h cosh(vz' cos(6)) cos (2h) dz

and the class-2 form in (5.20) becomes

—~? pgl)_ C;l)( 1;,9) Cgl)( 1;,8) = —? P, sinz(e) foz(s) 1gly

(A.10)

(A.11)

(A.12)

st: -

So the effect of going from class-1 to class-2 is to modify the electric-dipole term by the removal of e7°i in

(5.10) and multiplication by foz(s).

So now, let us evaluate fo(s) as

h '
. - vz’ cos(6) Tz /
fO(S) - 4h h [ COS _2h dz
T A ' 7wz’ , Lz’
= gﬁ [e‘rz cos(8)+j S3- + &7 cos(8)—j S ] dz’
~h
= o [ cos(6) + jl]_le”'c"’(e)ﬂ’;‘h’ + [’ycos(e) - i _levz’cos(e)—jw—z-—ﬁ:
~ ol 2h 2k
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 d I T1-1
- N : vh cos(6) - —~vh cos(8)
8h L[7°°S(0) + ]2h] [Je + e ]
T1-1
s _sathcos(8) _ - —vhcos(d)
+ [*‘ycos(a) oh [ je je H
L ,w -1 . .m-1
= -_7 ['ycos(ﬂ) + ]ﬁ] -7 [’ycos(ﬂ) - ﬁ] ]cosh('yhcos(G))
r -1 ~1
= % l: 1 - j% COS(G)] + [1 + j? cos(G)] ] cosh(vh cos(6))
2vh 217
= [l + l:% cos(ﬁ)] ] cosh(yh cos(8)) (A.13)

For s = jw, this becomes

Foljw) = [1 - [%cos(o)] 2]_1cos (%cos(@) (A.14)

Note that this is not singular at w hcos(8) = =+ #/2 since the following cosine function also has zeros that

cancel the first order poles.

A.2 Numerical Results

In this section, numerical results depicting the backscattering dyadic from a thin straight wire are
presented. The backscattering dyadic is computed using both the class-1 and class-2 forms of the SEM
modified pole series. These results are compared to the backscattering dyadic computed using a frequency
domain method of moments approach. In the following text, this solution of the backscattering dyadic
will be referred to as the direct solution. Furthermore, unless otherwise stated, the direct solution will be
considered correct, and the performance of the SEM modified pole series will be based upon the agreement

of this solution with the direct solution.

Before examining the results, a brief explanation of the numerical procedures used in obtaining the
SEM results is pertinent. Because the straight wire here is considered thin, the SEM can easily be cast

into numerical form via the method of moments. Specifically, this involves representing the surface current

~
=

Js in a series of N basis functions, and then testing the impedance integral equation (EFIE) (4.1) with a
&
set of N testing functions. The result of this process is a linear matrix equation where the kernel Z is

now represented by a matrix of size N x N. For the results presented here, a pulse expansion of the surface

current density and and pulse testing of the integré.l equation are used.

Now that the impedance integral equation has been cast into matrix form, all of the essential

. components of the singularity expansion method such as the natural frequencies (poles), modes, and coupling
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coeflicients can be computed numerically. Once these parameters have been determined, the application of
(5.9) and (5.12) to compute the class-1 and class-2 forms of the backscattering dyadic is straightforward.
A variety of numerical methods for computing these parameters have been developed and are discussed in

variety of sources {13-16].

The direct solution of the backscattering dyadic, which will be used to evaluate the performance of
the SEM results, is also determined numerically via the method of moments. The direct solution involves
transforming the same integral equation into matrix form; however, unlike the SEM, the integral equation
and resulting matrix equation are in terms of s = jw (w real). Furthermore, the surface current is obtained

by directly inverting the kernel of the integral equation. The backscattering dyadic is then computed by

applying standard potential theory.

The straight wire considered here as a length-to-radius (2h/b) ratio of 200, and it has been sub-
divided into 51 moment method zones. A total of 27 poles, including conjugate pairs, were used in computing
the SEM results. Figure A.2 shows the location of these poles. In the figure, the poles have been grouped
according to their eigenset [7]. Each eigenset is represented by an arc, and the poles belonging to each

eigenset lie on the arc. By an eigenset, we mean all the terms associated with one matrix eigenvalue Ay (the

natural frequencies being the zeros of these eigenvalues.)

The parameters in the following figures are chosen with an eye to test the convergence properties of
the series in both class-1 and class-2 forms . As discussed in section 5 and [11], there is a backscattering time
window for convergence of the class-1 series. In (5.8), this requires that ¢, > 0, so that ¢; can be chosen

without having the series diverge for early time. In our thin-wire example, the symmetry of the geometry

has

LO = L = 2h
L - Do _ 2
0 = ¢ T ¢
h
t, = ~tf = ;cos(oinc) _ (A.15)
ths = to + 2[ts — tp] = to[1 ~ 2cos(finc)]

backscatter time window

This says that there is a range of 8;,. given by

60° < 6. < 90°  for t, >0 ~ (A.16)

nc

In this range t;, chosen per (4.8), gives series convergence, a necessary condition for lack of an additional

entire function. In the illustrations, then 6;,. = 45° violates this condition, while ;. = 90° satisfies this
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Figure A.2. The pole locations of the thin straight wire, 2h/b = 200. The poles are grouped into eigensets.

condition.

The thin-wire has no magnetic dipole term. The electric-dipole term is contributed to by only odd
n in the Ay eigensets. This can be seen from the symmetry of the currents about the center of the wire. For
even n, the volume integral of the current’is exactly zero. So for low frequencies, adding an even n in the

sum to the previous sum ending in odd n contributes very little below first resonance.

Figures A.3 through A.8 illustrate the magnitude of the backscattering dyadic Ab for the straight
wire as a function of frequency for the two orientations mentioned above. The incident electric field is
oriented in the x,z plane (E wave polarization) as illustrated in fig. A.1. For each orientation, both the
class-1 and class-2 forms of the SEM modified pole series are used to compute the ba.cksca.tteting. dyadic
Abe, where the e denotes that the incident and scattered fields are E-waves. In each case, solutions of ]&b“

for powers p = 0, 1, 2, and 3 of the modified pole series are given.

Figure A.3 shows the magnitude of Abee for an incident angle of 45°. The SEM solutions were

27



obtained using a class-1 coupling coeflicient. The upper plot of fig. A.3 shows the scattering dyadic on a.
log-log scale. The lower plot depicts the scattering dyadic on a linear scale. The log scale plot is useful
for examining the performance of the SEM solution in the lower frequency region whereas the linear scale
plot emphasizes the resonance region. By inspecting the log scale plot, it is apparent that as the power
of the modified pole series is increased, the low frequency agreement of the SEM solutions with the direct
solutions progressively improves. This result is expected since at low frequencies, the scattering dyadic is
proportional to s2. In the low frequency region, there is a slight discrepancy between the p = 3 solution and
the direct solution. This discrepancy appears to be constant up to the resonance region. At low frequencies,
the polarizability term in (5.10) dominates the p = 3 solution. Since the polarizability term {A.3) accurately
describes the quasi-static behavior of the straight wire, the p = 3 solution is considered correct. The error in
the direct solution could be attributed to the choice of basis and testing functions. Although this hypothesis

was not investigated, choosing a set of smoother functions other than pulses could possibly improve the

direct solution in the low frequency region.

In the resonance region, the modified pole series solutions presented in fig. A.3 perform fairly well.
In particular, the p = 0 solution agrees extremely well with the direct solution. This result is surprising
since such nice agreement is usually not expected with a class-1 coupling coefficient. The p = 1 solution
does well in capturing the peaks of the resonances; however, its performance in cabturing the nulls is suspect
(small differences of large numbers). This behavior may be attributed to the class-1 coupling coefficient. The
class-1 coupling coeflicient does not contribute critical phase information like the class-2 coupling coefficient.
The p = 2 and p = 3 solutions do well in capturing the first and second resonances. Beyond the second
resonance, these solutions begin to diverge from the direct solution. The behavior of the p = 3 solution
can, at least partially, be explained by the influence of the polarizability term. The class-1 polarizability
term increases quadratically with frequency. Thus, at frequencies beyond the first couple of resonances, the

polarizability term is large and begins to dominate the p = 3 solution.

Figure A.4 shows the class-1, p = 3 modified pole series solutions of Abee for various pole con-
tributions. As in fig. A.3, the magnitude of Abce is plotted for an incident angle of 45°. The various
pole contributions used in the modified pole series solutions correspond to the various combinations of the
eigensets shown in fig. A.2. Three different p = 3 solutions of Abee were obtained by using 2, 4, and 6
eigensets (or arcs). Referring to fig. A.2, the solution obtained by using 2 arcs signifies that the poles be-
longing to the eigensets for eigenvalues A; and Ay were used. Similarly, the solution obtained by using 4 arcs

denotes that the eigensets for eigenvalues A; through A4 were used.

Returning to fig. A.4, one can see that the various p = 3 solutions converge in the low frequency
region. This is expected since the higher order pole terms have very little influence on the response at low

frequencies. Furthermore, as was indicated earlier, the class-1 polarizability term in (5.10) dominates the
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response at low frequencies. In the resonance region, all of the p = 3 solutions do well in the area around
the the first resonance. However, beyond the first resonance, these solutions begin to diverge from the direct
solution. In particular, the solutions obtained using 2 and 4 arcs begin to track the polarizability term
around the second resonance. The solution using 6 arcs captures the first and second resonances fairly well.
After the second resonance, the agreement of this solution with the direct solution deteriorates. One can
observe the peaks of the third and fourth resonances in this solution, but because of the influence of the

polarizability term, the amplitudes are incorrect.

Figures A.5 and A.6 are similar in format to figs. A.3 and A.4, respectively. In both figures, the
modified pole series is employed to compute A’bee for broadside incidence (6 = 90°). The class of the SEM
solution is not an issue here since both the class-1 and class-2 forms of the solutions are equivalent for
broadside incidence. In fig. A.5, we see that the p = 2 and p = 3 solutions produced the best results in the
low frequency region as expected. Although the p = 2 solution coincides with the direct solution, the p = 3
solution is considered to be the correct response in the low frequency region. Observe that the difference
between the direct solution and the p = 3 solution remains constant up to the resonance region. This same
characteristic was noticed in figs. A.3 and A.4 which may indicate the source of error in the direct solution is
independent of incidence angle. This observation seems to give plausibility to the hypothesis that the source

of error is related to the choice of basis and testing functions.

In the resonance region, the modified pole series solutions are varied. The p = 2 solution agrees
extremely well with the direct solution. It appears that the agreement of the modified pole series solutions
with the direct solution improve with increasing power up to p = 2. The p = 0, 1, and 3 solutions capture
the first resonance well, but then begin to diverge thereafter. The p = 1 solution lags slightly behind that of
the p = 2 solution although it appears that the margin of error is increasing with frequency. After the first
resonance, the p = 3 result begins to follow the polarizability term . As explained earlier, this behavior is
attributed to the quadratic nature of the polarizability term. The p = 3 solutions of fig. A.6 provide further
evidence of this characteristic. All of the SEM results presented in fig. A.6 are accurate up through the
first resonance. Beyond this point, the p = 3 solutions begin to be dominated by the polarizability term.
Note that the third resonance (there being no second resonance due to the symmetry of the excitation) is
not contained in the result obtained using 2 eigensets. This suggests that the first two eigensets contain
very little spectral information related to the third and higher order resonances, as one should expect, since

natural frequencies are zeros of particular eigenvalues [7].

Figures A.7 and A.8 are the class-2 equivalents of figs. A.3 and A.4, respectively. In these figures,
the class-2 form of the modified pole series is used to compute Abec for an incident angle of 45°. In similar
fashion to fig. A.3, fig. A.7 shows the magnitude of ./-&bee for various powers of the modified pole series.

By comparing fig. A.3 with A.7, it is apparent that the class-2 coupling coefficient significantly changes the
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various solutions. In the low frequency region, the class-2, p = 0 solution is similar to the' class-1, p = 0 result.
However, in the resonance region, the class-1 result actually agrees better with the direct solution than the
class-2 result. This is an interesting result since the class-2 solution is expected to give better agreement.
However, excellent agreement of the p = 1 and p = 2 solutions with the direct solution are observed in fig.
A.7. The performance of the class-2, p = 1 result in the low frequency is improved in comparison to the
class-1 result. Both the p = 2 and p = 3 results continue to give excellent results at low frequencies. Note
that the constant offset between the direct solution and the p = 3 result has not changed. A very significant
result in fig. A.7 is the performance of the p = 3 solution in the resonance region. Except for a large deviation
in the null between the second and third resonances, the class-2 p = 3 solution agrees very well with the
direct solution. The class-2 polarizability term peaks in the area between the second and third resonances
resulting in the aforementioned deviation. Beyond the third resonance, the magnitude of the polarizability

term begins to rapidly decline. As this occurs, the performance of the p = 3 solution improves.

In fig. A.8, the excellent performance of the class-2, p = 3 solution is further validated. Regardless
of the number of eigensets used, the low frequency agreement of p = 3 solution is maintained. Only in the
resonance region does the number of eigensets become an issue. The solution using two arcs nicely captures
the first two resonances and then rolls off. This result is expected since the first two arcs contain mainly
information regarding the first two resonances. There is not much difference between the solutions using four
and six arcs in the frequency range of interest. Again, this result is anticipated since the frequency range
of interest spans only the first four resonances. The solution using six arcs actually contains more spectral

information than is necessary to obtain an accurate result over the desired frequency range.

The limited data presented here show that numerical convergence in the resonance region (beyond
first resonance) appears to better for the class-2 form. This should .- not be surprising since the spatial
convolution with the incident wave suppresses high frequencies as compared to class 1. This becomes
important for the larger values of p which emphasize high frequencies in this region. In both classes, the
larger p give more accurate results than the direct solution for low frequencies. Furthermore, the direct
solution appears more accurate than that with the moment-method poles, indicating some additional errors
of unknown source. The results for 8;,. = 90° also appear better than for 6;,,. = 45°, consistent with (A.16),

but the absence of the second pole also contributes to this result.
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Figure A.3. Magnitude of the backscattering dyadic from a straight wire, calculated using the class-1 SEM
modified pole series (p=0,1,2,3) for finc = 45°, The frequency domain/method of moments solution (direct
solution) is provided for comparison.
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Figure A.4. Magnitude of the backscattering dyadic from a straight wire for 6;,. = 45°, calculated using the
p=3, class-1 SEM representation with 2, 4, and 6 eigensets and compared to the frequency domain result.
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Figure A.5. Magnitude of the backscattering dyadic from a straight wire, calculated using the SEM modified

pole series (class-1 = class-2) (p=0,1,2,3) for §;». = 90°. The frequency domain/method of moments solution
. (direct solution) is provided for comparison.
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Figure A.6. Magnitude of the backscattering dyadic from a straight wire for 6;,. = 90°, calculated using
the p=3 SEM representation (class-1 = class-2) with 2, 4, and 6 eigensets and compared to the frequency

domain result. I
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Figure A.7. Magnitude of the backscattering dyadic from a straight wire, calculated using the class-2 SEM
modified pole series (p=0,1,2,3) for 6;,. = 45°. The frequency domain/method of moments solution (direct

solution) is provided for comparison.
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Figure A.8. Magnitude of the backscattering dyadic from a straight wire for 8;,, = 45°, calculated using the
p=3, class-2 SEM representation with 2, 4, and 6 eigensets and compared to the frequency domain result.
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Appendix B. Backscattering from a Thin Circular Loop

As indicated in fig. B.1, let there be a plane wave incident on a thin circular loop of major radius

a and minor radius b, with the z axis as an axis of rotational symmetry (Ccoq). As in appendix A, let the

x,z plane be the plane of incidence. Now there are two polarizations of interest.

inc —

—O-= | O—=

y

Figure B.1. A thin wire loop with a loop radius e and a wire radius b.

An E wave has the incident electric field parallel to the plane of incidence with

)T, s) = By f(s) Lee "1i'T

by ]2

= —cos(fipc) 1x + sin(fipe) 1z

[1]

i = —lo = —sin(finc) 1x — cos(Gipc) 1z

—_ -

~1 o=l o=

[
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where the incident field tangential to the thin wire is

—_ —

—1'4,. "E',’gint:)(a—l’q’,s) = E, f(s)_fc._l'd,e—'yali.lq,
Te- T¢ = —cos(ﬂmc)Yx-Y¢ = cos(B;,c) sin(@)
1;-Tg = —sin(8inc) Ix- Tg = —sin(inc) cos(4)

An H wave has the electric field perpendicular to the plane of incidence with

EU)(T,s) = Eo f(s)Tpe 7l (B.3)
_l'h = Ty
The incident electric field tangential to the thin wire is
7 :(inc) 7 _ TR ——yaI--Tw
lg4- Ey ‘(alg,s) = Egf(s)1p-1lge 1 (B.4)

Th . T¢ = cos(¢)

B.1 Polarizability

For this problem, the important dipole moments (not negligible due to the thin wire) give polariz-

ability tensors (dyads)

= Pxrxlxlx + Pyylyly (B.5)

R wt-

= Mz,zlz lg

Identifying 6; . as 8 in what is to follow, the dipole terms in the backscattering dyad (in (5.10)) take the

form
Tl P 'Yl = COSz(o) PX,XTC ].e + Py,y lhTh (B6)
Tix M XYi = —Sinz(e) Mz,zThTh

The backscattering dyad takes the form

A

b(li,s):Ae,elele—}-ﬂh,hlhlh (B.7)
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The symmetry with respect to the x,z plane leads to this diagonal representation. Note that ¢ is used as
a coordinate on the loop for our later integration, so e,h gives better coordinates for the backscattering

(equivalent to v,h (vertical horizontal) radar coordinates) than 6, ¢.

Perfectly conducting bodies of revolution have the general property for the components of the po-
larizability tensors [30].
Pex = Pyy = —2M;z (B.8)

The single component required is [30]

Mg, = —7%ad® [en (%") - 2J_1 (B.9)

This can be found from formulas for a circular slot aperture, or by a first-principles derivation. The induc-

tance of the perfectly conducting loop [31] is

-1
L >~ pga [ln (870') - 2] for b<a (B.10)

Using a reciprocity approach, if the loop is driven (at low frequencies) by a current I, the enclosed magnetic

flux is LI and the magnetic moment is 7a®?I. Equate this to the induced dipole moment Mz,zHéinc) with

the negative of the excluded magnetic flux ,u.o'lrazﬂéinc) giving

M;; = ——(ma*)? for b<a (B.11)

in agreement with (B.9).
For class-1 backscattering, we have
= —asin(f) (B.12)

t:

1

for use in (5.10). For an incident E wave, we have the dipole part

[Ti' ; 'Ti -+ -1.1)( ﬁ‘ X 1i] . _].'c_l'e = Cosz(e)Px'x—l.e_l.e = -2 Cosz(G)Mz,z—l.c_].'c (B.13)

[Tl' ; .Yl + —1’1)( M x—l.l] . Th lh = [Py,y - Sinz(a)Mz’z] _]:h_l.h

—[2 + sin®(8)] Mg g1y 1y, (B.14)

giving the requisite terms for the p = 3 representation.
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It can be noted at this point that the natural modes have analytic representations. For this body of
revolution (Cooa symmetry [33]) these modes are frequency independent, the same as the eigenmodes, and

can be written as [3,6,8]

[xa]~*/?sin(ng) for fields symmetric with respect to the xz plane (E wave)
_ iﬂ(¢) = [7ra, [1 1, 0] ] -1/2 cos(ng) for fields antisymmetric with respect to the xz plane
’ (H wave)
p={3%
a = (B,n) (B.15)
n' = index of natural frequency for given B or n

3 . 2% ) .
[oopzﬂ(“‘)‘ﬂ’(‘b)d‘ = /0 ig(9)igr(#)ads

= 1 g (orthonormalization)

where current is taken positive in the ¢ direction, and the modes are orthonormalized as in [7]. Note that,
except for n = 0, there are two eigenmodes for each n, and two_na.tural modes for each natural frequency
sa.- However, they separate neatly according to the two different kinds of incident wave. Furthermore,
n = 0 gives the uniform loop current for the magnetic-dipolé term, and n' = 1 gives the currents for the
two electric-dipole terms. The normalization in (B.15) is appropriate for eigenmodes, but can be changed

as desired (e.g. to peak value unity) for natural modes and quasi-static modes.

Consider now the class-2 backscattering for an E-wave. For p = 3, we need to evaluate the integral

associated with Py x in (5.20). Noting that only £ = x gives a significant contribution, we have

chl) = Px,x
C;l)(Ti,s) = C&l)(—-fo,s) (backscattering) ~ (B.186)

- — _ —’_._" —.’(l)l —/
<1elce 711 rs; ]Sx (Ts)>

—

For our thin loop, the surface current density reduces to a line current proportional to sin(¢) 1 e Noting the

frequency dependence at low frequencies in (5.13), we have

= — r _, _, . —
Cgcl)( 1i73) - Cl L le lee—yasm(ﬂ)cos(d?) N 1¢sin(¢) ad¢

. 27 X
aCy cos(8) 1 e/ 7o sin(0) cos() 5in2(¢)dg
0

— 2aC1cos(9).l’e/ e1asin(9)c°s(¢)sin2(¢)d¢
0

- 3 2
— 1/2 )= i
= 2aCjicos(f)len/*T (2) ~asin() I (vasin(8))
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Iy (vasin(8)) —
27aC1 cos(6) liasin(g))) e

which is given in terms of a modified Bessel function [24]. Letting s — 0 we have

(B.17)
CS)(Ti,o) = maCy cos(G)Ye (B.18)
Equating this to the class-1 results for this dipole term gives
‘i’i‘ P 'Tl YCTC = C052(0)Px’x—1.e—fe = Px_,,lc C% (7I'a)2 COSz(g)_l.e—].'e
1
Cr = _Pxx (B.19)
This gives
Sy, Iy (yasin(6)) —
Cgcl)(li,s) = 27 Py x cos(f) I'E'Z,sin(é))) le (B.20)
and the class-2 form in (5.20) becomes

—*pT cW(1y,s) c(1y,s)

I i 2 .

—7%4 Py x cos?(8) [ 1(7a'sm(0))] lele
’ Yasin(6)

S — Py x cosz(ﬁ) Tc—l.e as s — 0

An alternate form for s = jw has

(B.21)
Sy, Jy (#2sin(6)) -
Cgcl)(li:j“’) = 2Px,xcos(9) 1wac ‘Sln( )) le (B.22)
“2 sin(6)
which is in terms of the usual Bessel functions.

For an H wave, the class-2 backscattering dyad has both electric and magnetic-dipole terms. First
we have for the electric-dipole part

o)

cN(1j,s)

Pyy

Cg,l)(——fo,s) (backscattering) (B.23)
- = _ 1.7 =)
= <lh1he 11 I‘s; Tsy (7‘5)>

For this term, the surface current density reduces to a line current proportional to cos(¢)1 ¢- Now we have

~ — 21-—0 —
cP(1y,5) = Cz/O lp1pe™®?

in(8) cos(¢) . —1.¢ COS(¢) ad¢
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- 2x .
= aCy lh/ 70 %in(8) cos(¢) cos?(¢)d¢
0

= 2‘102_1'11/ e7esin(8)cos(#) [1 _ sin?(4)] dop
0
- 20'02—]"}1 {71/21-\ (%) IO(’)'G.Sin (0)) _ ﬂ_l/2r (g) I]_(’)’GSIII(G))}

va sin(f)
- . I(vasin(9))
= 1 -~ 7 .
27aCy 1y, {Io('ya sin(6)) Yasin(d) (B.24)
Letting s — 0 gives
Cg,l)(Ti,O) = raCz—l'h (B.25)

Equating this to the class-1 results for this electric-dipole term gives

— - —_

1;-P-1;- Iply = Py,ylhlh = P;;C;(ﬂ'a)zlhlh
1

This gives .
Sy, . I (vasin(8)) ] =~
c(1;,0) = 2Py { ], g)) — 20 :
P(15,0) = 2Py {Iasinge)) - LZTENL T, (8.27)
and the class-2 form in (5.20) becomes
~ ~ . 2
W™ (T, s oW(T. o) — : Li(yasin(6)) 1" - =
7'y’ Cy'(lys) Cy'(lys) = —7*4Pyy {Io('ya51n(0)) T “aasn(d) J ‘hln
— —y*Pyyiply ass—0 (B.28)
An alternate form for s = jw
0,7 .y wa J1 (2 sin(8)) | -
Cy )( 111-7“") = 2Py,y {JO <T sm(&)) -~ W 1}1 (B29)
The H-wave response also has a fnagnetic-dipole term in (5.20) for which we have
mgo) = Mz,z
C(zo)(—l.i, s) = Cgo)(——_l.o, s) (backscattering) (B.30)

_ —_ — _ _1’"_.’ —:(0)’ !
= 7 { 1plpe T TS Jsg (Ts)
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For this term, the surface current density reduces to a uniform line current in th direction 1 ¢ Now we have

2’(0 — 2r - - . htd
C; )( 1;,s) = Cav7?! / 1y lhe7“”"(9)°°’(¢) - lgadd
0

— 27 X
— s C3 1 h / e7e sin(8) cos(¢) COS(¢)d¢
0

—

2a " asin(6) cos(g)
= - C3 1y 72 sin(8) cos(¢)d¢
0

2 . -
= %‘_ Cs Iy (vsin(8)) 1y, (B.31)

Letting s — 0 gives

C(zo)(Yi,O) = na® sin(B)C;;_l.h (B.32)

Equating this to the class-1 results for this magnetic-dipole term gives

- [T T TaTh = —sint(0) M Ty T
= —M;}CF(ma?)? sin®(8) 1y, 1y,
1
Cy = — M, B.
3 -7ra2 zlz ( 33)
This gives
e TP I in(6)) = '
c®(1;,0) = 2MZ,ZM 1y (B.34)
va
~ and the class-2 form in (5.20) becomes
-1 5 - C Sy, I (vasin(@ -
v m(ZO) C(ZO)(liss) C(ZO)(lixs) = 724Mz,z{——1(7 a ( ))} 1h1y
— A? M,z Yh_fh as s — 0 (B.35)
An alternate form for s = jw has
Sy, Jy (£2sin(6)) —
(15, jw) = 2MMLM(L) In (B.36)

B.2 Numerical results

This section presents numerous results illustrating the backscattering dyadic from a thin circular
loop for a variety of polarizations and incident angles. In computing the backscattering dyadic, both the
class-1 and class-2 forms of the SEM modified pole series are used. The performance of the various SEM

solutions is measured by comparison to a reference frequency domain solution of the backscattering dyadic.
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The characteristics of this reference solution and how it is obtained will be addressed in the subsequent text.
For the results presented here, the reference solution is considered correct, and the performance of the SEM

modified pole series will be evaluated based on the agreement of these solutions with the reference solution.

Unlike the results presented for the straight wire in Appendix A, the numerical results for the circular
loop are not computed using a method of moments approach. Instead, the rotational symmetry of the loop
is utilized to obtain an analytic solution for the current induced on the loop by the incident field. This is
accomplished by expanding the current, kernel, and incident field of the EFIE in a spatial Fourier series.

Once the current is known, standard potential theory can be applied to find the far backscattered field.

The Fourier series approach for solving the current on a thin circular loop is treated extensively
“in the literature [17-19,25]. In these sources, the loop antenna is primarily studied, but the extension of
the methodology to the scattering case is straightforward: The case of electromagnetic scattering by loaded

wire loops has been examined by Harrington [20]. The Fourier series solution to the loop antenna is also

investigated from an SEM perspective in several sources [3,6].

As noted earlier, the purpose of this appendix is to present results depicting the backscattering
dyadic from a thin circular loop. A detailed theoretical treatment of the loop scatterer is not relevant here.
However, in order to provide a basis for the numerical results, a concise summary of the theory is necessary.
The following summary relies heavily on the expositions by Wu [19], King and Harrison [25], and Harrington
[20] with the only distinct difference being the extension of the theory to the complex plane, or s-domain.

Some notational changes have been made in order to avoid conflicts with the notation already established.

B.2.1 Summary of the theory

Due to the thin nature of the loop (¢ > b) in fig. B.1, the integral equation in (4.1) can be

significantly reduced to ,
Xl

aE{™)a,¢,05) = [ G(o—¢'; 5) (¢ 5)de’ (B.37)
0 .

where the various functions have been expressed in terms of cylindrical coordinates and the complex frequency

s. The quantity Eg"c) denotes the ¢-component of the incident electric field along the wire at p = a, 2 = 0.

Similarly, the loop current at any angle ¢ on the wire is represented by f(d)) The current f(d’)) and the

¢-component of the incident field are related to one another in free space by the function é’(d) — @)

As suggested in the introduction, a solution for the loop current can be found by expanding each of
the aforementioned functions in a Fourier series as
- By <~ .
I(¢;s) = 7o Z an(s)e™?,

n=——oo

44




oo

G(p—¢'; s)

= 3 Gals)ens-4), (B.38)
E(™)(a,4,0;5) = Hy n_Z_jm &i"(s, 15, Tp)e™,

The Fourier coefficient Gy, of the current expansion is related to the Fourier coefficients Gy, and E.(,,i."c) by

—

a&i™(s, 15, 1p)
27 G-n(s)

dn(s) = (B.39)

This expression can be obtained by using (B.38) in (B.37) and performing the integration.

Note that here the modes have been defined in complex form e/™#. For real-valued modes (such as
one might measure), one can use cos(n¢) and sin(n#), noting the two-fold degeneracy for each n, except
n = 0, due to the symmetry [33]. Furthermore, in the present-problem, natural modes and eigenmodes’
(here frequency independent) are one and the same. In (B.15), the eigenmodes (now also natural modes)
are orthonormalized for convenience in the general eigenmode expansion [7]. By combining the @ne’™? with
G_ne ™% for n > 1 in (B.38), one obtains a coefficient times an eigeninode proportional to sin(n¢) for
E-wave incidence, and proportional to cos(n¢) for H-wave incidence. The n = 0 term differs from the others

-1/2

by a factor of 2 , which when squared gives 1/2, as will appear consistent with the later expressions

((B.53) and (B.54)).

The next step'in completing the solution for the loop current is to find expressions for Gy, and ég"c).
The development of an expression for Gy can be quite tedious. For completeness, only the final result will
be given here. King and Harrison [25] provide a detailed development of this coefficient. The coefficient G,
is given by

1~

Gnls) = Gon(s) = 1= [10 (3Vas106) + 3P 1()) + Za(s)]. (B.40)

The coefficients V, have been approximated by Wu [19] to be

e = t|m(%) -5/ 7 () + 390(2)] az]

It

™

() = Vonle) = 2 [Ko (B) 10 (Z) +0a- T [ 7 g(e) + 32m(@)) da|. (B4

The functions Iy and K| are zeroth order modified Bessel functions of the first and second kind, respectively,
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Jo, is a Bessel function of order 2n, Q5, is a Lommel-Weber function of order 2n, and

n-1

1
Dpn = £n(4n) + Yec — 2 E
m=0

B.42
2m+ 1 ( )

where 7ec is Euler’s constant [24]. Routines for evaluating the integral of the Bessel and Lommel-Weber

functions are given in [12].

Finally, the coeflicient éﬁ“’ can be determined from the following expression
(. ) — — 1 27 — :P(, ) ind
~(1nc c —-Iin
én '(s,1i, 1p) = 27rEo/0 14 EUn)emintdy, (B.43)

This expression represents the usual integral equation for the Fourier coeflicient. For E-wave polarization,
(B.2) (with E; = 1) can be substituted into (B.43). Upon integration, the expression for the Fourier
coeflicient of the incident field becomes

sine) . T Ty = 4 g. 3y [In(vasin(finc))
én (s, 15, 1e) = jncos(Bipe) [——_’)’dsm(einc) . (B.44)

Similarly, for H-wave polarization, (B.3) can be used in (B.43) to give
& (s, 1iy Th) = Tn(r@sin(6iac)) (B.45)

where the prime ’ denotes the derivative of the modified Bessel function with respect to its argument. Both
(B.44) and (B.45) have physical significance in that they are coupling coefficients. The spatial Fourier modes

on the loop are of the form e’™%. Hence, the integral in (B.43) represents the coupling of the incident electric

field to the nth Fourier mode.

Now that a solution for the loop current has been found, the far backscattered field can be computed

via standard potential theory [11]. Because the loop is thin, the far-field approximation of the electric field

can be expressed as

~ _ 2 T
Eg(s) = Z%e“"/é I(¢'; s) 14 erloaly ggg. (B.46)

Using (B.38) and (B.39), the vector Tp component (Ye or —l.h) of the backscattered electric field becomes

=% = ~Bpva? ) @) (1T 2 Tealeun '
Eg(s) lp= — —¢7 Z_Fn(?—  J, lp-lyer oeiee/™®dg | b . (B.47)

n=-—00

The term in parentheses of (B.47) has the form of a coupling coefficient and is similar to the expression
in (B.43). This coupling coefficient effectively quantifies how much of the #th Fourier mode couples to the

radiated field. By denoting this coupling coefficient with the term é,(,f), the expression for the far electric
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field becomes

~ 2 o0  ~(inc) 7.7y =(r) T 7
Eg(s) Tp= —207% -r y = (% 11, 1p) én (s 1o, 1p) (B.48)
dar n=—o0 Gn(s)
where .
2 - -
é(r)(s 1.7 ) = 1 T 1,4e7loelaging g (B.49)
n A% 1oy ip) T oo A P ¢c . .
For backscattering (_1.02 —Ti), where both the transmitter and receiver are located in the x,z plane at
an angle ;;. from the z axis, the coefficients e(mc) and e( ) are equivalent for either E-wave or H-wave

polarization. Hence, by using (B.44) and (B.45), we can write the product of these two coefficients as

é(inC)(s 1.1 )é'(r)(s 1.1 ) = —n?cos?6; In(yasin(iyc)) : (B.50)
n ? 1? e n 3 17 c inc ’)‘aSin(ginc) .
for E-wave polarization, and
~(inc T 7 ~(r 2
&8 (s, 15, 1) E5(s,~ 1, 13) = [Ta(vasin(Bnc)))’ (B.51)

for H-wave polarization.
&
Using (B.48), the backscattering dyadic Ay can be written as

~ < g (s, 13,1 )'(r (s,-131p) 7 7 (B.52)
Pip- ’

By using (B.50) and the identity In(z) = I_,(z), the expression for the backscattering dyadic in (B.52) can

be specialized for E-wave backscattering as

;\_-" oo
Ay (5) = 2va® cos? (6;p.) Z

n:l

2
[ITL 'YaSln(emC))] _1. _]..e . (B.53)
vasin(8;nc)

Similarly, by using (B.51) and the relationship I, (z) = I'_, (z) in (B.52), an expression for H-wave backscat-

tering can be written as

& I (vyasin 2 asin -
Abhh(s) — —va? [ oly GO((s)mc 49 Z [In(y Gn(s)mc))] :| 1,1y . (B.54)

The reference solution contained in the numerical results is either (B.53) or (B.54) with s replaced by jw.
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B.2.2 The SEM Solution

To express the backscattering dyadic in terms of the SEM, Umashankar [6] shows that the coefficient

1/Gn(s) (referred to as the transfer admittance) can be expressed in a singularity series as

R
= B.55
Gn(s Z § — Sna ( )
where R, is the residue of l/é'n(s) at the pole s = spq. The SEM representation of the backscattering
dyadic can be determined now by substituting (B.55) into (B.52). After some manipulation, the SEM

representation of the backscattering dyadic can be written as

& el s 1 (in ’ —_ — Ar —_ — —_ —
Ay(s) = { > [Z (=)= W] s A 1")} e (50
n=——oo a
—Sna 4 Rpa

Wha =
no Zo

This equation is the p =1 case of the modified pole series for the class-2 representation of the backscattering
dyadic. The other cases (p =0, 2, and 3) follow as shown in chapter 5 of the note. By using (B.50), the

class-2 form of the E-polarized backscattering dyadic can be written as

~ P . 2

« Wna o [In(vesin(6,,.))]1° = =

A = =2 lel
bee(s) a® cos® Binc § : EQ: (sna> n [ vasin(fi.) ele

§ — Sna
for p=0,1,2,3. (B.57)

We can also use (B.51) to write the class-2 form of the H-polarized backscattering dyadic as

& P
K] W, . 2l = =

o = @ {50 100 () 222t msntaue”} iy
for p=0,1,2,3. (B.58)

Of course, the p =3 form in (B.57) and (B.58) has the additional polarizability term whose functional form

has been already been addressed.

Similarly, the class-1 representation of the backscattering dyadic can be expressed as

& hod e—(s—tna)y - o - o o4 =
= a2 . Wi dli™(s, 15, 15)80(s, -1, 1 1p1
Ap(s n;w {Z (sna) S — Sno na € (s) 13, 1p)én’(s, i» 1p) Pip
for p=0,1,2,3 (B.59)

where t; has been defined in (B.12). For E-wave polarization, the class-1 form of the backscattering dyadic
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can be expressed as

& 00 P —(s—sﬂa)ti TI. ( a.sin(0- )) 2,
A s) = —2a?cos?(d; (L) e - 0 W 2 [ n{Yna h inc 1.7
bee( ) ( mc) ;; Sma S — Sno no 'YnaaSln(einc) ele |
for p=10,1,2,3 (B.60)
Sna
Yna — —
c

The class-1 modified pole series representation of the backscattering dyadic for H-wave polarization can also

be written as

~

R = {00 2 (5)

4 e-(l—lna)ii
S — Sna

Wna [I';L('Y'n-aaSin(einc))]z} 1p1y

for p=0,1,2,3. (B.61)

The class-1, p =3 solution also has an additional polarizability term which is not shown in (B.60) or (B.61).
This polarizability term is given in (B.13) and (B.14) for E-wave and H-wave. polarizations, respectively.
Note that a distinguishing difference between the class-1 and class-2 representations is that in the case of

(r)

éﬁf“) and &’ are now evaluated at the pole locations of the nth

the class-1 representation, the coeflicients

Fourier mode.

B.2.3 Results

The results presented below are computed for a circular loop having a loop radius to wire radius
(a/b) = 200. By choosing a/b to be 200, we are certain that the thin wire approximation used in (B.37)
and elsewhere in this appendix is valid. In addition, only the Fourier modes n = 0 through n = 5 are .used
in obtaining both the reference solution and the SEM solutions. Using additional modes does not alter the

solutions over the frequency range of interest.

The SEM solutions of the backscattering dyadic are constructed with roughly 112 poles including
conjugate pairs. The poles of the loop considered here are shown in fig. B.2. The poles locations essentially
represent the zeros of é'n(s). Since each Fourier mode n has a corresponding pole distribution, the poles
in fig. B.2 have been grouped by their respective modes. Furthermore, in accordance with the works of
Umashankar [6] and Blackburn [3], the pole locations for each mode can be divided into the following three

categories:

Type I For each mode n, there is a single pole near the jw axis at approximately w = n.

Type II There are n + 1 poles (including conjugate pairs) which lie roughly on the left hand side of an
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ellipse centered at s = 0 and with semi-major axis slightly larger than n.

Type III The poles belonging to this type lie in layers roughly parallel to the jw axis. An infinite number

of poles is contained in each layer, and they are space approximately Aw = 7a/c units apart.

The upper plot of fig. B.2 shows the pole locations for the Type I and Type II poles associated with the

first six Fourier modes (n = 0 to n = 5). A number of the Type III poles associated with these modes (not

including conjugate pairs) are shown in the lower plot of fig. B.2.

Before discussing the results, there is one issue that needs to be addressed. This issue concerns the
pole at s = 0 of the zeroth mode. For E-wave backscattering, this pole does not pose a problem for either
the class-1 or class-2 form of the SEM representation since the zeroth mode does not couple to the response.
Furthermore, as shown in [5], the natural frequency at s = 0 is not a pole of scattering (does not couple to
the incident field). Hence, it is automatically excluded from the summation for the class-1 representation.
However, for H-wave backscattering, this pole does create a problem for the class-2 form of the modified
pole serjes. By inspecting (B.58), one notices that the expression becomes indeterminate when the pole at
the origin is included in the summation. Actually, only the p=2 and p=3 forms of the class-2 representation
are indeterminate when this pole is used. In order to be consistent, we Have chosen to exclude this pole
in all of the SEM solutions presented here. Consequently, the performance of the p=1 solution has been
modified. The p = 0 solution is not affected by the inclusion of the pole at s = 0. This can easily be verified
by substituting sg o = 0 into the p = 0 form of (B.58). Although the exclusion of the pole at s=0 degrades

the p=1 solution, we can still study the relative performance of the various modified pole series solutions

without including this pole.

As in the previous case of the thin wire, parameters are again chosen to test the convergence

properties of the series. In our thin-wire loop example, the symmetry of the loop has

Lo = L = 2a
Lo
c c
a .
ty, = —tf = Zsm(Oinc) (B.62)

tpe = to + 2[tr— tp] = to[l — 2sin(fiyc )]

= backscatter time window

This gives a range of 8, as
0 < G < 30° for tpg > 0. (B.63)

(Note that this is the complement of the range in (A.16).) Againt;, chosen per (4.8), gives series convergence,

a necessary condition for lack of an additional entire function. In the illustrations, ;. = 45° and 90° violate
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Figure B.2. The pole locations of the thin circular loop, a/b = 200. The top figure shows the Type I and II
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poles grouped by their corresponding Fourier mode. The bottom figure shows the Type III poles.
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this condition, while ;. = 0° satisfies condition.

The reader should note that due to the rotational symmetry of the loop, the low frequency response
is dominated by the lower n. The magnetic dipole moment is associated exclusively with n = 0, and does
not appear in any E-wave response. The elec_tric dipole moment is associated exclusively with n = 1. Higher
order terms give quadrupole, etc. For all E-wave responses, the number of modes used begins with n = 1
in the count, while for H-wave responses, the number of modes used begins with n = 0. For ;. = 0° (a

special case), the incident wave can be labelled as either E-wave or H-wave, but the first mode is n = 1.

Figures B.3 through B.16 depict the magnitude of the backscattering dyadic as a function of fre-
quency for the orientations and polarizations mentioned above. In Figures B.3 though B.8, the E-polarized
backscattering dyadic Abee is investigated for ;. = 0° and 45°. Similarly, figs. B.9 and B.16 show the
H-polarized backscattering Abhh for 6;,. = 45° and 90° . For each orientation and polarization, both the
class-1 and class-2 forms of the modified pole series are used to compute the backscattering dyadic. As was
done in Appendix A, figs. B.3 through B.16 each contain two plots. The upper plot of each figure depicts

the scattering dyadic on a log-scale, and the lower plot illustrates the scattering dyadic on a linear scale.

Figure B.3 shows the magnitude of Abec for an incident angle of 45°. The SEM solutions were
obtained using the class-1 form of the modified pole series. As one can see from the upper plot, excelle_nt
agreement with the reference solution is obtained in the low frequency region with the p = 2 and p = 3
solutions. The p = 1 solution does converge well for some low frequencies below the resonance region.
However, at frequencies below fa/c = 0.01, this solution diverges from the reference solution. The p =

1 solution is only proportional to s, and therefore, we would expect the convergence of the solution to

deteriorate at low frequencies.

Although the p = 0 solution does not perform well in the low frequency region, it gives very good
results in the resonance region. Similarly, the p = 1 and p = 2 solutions do well in this region. On the
other hand, the p = 3 solution does poorly in the resonance region. As was seen in Appendix A, the class-1
polarizability term adversely influences the p = 3 solution. The class-1 polarizability term increases with

the square of the frequency (see (5.10)). As a result, the polarizability term dominates the p = 3 solution in

the resonance region.

In fig. B.4, the effect of changing the number of contributing Fourier modes on the p = 3 , class-1
solution is studied. Three solutions using different number of Fourier modes are shown. One solution utilizes
the poles of only the n = 1 Fourier mode. The other two solutions are constructed using two and three
Fourier modes. The solution obtained using two modes signifies that the poles belonging to the modesn =1
and n = 2 were used. Similarly, the solution obtained using three modes denotes that the poles belonging to

modes n = 1,2, and 3 were used. As noted previously, the zeroth mode is not considered here since it does
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not couple to the response for E-wave backscattering. Like fig. B.3, the solutions shown in fig. B.4 represent

the magnitude of f&b" for an incident angle of 45°.

By inspecting fig. B.4, we see that each of the p = 3, class-1 solutions do well in predicting the
low frequency behavior of the backscattering dyadic. However, in the resonance region, the various p = 3
sol_utions are similar in performance to the p = 3 solution shown in fig. B.3. Again, the influence of the
class-1 polarizability term is responsible for this performance. Nevertheless, aspects of the correct solution
can be observed in the SEM solutions. The p = 3 result using 1 mode contains the first resonant peak.
Beyond the first peak, this solution essentially follows the polarizability term. This suggests that the n =1
mode corresponds to the first resonance. Likewise, the p = 3 solution using 2 and 3 modes contains the
first two resonant peaks. In fig. B.3 these solutions appear to be the same. However, if the vertical axis of
both plots were enlarged, the third resonant peak would be seen in the solution using 3 modes. Again, this
behavior suggest that the poles of the n = 2 and n = 3 modes are related to the second and third resonances,

respectively.

Figures B.5 and B.6 are similar to figs. B.3 and B.4 with the only difference being that the class-2
form of the modified pole series is used to compute the backscattering dyadic for 6;;,. = 45°. By observing
fig. B.5, we see that the class-2, p = 2 solution gives excellent results in both the low frequency and
resonance regions. The class-2, p = 1 solution also converges well in the resonance region and at some low
frequencies. At frequenc'ies below fa/c = 0.01, this solution begins to diverge from the reference solution.
When comparing the p = 1 and p = 2, class-2 solutions with their corresponding class-1 solution in fig. B.3,
one notices that class-2 representation provides only a marginal improvement in performance. Furthermore,
it appears that the class-1, p = 0 solution is more accurate than the class-2 results in the resonance region.
In the low frequency region, both class-1 and class-2 forms of the p = 0 solution perform poorly. This result

is anticipated since the p = 0 solution is not proportional to s2.

One noticeable improvemnent that the class-2 solution has over the class-1 solution can be seen in
the p = 3 result. Both forms of the solution provide nice results in the low frequency region. However, in
the resonance region, the class-2, p=3 result is slightly more accurate. The reason for the improved accuracy
can be explained by observing the class-2 polarizability term. Unlike the class-1 polarizability term which
increases with frequency, the class-2 polarizability term peaks in the resonance region and then begins to
decrease. Consequently, the influence of the class-2 polarizability term on the p=3 solution is reduced in the

resonance region.

In similar fashion to fig. B.4, fig. B.6 shows the class-2, p = 3 solution of Abee for a variety of
mode contributions. Solutions using 1,2 and 3 Fourier modes are considered. As one can see, all three of
the SEM solutions converge very well to the reference solution in the low frequency region. In addition, all

- three solutions converge to the polarizability term in this region as well. Since the polarizability term is a
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part of the p = 3 solution, these results indicate that it dominates the solution in the low frequency region.
Furthermore, these results"show that the variations in the modal content do not change the low frequency
response of the p = 3 solution. However, in the resonance region, varying the modal content does alter the
solutions. The p = 3 solution using only the n = 1 mode captures the first resonance peak, and then begins
to follow the pol;rizability term. Similarly, the p = 3 solution using modes n = 1 and n = 2 contains two
resonant peaks. Up through the first resonant peak, the solution using two modes is identical to the solution
using only one mode. Based on this observation, it appears that each mode influences the solution in only

localized regions of the response. Further support of this observation can be seen in the solution using three

modes.

The results presented thus far considered only the case of Abec for 6;,;. = 45°. In figs. B.7 and B.8,
results of Abee are shown for broadside incidence (#;,. = 0°). Because the excitation is broadside, the class-1
and class-2 forms of the backscattering dyadic are equivalent. Beginning with fig. B.7, we immediately note
the excellent performance of the p = 2 result in both the low frequency and resonance areas of the response.
Regardless of the form of the modified pole series used, the p = 2 solution of Abee has consistently provided
very good results. The performance of the p = 1 solution is comparable to the p = 2 solution particularly
in the resonance region. However, at frequencies below fa/c = 0.01, the p = 1 solution diverges from the
desired result. The performance of p = 0 result at low frequencies continues to be poor, although this is
expected. In the resonance area, the performance is not much better. After capturing the first resonant peak,
the p = 0 result quickly diverges from the reference solution One interesting observation in these results is
the difference in performance of the p = 0 and p = 1 solution in the low frequency area. In going from the
p = 0 form of the modified pole series to the p = 1 form, one sees a dramatic improvement in performance.
This characteristic has also been observed in the previous results. Note that for 6;,. = 0° there is a special
symmetry in that the incident field, expanded on the loop, contains only an n = 1 term. This is associated
with the simultaneous arrival of the uniform plane wave assumed. Since only the n = 1 term appears (also
containing the electric dipole term, there being no magnetic dipole term), contributions from any other n

would be numerical error. Note also that only poles for n = 1 (fig. B.2) can appear in the response, a very

special case.

The behavior of the p = 3 solution in fig. B.7 is similar to the p = 3 result shown in fig. B.3.
Because of the polarizability term, the p = 3 solution does well at low frequencies, but performs poorly in
the resonance region. After capturing the first resonant peak, the solution is dominated by the polarizability
term. This identical behavior can be seen in the results of fig. B.8 where the p = 3 solution is coﬁputed
using several different mode contributions. Note that there is essentially no distinguishable features among
the three SEM. solutions. For broadside incidence only the odd modes contribute to the response. Hence,
there should be no difference in the solutions using the n = 1 mode and the solution using the n = 1 and 2

modes. However, if we were to expand the vertical axis of each plot, we could observe the peak of the third
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resonance in the solution using modes n = 1,2, and 3.

Having presented a variety of results illustrating the E-polarized backscattering dyadic, we can now
focus our attention on the results depicting the H-polarized backscattering dyadic Abhh' These results are
shown in figs. B.9 through B.16. Figures B.9 through B.12 contain solutions of ]\bhh for 6. = 45°, and
figs. B.12 through B.16 show Abhh for 6;,. = 90°. .

Illustrated in fig. B.9 are the class-1 solutions of Abhh for 8, = 45°. By inspecting the upper plot,
one observes that the low frequency agreement of the SEM solutions with the reference solution diminish
with decreasing power p of the modified pole series. Both the p = 2 and p = 3 solution provide good results
at low frequencies. The p = 2 solution gives good results in this region because the form of the solution

is proportional to s2

. The p = 3 solution does well at low frequencies primarily because it contains the
polarizability term. As we have seen in the previous results, the polarizability term accurately describes the

low frequency behavior of the backscattering dyadic.

In the resonance region, all of the modified pole series do well. Of particular interest is the p = 3
solution. Unlike the class-1, p = 3 solutions of ]&b", the class-1, p = 3 solution shown in fig. B.9 agrees
nicely with the reference solution in the resonance region. Note that the class-1 polarizability term increases
with the square of frequency. In the discussion of the results for E-wave backscattering, we suggested that
this solution adversely influences the p = 3 solution. However, for H-wave backscattering, the s? behavior
of the polarizability term actually improves the p = 3 solution in the frequency range of interest. Without
the inclusion of the pﬁlarizability term, the convergence of the this solution would be poor at both low and
resonant frequencies. At higher resonant frequencies, the p = 3 solution does become dominated by the

polarizability term. As a result, the solution diverges from the desired result.

Additional results illustrating the performance of the p = 3 solution are shown in fig. B.10. These
results were constructed by varying the number of mode contributions. Three different p = 3 solutions were
obtained by using 2, 3, and 4 modes. The solution obtained using 2 modes implies that the poles belonging
to modes n = 0 and n = 1 were used to construct the solution..Recall that the pole at s = 0 of the zeroth
mode was excluded from the calculations. Similarly, the solution using 3 modes indicates that the poles

belonging to modes n = 0, 1, and 2 were used in computing the solution.

In fig. B.10, one observes that all three p = 3 solutions converge to the reference solution at low
frequencies. In the resonance region, the solutions vary depending on the number of modes that were used.
For example, the result using 2 modes captures the first resonant peak and then diverges from the reference
solution. Similarly, the result using 3 modes captures the first and second resonances. As we' observed in
the results of Abec’ these results also indicate that the nth mode is related to the nth resonant peak. This

relationship suggests that by altering the number of modes in the solution, we can spatially filter the response

55



of the backscattered field.

The class-2 results of Abhh for 6;;,. = 45° are shown in figs. B.11 and B.12. When comparing the
results in fig. B.11 with the class-1 results of fig. B.9, some interesting observations can be made. Perhaps
the most interesting aspect is that the class-1 results seem to be be better than their class-2 companions.
Normally, we expect the class-2 results to be better than the class-1 results. The convergence of both the
class-1 and class-2 forms of the p = 3 solution are comparable at low frequencies. However, the class-1, p = 2
solution actually converges to better to the reference solution than the class-2, p = 2 solution. The same
can be said for the class-1, p = 1 result. One explanation for these results may be the exclusion of the pole
at s = 0. Although not shown here, results were obtained for the class-2, p = 1 form of Abhh that included
the pole at the origin. These results showed that including the pole at s = 0 significantly improved the
convergence of the p = 1 solution. As noted earlier, evaluating the p = 2 and p = 3 forms of Abhh at the pole
at s = 0 yields an indeterminate expression. Including the pole at s = 0 in the p = 0 solution yields zero for

that term in the summation. Hence, including the pole at the origin has no effect on the p = 0 result.

Like fig. B.10, the results shown in fig. B.12 provide additional insight into the class-2, p = 3 form
of the modified pole series through variation of the modal content. By. comparing the class-1 solutions of fig.
B.10 with the class-2 solutions, we observe that the solutions are very similar. Both the class-1 and class-2
solutions using two modes are nearly identical. However, the class-2 solutions using 3 and 4 modes do not
converge as well to the reference solution as do their class-1 counterparts. The difference in performance of

these solutions may in part be attributed to the difference in the class-1 and class-2 polarizability terms.

The last set of results depict Abhh for an incident angle of 6;;,. = 90°. In this orientation, the
incident and scattered fields are sweeping across the diameter of the loop. In order for the SEM solutions
to be accurate, the coupling coefficients involved must be capable of contributing early-time information.
The inability of the class-1 solution to contribute this information -can be seen in fig. B.13. Nearly all of
the SEM solutions shown in fig. B.13 perform poorly, particularly the p = 0 and p = 1 solutions. The
class-1, p = 3 solution does well at low frequencies, but this performance i1s primarily due to the inclusion
of the polarizability term. In the resonance region, the p = 3 solution converges fairl}; well to the reference
solution up through the second resonant peak. Beyond this peak, the p = 3 solution quickly diverges from
the reference solution. This behavior of the p = 3 solution can also be seen in fig. B.14. Up through the first
resonant peak, all three of the p = 3 solutions converge well to the reference solution. Beyond this peak, the

various solutions rapidly diverge from the desired result. Nevertheless, the difference in the modal content

of the solutions is apparent.

When the class-2 form of the modified pole series is used to compute Abhh for 6;,. = 90°, a significant
improvement in performance occurs. The solutions shown in fig. B.15 provides evidence of this amelioration.

By inspecting fig. B.15, one observes that the convergence of the SEM solutions improves as the power of
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the pole series is increased. The class-2, p = 3 solution appears to be the superior SEM solution in both
the low frequency and resonance regions. Furthermore, there appears to be no distinguishable difference in
the p =1 and p = 2 solutions in the resonance region. However, as noted earlier, the p = 1 solution can be

improved if the pole at s = 0 were included in the pole series.

In similar fashion to figs. B.12 and B.14, fig. B.16 shows several class-2, p = 3 solutions in which the
number of contributing modes has been varied. Regardless of the number of modes used, the low frequency
agreement of all three solutions remains unchanged. This same result has been observed in all of the previous
results. Hence, it appears that the modal content of the p = 3 solution does not affect the convergence of
the solution in the low frequency region. In this region, the polarizability term dominates the p = 3 solution.
This should be obvious from the results since, at low frequencies, the p = 3 solution not only converges
to the reference solution, but also to the polarizability term. Only in the resonance region do we see the
effects of changing the modal content of the solution. Furthermore, as the results in fig. B.16 show, there
is a relationship between the nth mode and the nth resonant peak. For example, the p = 3 solution using
three modes utilizes the poles belonging to modes n = 0, 1, and 2. As a result, this p = 3 solution captures

the first two resonant peaks of the reference solution and then di\'rerges.

Comparing the various figures here, several things can be observed. At low frequencies, the reference
solution agrees very well with the polarizability term, better than in the ca.sé of the thin-wire. This indicates
that, at least in this region, the solution technique involving analytic modes is more accurate. We also
observe that the class-1 results are generally better for §;,. = 0°, consistent with (B.63). The comparison of
class-1 to class-2 forms is more difficult due to the aforementioned problem with the pole at s = sg g = 0, as
it influences the class-2 results. To do this properly, one should consider appropriate asymptotics near s = 0.
One can let sg g # 0 by changing the problem to another passive one by letting there be some resistance
uniformly distributed around the loop with so,Ozresistance/inductance. Then from (B.56), we see one power
of 59 ¢ in Wp ¢. This removes the pole for p = 0 in the limit s g — 0. For p = 1, it can even cancel the sq o
in (s, 30,0)1, leaving an evaluatable expression. Including resistance modifies (B.40) for Gg(s) so that Rq o
in (B.55) is well behaved. For p = 2, 3 inclusion of a pole at s = 0 in the class-2 form blows up as sg o — 0.
A more detailed evaluation of this phenomena (and especially in the context of more general conducting

scatterers per eigenimpedance-synthesis formulae in [7] might improve the handling of the class-2 form.
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Figure B.3. Magnitude of the backscattering dyadic from a thin circular loop due to an E-polarized plane
wave incident from 6i,c = 45°, calculated using the class-1 SEM modified pole series (p=0,1,2,3). The
reference solution is provided for comparison.
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Figure B.4. Magnitude of the backscattering dyadic from a thin circular loop due to an E-polarized plane
wave incident from 8. = 45°, calculated using the p=3, class-1 SEM representation. The SEM solutions
were obtained using 1, 2, and 3 modes.
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Figure B.5. Magnitude of the backscattering dya.&ic from a thin circular loop due to an E-polarized plane
wave incident from finc = 45°, calculated using the class-2 SEM modified pole series (p=0,1,2,3). The
reference solution is provided for comparison.
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Figure B.6. Magnitude of the backscattering dyadic from a thin circular loop due to an E-polarized plane
wave incident from 6;,c = 45°, calculated using the p=3, class-2 SEM representation. The SEM solutions
were obtained using 1, 2, and 3 modes.
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Figure B.7. Magnitude of the backscattering dyadic from a thin circular loop due to an E-polarized (or
equivalently H-polarized) plane wave incident from 6;,c = 0°, calculated using the SEM modified pole series
(p=0,1,2,3) (class-1 = class-2). The reference solution is provided for comparison.
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Figure B.8. Magnitude of the backscattering dyadic from a thin circular loop due to an E-polarized (or
equivalently H-polarized) plane wave incident from inc = 0°, calculated using the p=3 SEM representation
(class-1 = class-2). The SEM solutions were obtained using 1, 2, and 3 modes.
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Figure B.9. Magnitude of the backscattering dyadic from a thin circular loop due to an H-polarized plane
wave incident from 6;;c = 45°, calculated using the class-1 SEM modified pole series (p=0,1,2,3). The

reference solution is provided for comparison. )

64



10 F T Reference Solution 3

Polarizability
Term

TTTIT

2 modes

18 1 T T

T T T T T T

Reference Solution

-
\*]
T

3 modes

2 modes

1 1 1 1 1
0] 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure B.10. Magnitude of the backscattering dyadic from a thin circular loop due to an H-polarized plane
wave incident from ;,c = 45°, calculated using the p=3, class-1 SEM representation. The SEM solutions
were obtained using 2, 3, and 4 modes.
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Figure B.11. Magnitude of the backscattering dyadic from a thin circular loop due to an H-polarized plane
wave incident from 6jnc = 45°, calculated using the class-2 SEM modified pole series (p=0,1,2,3). The
_ reference solution is provided for comparison.
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Figure B.12. Magnitude of the backscattering dyadic from a thin circular loop due to an H-polarized plane
wave incident from 6i,c = 45°, calculated using the p=3, class-2 SEM representation. The SEM solutions
were obtained using 2, 3, and 4 modes.
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Figure B.14. Magnitude of the backscattering dyadic from a thin circular loop due to an H-polarized plane
wave incident from 65 = 90°, calculated using the p=3, class-1 SEM representation. The SEM solutions
were obtained using 2, 3, and 4 modes.
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wave incident from ;5. = 90°, calculated using the class-2 SEM modified pole series (p=0,1,2,3). The
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Figure B.16. Magnitude of the backscattering dyadic from a thin circular loop due to an H-polarized plane
wave incident from 6;,c = 90°, calculated using the p=3, class-2 SEM representation. The SEM solutions
were obtained using 2, 3, and 4 modes.
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———— Reference Solution
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