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Abstract

In this note we examine the natural system modes (characteristic frequencies and currents) of two
coupled bodies in the limit of large separation. It is known that when objects are situated such that they
may interact electromagnetically, natural modes of the coupled system occur. These modes differ from
the natural modes of the isolated bodies, but may be related to the isolated body modes for some
situations. For example, for two identical bodies separated by some intermediate distance, the first
antisymmetric and symmetric system frequencies spiral around the dominant natural frequency of the
isolated body as separation is varied. As separation further increases, these system resonances tend
towards the origin in the complex frequency plane, rather than approaching the isolated-body dominant
natural frequency. Here we treat an N-body scattering problem in the limit of large separation by
replacing the bodies with equivalent dipole moments. The natural frequencies are obtained as singular
points in the scattering solution. For the special case of two coupled objects, a simple equation for the
natural system frequencies is obtained which shows that the real radian system frequency approaches the
origin as 1/r, independent of the relative orientation and type of the two bodies. The damping
coefficient approaches the origin approximately logarithmically, as a function of the body orientation and
type. This simple equation leads to classification and ordering of some system modes based on their
behavior in the limit of large separation. Using this formulation, the natural system modes of two
coupled wires are investigated for large separation between the wires, and compared to an integral
equation solution. For completeness, results from the integral equation solution of the two-wire problem
are provided for small wire separation, to show the evolution of the modes obtained from the asymptotic
formulation beyond its range of validity.
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I. Introduction

The electromagnetic response of coupled bodies is of interest in many applications, including
target detection and identification. In this note we consider the frequency (s-plane) behavior of the system
resonances of coupled objects in the limit of large separation.

In an early paper relating to the singularity expansion method (SEM) it was observed that the
SEM frequencies of an isolated thin wire scatterer can be grouped in layers in the s-plane nearly parallel
to the jw axis [1]. These resonances are further identified by their position within these layers. This

observation naturally leads to the notation for the complex frequencies .5‘,'3, 1., Where nn denotes the nth

pole as measured from the Re(s) axis in the Ith layer, measured from the je axis. Similar groupings
can be identified for other objects, but to illustrate the effect considered here the situation for thin wires
will be described.

Shortly after the above observations were made concerning isolated wires, the natural system
frequencies of coupled wires were studied. It was found that these system resonances exhibited some
interesting characteristics as wire separation was varied [2]. To simplify the discussion, consider two

identical wires, for which the system resonances can be divided into symmetric ( 8, ;) and antisymmetric
{3, ;) modes {14]. As observed in [2] for two thin wire scatterers, the low-order system resonances

(317) tended to spiral around the dominant isolated body resonance (Sf'l) as spacing between the
objects was varied over some intermediate distance. As separation was further increased, the system
resonances moved off towards the origin in the complex frequency plane, and other system modes from

another layer moved in to take their place, again spiraling around s, ,. Subsequent to [2], other papers
further considered coupled wire scatterers [3]-[4].

The fact that the system frequencies eventually tended towards the origin as spacing is increased
beyond some intermediate distance, rather than tending towards the isolated body resonances, was
discussed in [2], and explained from a time-domain perspective in [5]. It was observed that the SEM
system modes are global quantities for the coupled body system, and have no clear physical interpretation
prior to times when global modes can be established. Hence, in a two-body system the time period after
which the scattered field from each body has interacted with the other body is designated as late time.
During late time, the two objects interact electromagnetically, and global system modes are established.
As spacing between the objects becomes large relative to the largest linear dimension of each body, the
system resonances tend towards low frequencies since the time for a wave to travel between the two
bodies becomes long. Eventually the spacing tends towards infinity, and the system resonances tend
toward zero.

Since the resonances of a coupled system are rigorously obtained from a complicated (usually
integral) system of equations, simple approximate formulas which describe the system resonance behavior
as a function of body separation are of interest. For intermediate separations, perturbation formulas have
been obtained which relate the natural system frequencies to the natural frequencies of the isolated bodies.
Two related classes of perturbation solution have been obtained, both based upon the exact integral-
operator description of the coupled system. The first method yields a quasi-analytic formula for the
system frequencies of an object and a mirror object, separated by some intermediate distance. The
resulting formula involves a numerically computed coefficient which only depends upon the isolated
object’s characteristics, multiplied by an exponential term which is a function of the separation between
the objects [6]. The second method is more numerical in nature, yet represents a considerable
simplification of the exact 1Es and is applicable to a more general system of coupled bodies [7]. The
formulation described in [7] was subsequently applied to a variety of coupled objects [5), [B]-[9].

In this note, we present a scaitering formulation for N coupled objects valid in the limit of large
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separation between all objects. The system of scatterers are replaced by interacting dipole moments,
which is a suitable approximation for large separations (which lead to low system frequencies). A simpler
formulation is provided for two objects coupled in a mirror symmetric configuration. Singularities of
the scattering solution are identified as natural frequencies, leading to the characteristic equation for
natural frequencies of the coupled system. The example of two coupled wires is considered to
demonstrate the accuracy of the asymptotic method, where the natural system frequencies from the
asymptotic formulation are compared to those generated from a full-wave integral equation solution. The
system modes are classified according to their behavior for large separation between the bodies, and some
results for the natural currents are provided to examine their behavior in the corresponding limit.

II. Preliminary Relations

Consider Maxwell's curl equations for free space in the two-sided Laplace transform domain

VxE(Z,8) =-sB(Z,8) -F"(Z, 8)

(1)
VxH(P, 8) =8D(F,8) +T (7, 5) .
The relationships between fields and currents are given in terms of four Green’s dyadics as [10]
E(2,8) =-8po (G, . (2|2, 9 ;: T°(£, 5))
+G, o (Z|2!, 9) ; TT(E, )
(2)

—

H(Z, 9) =-5¢€,(G, ,(Z|T/, 8) ;T (2, 8))
+{Gp, (E[2),8) : T2, 8))

where the bracket notation indicates a rea! inner product with integration over common spatial coordinates
(typically volume or surface integration). The Green’s dyadics are

G, 217, 8) =PV [I-y2VV]G(2|Z, 8) + y2L(F) 8(F-7) (3)
G, (212, 8) =-V6(Z]Z/, 8) x 1 (4)

Gy o (Z]E7, 3) =-G",_m(f‘|f", 8) (5)

G, n( B2, 8) =G, (7|2, 3) (6)

-£
where G(Z|Z/, 5) =ﬁ? is the free-space scaler Green’s function, with ¥

c=(€yR,) /2, and R=|F-2/|. The first term in (3) can be written as

oln
Faai
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+ - £ - - = T - - - T T7
[T-v2VV]G(2|2/, 8 = L7 {[-287 - 28 2] T+ [E2 + 22+ [ I -TeLq)} .

- XEZ 13T, T, - TJE 2 ) +[TT,- 187

- — 7/ o e e e , )
where 1,.= f—f and 1=1,1,+1 yly* 1,1, is the identity dyadic. For later convenience, define

RERE
- 8)
- ! e ¥R S 1 S.Zo -z = Szp.o (
F, (2|2, 8) = = {[31R1R 1](EDR3+ =7 *[1plge-1] =
with Z, =,‘ % , such that the &, , term can be expressed as
o]
&, o(E|Z!, 8) =PV—1_F, (Z|2',8) +y2L(H) 8(Z-1). (5)
5%p,

The magnetic Green’s dyadic, 5,, o Can be expressed as

- - e'TR 1 5 |= -
Gy, m (E|E/,8) =-VE(Z|2/, 8)x 1= [?““155 Tpx1 (10} .
where upon defining for later convenience
7 e YR Si, S%M,
Py u(E|2, 5) = 20 [ by, 20 (11)
the magnetic Green’s dyadic can be written as
&, (212, 8 = St F, (F|27,8) Tpxi. (12)
0

In (3), the PV notation indicates that the corresponding term shouid be integrated in the principal value
sense [10], where

d 13
= G 9 (13)
S

I =

is the depolarizing dyadic integral, evaluated over the surface Sy of the exclusion volume V; excluded
in the PV integration. In (13), 1,/(2|2/) =-T (F|2’) =I,(Z/|F).and 14(F) is the unit normal
vector to S at ¥. Note that the & e,e} terms are properly interpreted as distributions.
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. . Scattering formulation

Consider 2 N-body scattering problem which can be analyzed by formulating a coupled set of
integral equations for the current (surface or volume polarization) induced on/in the objects by an incident
field. When the separation between all objects becomes large compared to the largest linear dimension
of each object, and in the limit of low frequency, the formulation can be considerably simplified by
replacing each object with equivalent dipole moments. This follows from the fact that the electric and
magnetic dipole moment terms dominant the fields due to 2 given current (as in a multipole expansion
of the current) for large distances and low frequencies [12]. To formulate the desired set of equations,
the scatterers, which are assumed to reside in free space, are replaced with dipole moments 5P, &P
for =1,2, ..., N comresponding to object 1,2,...N, respectively, as shown in Fig. 1. The dipoles
are considered to be generated by fields via polarizability dyadics as

PP (5) =€, 5% (8)-E(Zy, 5)
{14)
@ (g) =P () -H(F,, 9)

where the fields (E, #) are the total fields due to all dipoles not located at fp, plus any externally
impressed field. The polarizability dyadics are symmetrical for reciprocal media,

BT (g) =B (g)

(15)
MP® T (g) =H'P ()
. and as 5—0 [12]
B (g) =B +0(s)
(16)
M (g) =i +0(s) .
The currents associated with the dipole moments are
T =sp 3 (7- 1)
(17)

TP =g @ 5 (F-5p) .

Inserting (17) into (2) leads to the fields at ¥, maintained by electric and magnetic dipoles located at fp
as

EtP (7  5) =Fy (|75, 8) B () +F, , (F,] %}, &) (i&.p xi).ﬁf(ﬂ) (<)

"(Erp) — 1 = =y = - .

H T2, 8) = =1 Fo n( Lo | L5 8) (I, ,x1) B (8) +eu By o (By| 2y, ) -8 (8)
(18)

where




- - e—YR.,p - - _t-o 1 SZD — - _» .9'2|J.0 .
F,,,(fulf,,,s)-—-—‘m {[31&"1,?” 1]( + ]+[1,.t."n1,q‘.|l 1]

eoR:.ﬁ R:,I! Ra,p

Yo (p,8 W92
e 0 0

F f f , 8) = +
e.n(Ze|Zp. ) 4n {Rf.ﬂ R.,.BC}

{19)

with i'R-'. = -lif}‘%;ﬁ being the unit vector from ¥y to F,. and R, o=|f, ~Tp|. The total field

at I, due to N-1 dipoles located at 7'y , P=1,2,...N, Pra is
N

E(Z,.9) =B: E=P (£, s)
=1
L™

(20)

N

H,,s) =Ej =Pz, s).
=1

Considering the scatterers to be as shown in Fig. 1, a coupled system of equations for the induced
dipole moments can be written down as

p‘ {a) (8} =€, ﬁutah .

N
Etine) (2, 5) E: AR (f,,s)] @
=1

= a) 0| g taner (= ~N (21)
A (g) =i |H (r,,:S)*l-?:H (ZF,,9)

=1

e

e=1,2,...,N

where the fields (£ 47}, 7<)y are externally impressed fields. Defining

FloaP=F (£, 2

(22)
F;fjﬁp)EFe,m(falfbfs) =Fo,m(fﬂlfa' )

the set of equations (21) can be written as




. Fig. 1. Configuration of N interacting dipcles.

x
B (5) _eogo(l). [F-:'I: L} .5(5) .,.F.{:;F) (I&'xi) .l&i(p)]=E°§°(¢).§{inc) (2., 8)
=1

L]

=]
L

a=1,2,...,N
(23)

It is convenient to write the above in block dyadic form




T, G (g) BV ... GV (] [P ] [FY (s .
D () 1, G5 (s) .. GET (9] [ (s B2 (s) (24)
(3 Y (s) 2(322) (s) .izr.a c e 2(:2N’ (s) |~ 32(;:’1) (s)| = Fz(:'l) (s)
-52(;:\;,1) (3) (N 2) (8) Dz(:vz.ﬁl) (&) izxz ] -32(:? (S)J thﬂ) (S)J
where
e B FD e AP B (T, xT)
OB (8 =l 1 _ap miw. - e (@) . 2 (a,P) (25)
o o, &), -_— - ’
-'_Fe.m MD (1R‘,pxj') eu% F.,.
Ho
PO, .t pie) , & (inc)
Loz ®|e of aixl S) = = (&) ¢ Faxa VS =tad, 7 (ine)
01 m'* (g) M;%-H (L., 3)

Providing that the left-hand dyadic matrix is non-singular, {24) can be inverted to yield

-1

(3R] [ T G52 (s GEP(s) ... G707 [FR s
aztff (8) ﬁztfz'l) (3) i.zxz 52(:2'3) (s) ... 5;:2'”) (5) ﬁz(::? (s) (273 .
52‘31’ (5} = 52(32'1) (s) 62(:2'2) (s) izr.a .- 52tjim (s) ) Fz(::z (s)
az(N) (5) Q(N,l) (5) 5(1\1’,2) ) 5(1\'.3) (8) I F-‘(N! {s)
] 2% 2 %2 2x2 2x2 ] [ £2x1 ]

Equation (27) provides a formal solution to the scattering problem for configurations and frequencies such
that the dipole moment approximation is valid. Scattered fields are obtained by substituting (27) into
(20).

Each dvadic block, with the exception of the identity blocks, is a function of complex frequency
s. In this note we are primarily interested in determining the natural frequencies such that the lefi-hand
block-dyadic matrix is singular. At a natural frequency,

- - " - .
Loxa a2 e GuP (e ... GV (9
SxV s I, GEY (e ... O (9
: s = 28
det |G (s) 52(222) (5) 1, + e 92(:2 ¥ (g)|=0 (28)
_52(,1(21) (S) Qm.z) (s) tai\g‘.’-) (3) iz;:z

which forms the fundamental characteristic equation for natural system frequencies of N interacting .
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objects in the large separation, low frequency regime.
For the special case of two interacting dipoles,

> (1,2) -1 {1)
32(:1) (3) B 1oz 2:2 (s) ) Fg::_ {(3) (29)
az(m (5) 52232'1) (8) i2x2 F-;:l) (=)
where [13]
iz:d Q(I 2) =l:— w2 ‘?.212] (30)
Qz(:z Y 1oz Coa Daa
with

- _B,2) -1 52,1171
Az [izn 2vz " L2xa” P22 ]

(1,2, (z,1) 21,2),7-1
Bzu [lzxz_szz 12:2 szz ] “Poxz " lake
= .ail.2)
=-Aya L2z (31)
2y (2,1 (1,2)
Dyva= [ 2x2 Qz:a )'lzxz inz ]
= _I7 s(2,1),5-1 {1,2) {2,1). ¥-1
éz:a‘ _[lzn_ 2x2  Laxa” Q ] -0, 2x2 12x2
Q(z 1) .
For two interacting dipoles, (28} becomes
Toe Oo™
— by 2,1),3-1 {(1,2)
det|. . ., _det[lzx'z]det[ Toa =G0 ™ Lo Ol ]
2%2 Ire (32)

-detr2x2 Qz(z /1), Q‘l z)] =0

V. Characteristic equation for thin wires

At this point it is instructive to examine a special case of (32). Consider two non-identical objects
with 2 =j#%2) =G - In this case the two non-trivial block-dyadics are




_e D), 5le.B) /
o -— -
0] 0]
leading to
det[l-e3 B P&V BN -FE]=0 . (34)

As an example, consider thin, perfectly conducting wires oriented along the « -direction, for
which B,=P,1,T, and the magnetic polarizability dyadic is negligible. A prolate spheroid model of
a wire, with semi-major axis L/2 and semi-minor axis a, results in [14]

-1
2]1/2

oo (2 3T e

=4 LV Ly 4T a._
37:(2) [1n(a) 1] as T 0.

Ay
| —r

1
T e

Now, consider three different orientations of the wires. For simplicity, in each case the wires will be

located at f% =x0Ix+yDIy:|: %Iz, such that F‘jféll =§‘J‘1‘;2} .

Case a. parallel wires:

Consider the wires to be oriented parallel to the x-axis of Fig. 1., such that 5%’ =1 T e

with PO(“) defined by (35). The governing equation (34} becomes

det [i -Eg ﬁo(z) _f-‘(’ze,l) . 1"50(1) .ﬁ;'l',z)

- 2312 (36)
=1-e2p® p/'|| & '”.'] 1, %08, KoS =0 .
an rle, r?2 r
Making the substitution I' =y r, yields
3
e T +T+T2)=s L 4T (37)

/2 BT

which is the characteristic equation for the natural system frequencies of two non-identical, parallel wires
in the large-separation limit. The solution of {(37) for the special case of two identical wires will be
considered in Sec. VIl and in the appendix. If we further assume the same length-to-radius ratio for both
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wires, LY /a1 =1, ) /a @) =1, then Pd™? =K[L -2 with K= 363[1:1 (L) ~1]7, (37)can

.be written more directly in terms of the three parameters r, L (1}, L (2) 35

3 3
- - r |z r 17 4w
v erern = 25 ) (25T 42 (38)

Case b. collinear wires:

Consider two collinear wires aligned parallel to the z-axis of Fig. 1, such that Po“” = i',i', PD'“]

with PO(“) defined by (35). The governing characteristic equation (34) becomes

o2 3(2),58(02,1), 501} .5(1.2)
det [T - B/ F 2" BV -FLP]

ez 1 75 2 (39)
2 5 (2) (1} e a
=1-e3 P2 P + =0
1-€y Py o [( oy )[r3€0 rz)
resulting in
- ri’a2mn
eT@+ly=x — = {40}

VP P

which is the characteristic equation for the natural system frequencies of two non-identical, collinear wires
in the large-separation limit. The solution of (40) for the special case of two identical wires will be

considered in the appendix. For L2’ /a V) =L @ /5 ) =L, such that B, **?’ =K [L -2 withk
as defined previously, (40} can be written as

3 3
T - r |z r |z 27,
e (l+1")—:t[Lm) (L‘l)) = - (41)

Case c. perpendicularly-oriented wires:

To analyze two wires oriented perpendicularly to each other, one may take, for instance,
BV =T 7 _pf* and B® =T_T, P/* . The characteristic equation (34) becomes

det[l-e3 B FEY. B -F2 | =det]1-5]=1 (42)
so that no frequency exists to yield a singular matrix.

V. Scattering from a dipole in the presence of a mirror object

In this section we will specialize the preceding formulation to the case of two interacting dipoles
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which are mirror images of each other, as shown in Fig. 2. For simplicity, each dipole is located at .
x=y=0, so that dipole 1 is located at ¥, =1, r/2, and dipole two is located at T = -1,r/2=R, 7%,
such that T, = I,=-Tp, . where {15] .

0
o{=8B*. (43)
-1

R =

z

o o B
or o

The incident fields can be decomposed into symmetric and antisymmetric parts as [14]
B4 (7, 8) = Z[E™0 (2, 9) £ Ro BT (13, 9 ]
B tinc (2;,9) =%[Ev'(inc) (Z,,5) iﬁz'g {inc) (z,, S)]
(44)
Um0 (7 g) =%[f’f“n" (%, 8) =B, HYU"(Z,, 5)]

B0 (2, 8) =2[F 12 (2,, 9) = Ro A (2, 9)] -

From the above it is easily seen that

/-Er{inc}']:l. {ing)

r/ 2 z
§ L
..................... /;(, X--,--‘..ﬁ -
r/2
iRz'E‘l

Fig. 2. Two mirror-symmetric dipoles, upper sign depicted.
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E’(inc) (fl’ 8) =i§‘.§(inc) (fzrs)
E‘v’(inf') (les) =i_'R“.E-'(iuc) (flis) (25)
Fime) (2, 5) =R F15(7,, s)

F tdnc) (fz' a) =:F§Z,I'{’{inc) (flf g) .

With the relations
=5, (2,|Bp. 8) =F, By (2|2, 8) F,

ﬁﬂ;o
50(4:) =_§x.§°(5) ”’
X ASUES 35 Y ALLES -8 (46)
p-(a) =i§,'§‘“ =¢§‘5’ ._ﬁz
m(c:=;§z.ﬂ(pl=¢ﬁtp).§’ axp
the scattered fields are related by
Bl (7 gy =xf -EB® (24, 5)
(47)

gleP (2, 8) =3zR AP (£, 8) .

With (45)-(47), (23) becomes
B (g) ¥, B -[f‘,‘e-ﬁr-ﬁ‘“ —Fe,m(i'zx.ﬁz)-lﬁm]=eo Bl .gUne (g g) (48)

BV (9) £ 5| 2 F, (T xR} B +eoﬁ.,.-ﬁ,-ﬁ‘”]=f4'o“"f?'”"”’ (Z,,9)
¢}
which can be written in matrix form as
21 5B - -
€ Fy n Fo o {1xR,) B (g)] |€qPst! - B
) I‘ﬁ(l) (B) ﬁ(l).ﬁ(ina)
s}

(49)

Ive, B* P, K,

1 —(1)./ oS " =(1),5 .3
ﬂ:—F,,mMo()'(lsz,) Tieq Myt F, R,
Q

Equation (49) is naturaily decomposed into block dyadic form as

Oop(F) Gpn(8) .[‘5t1: (3)] ) e, B1)-Fine) (g 5o
ﬁmp(s) Qm(s) @ (g) 1\'30‘1’-}?”"”(9)

where

13




oy

- = - ). .
Cpp (8) =1:FEDPO(1 Fae' R .
o (S) =x€,F,  Bi- (fxﬁ )

'O:

1 (51)
np(8) =£—=F,  MS"-(I xR )
Ko

——

Q.rrlm(‘g) Ei:l:EO ‘lz:'i'ltl(:U 'Fc,o.Rz

such that each block is a single dyadic expression rather than a matrix of dyadics as in (24). Providing
that the lefi-hand dyadic matrix is non-singular, (50) can be inverted in the same manner as (29) to yield

[L-,-m (s)] ] 0,p(5) Q"'pm(s) ~1. Eoﬁu‘”‘ﬁfinc’ (s) (52)
m (s) mp(s) omm(s) ﬁotl).ﬁ(.znc) (s)
where
?‘PP b.:pm -17= -{1.: %] (53)
Qmp mm c D
with

(54)

Equation (52) provides a formal solution to the mirror-symmetric scattering problem for configurations
and frequencies such that the dipole moment approximation is valid. As in Sec. III, we are primarily
interested in determining the natural frequencies such that the left-hand dyadic matrix is singular, leading
to

g

det =det |G, |det|&un—Onp' Gop* Fpm] = O (55)

Sop Gom
Crp

which forms the fundamental characteristic equation for natural system frequencies of two interacting
mirror-symmetric objects in the large separation, low frequency regime. In the following section, mirror-
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symmetric configurations of wires and loops will be considered. It should be noted in all of the results
to follow, the upper and lower signs correspond to the symmetric and anti-symmetric modes, respectively.

VL. Characteristic equation for mirror-symmetric wires and loops

Consider a thin, perfectly conducting wire with M =3, Equation (55) reduces to

det[épp] =detﬁ;€0ﬁo‘:1).ﬁ'€".§z] =0 (56)

which can be written in matrix form as

-r
1:{:60%;19”(‘31 +b,) +€y P, (&, +b;) +t€,P,  2a,
a’Yr (57)
det t€yP,, (a; +b,} 1160?.?},}, (a, +b;) t€,P,,2a, =0
et
t€,P,, (a, +b,) €y, (@, +b;) 11:(-:04—‘Ic PHZalj
where

: Z,8 52

a, = ;L +—=— , b= HoS™ (58)
r‘e, r? r

Now consider three different wire orientations.

Case a. parallel wires:

Consider two parallel wires oriented along the x-axis of Fig. 2, suchthat 5/*' =T, T P, with P,
defined by (35). Equation (57) then becomes

2 2
1+e, €~ p 1, %S, KoS =0. (59)
° °| r3e, r? r

With I" =y r as defined before, we get

e'r(1+I‘+I‘2)=q=r;4“ (60)
o

which is the characteristic equation for the natural system frequencies of two identical, parallel wires in

the large-separation limit. Although this is merely a special case of (37) with Pg(:: = Pom = P,, it should
be noted that the mirror-symmetric formulation leading to (60) is simpler than the general scattering
formulation, justifying the usefulness of the separate derivation outlined in this section. The solution of
(37) for the special case of two identical wires, i.e., (60), will be considered in Sec. VII and in the
appendix.
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Case b. collinear wires:

Consider two collinear wires aligned along the z-axis of Fig. 2, such that 5,* =T _T £ Fo With B,
defined by (35). The governing characteristic equation (57) reduces to

P £ 1 2032
2P = =0 (61)
1 :!:Eo 41_: 0[ r3€u r2
which can be written as
3
e'I‘(1+I‘)=:rP2“ (62)

[¢]

which is the characteristic equation for the natural system frequencies of two identical, collinear wires

in the large-separation limit. Note that (62) is merely a special case of (40} with Pom =P0‘1} =P,

although derived under the simpler mirror-symmetric formulation. The solution of (40) for the special
case of two identical wires, i.e., (62), will be considered in the appendix.

Case c. mirror-symmetric wires arbitrary criented in the x-z plane:

Consider one of the wires to lie in the x-z plane in Fig. 2, at an angle O measured from the z-
axis, with the other wire in mirror-symmetric fashion. The polarizability dyadic for this case is

13.0(1) = i.zfi.erO

[I,I,co8?(8)+1,1,cos(8)sin(B) +1,1,cos () 8in(8) +1,1,81in?(8)] P,

—_

lz ZPZZ + 1zlezx+lxlexz + 1X1XPXX

(63)
with P, defined by (35). The relevant characteristic equation (57) then becomes
-¥r -z
1 ieoi—ﬂ P la,+b)) 0 =tg, i‘n: P..2a,
det 0 1 0 =0 (64)
-yr ~¥x
€, Ec‘h: P, (a,+b) 0 1¢e°i—nPHZa1
leading to
3
eT{sin?(8) (1L +I'+I"?) +cos?(B) 2(1 +T)} =3 L 4T (65)

Py

Note that (65) reduces to (62) for 8=0, and to (60) for O=n /2, as expected.
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As another example, consider two parallel thin-wire loops with axes aligned along the z-axis of
. Fig. 2, separated by a distance r, each having loop radius b and wire radius a. The polarizability dyadics
are

XTXT XX yUo¥yoryy (66)

which from (55) leads 1o

-y

1i.=_0"—’Tt P, (a,+b,) 0 0 K}
- Yr
0 lze, i-m P, la,+b) 0 xg, e4ﬂ: F, n2M,,
det 0 0 1 0
0 0 0 i
8] 0 G O
I 0 0 o 0
e ¥r
+€, e e meMpz c
o o
0 0
=0.
@ : 0
1 &
e ¥r
0 17€, = M 23,
(67)
Since the determinant will vanish if any diagonal entry is zero, (67) leads to
3
e'r(j_ -}-I‘-{-I‘Z):ir;‘ﬁ -
PXX
(68)
e T +T+T2) =i&
Py}'
which are essentially the same as (60) with a sign change, and
a
e T +My=zI 2% (69)

XX

which is the similar to (62} with a sign change and P, replaced with M_,. The polarizability terms in
(66) are related by P, =P, = -2M,_, [16], with




M, = -ﬂ’b:"[ln(%b) - 2]". (70)

VII. Numerical resuits

In order to demonstrate the accuracy of the presented formulation, the example of two identical,
thin, perfectly conducting parallel wires separated by a distance r=d is considered, as depicted in the
insert of Fig. 3. The wires are in a mirror-symmetric configuration, which admits pure symmerric and
antisymmetric modes. In all resulis to follow, both wires have L/a=200, and the natural frequencies in
the upper-half s-plane will be considered. For one such wire when isolated, the dominant resonance is

sy,y L

at =-0.0865+]0.9386, computed from a rigorous electric-field integral equation (IE) using a

pulse basis and point matching [17]. Other resonances are available in the literature, e.g. [1].
For the coupled wire configuration described above, the asymptotic formulation (60) becomes

e'l‘(1+r‘+r‘,2)=¢103.1596(§)3 (71)

for L/a=200. The migration of the lowest-order anti-symmetric and symmetric mode as a function of

spacing d/L is shown in Fig.’s, 3 and 4, respectively. The solid line is the solution from the integral

equation [16], the dashed line is from the perturbation solution formulated in [6], while the dotied line
aQ

S1,:L

is the solution of (71). The solid box is the location of the isolated body resonance, It can

be seen that the spiraling behavior is essentially well described by the perturbation solution for
intermediate spacings, and the asymptotic solution agrees very well for larger spacings, as expected.

Fig.’s 5-8 show the radian frequency and damping coefficient for the lowest-order anti-symmetric
and symmetric mode versus spacing d/L. For the modes considered in these figures, the asymptotic
formulation (71) agrees very well with the exact solution for /L > 10. For all of the IE solutions
presented, 20 pulses were used to generate the natural frequencies.

For the results in Fig.’s 3-8, (71) was solved numerically using initial guesses generated from
the approximate solution (A.11) obtained in the appendix, which becomes

5
@) _ s Ly3], ;mm _j4,8,12, ...y (72)
% = ‘:’: d=1n -0.02392m3(—-&) ]+j—é—— m—(z's’ 100 ! )

for L/a=200. A comparison of the approximate solution (72) to the numerical solution of (71), and to
the IE solution is provided in Tables 1-2 for d/L=10, and Tables 3-4 for d/L.=100. The numerical
solution of (71) was generated with a secant-method root search. It can be seen that the agreement
between the numerical solution of (71) and the IE solution is very good, and is nearly perfect for the real
radian frequency for the larger d/L value. This indicates the accuracy of the asymptotic formulation.

Concerning the approximate solution (72), it can be seen that the results are very good for higher-
order modes (larger m values), although not as accurate for lower-order modes. For the real part, this
is expected due to the assumption %}II‘,[ used in obtaining T", in the appendix. For higher-order
modes, m approaches an integer value, thereby making the solution accurate for I'; as well. The last
column of each table shows the actual value of m obtained from the IE solution. With these non-integer
values, (72) would yield natural frequencies closer to the numerical solution of (71).
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14 -5.36+j21.99 -5.28+4j22.41 | 4.28+j22.64 14.41
Table 2. T',, Symmetric modes (d/L=10)

m Approximate Numerical IE soln. Im{T)
soln. (72) soln. of (71) -—ﬁz—

4 -7.87+j6.28 6.93+j7.68 6.79+j7.78 4.95

8 £6.48+j12.57 6.19+j13.37 | -5.86+j13.53 8.61

12 -5.67+j18.85 -5.55+j19.35 | -4.87+j19.57 12.46

16 -5.10+j25.13 -5.04+j25.49 | -3.50+j25.67 16.34

Table 3. T, Antisymmetric modes (d/L =100}

m Approximate Numerical IE soln. In{T[%}
soln. (72) soln. of (71) T

2 -16.16+j3.14 -13.20+j5.47 | -13.08+j5.47 3.48

6 -13.97+79.43 -12.83+j11.10 | -12.71+j1L.10 7.07

10 -12.94+j15.71 -12.39+j16.93 | -12.27+j16.92 10.77

14 -12.27+j21.99 -11.97+j22.92 | -11.83+4j22.92 14.59
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Table 4. T',, Symmetric modes (d/L.=100)

m Approximate Numerical IE soln. Im{Z5}
soln. (72) soln. of (71) _WZ—

4 -14.78+36.28 -13.03 +j8.26 -12.91+j8.26 5.26

8 -13.39+j12.57 -12.62+j13.99 { -12.49+j13.99 8.91

12 -12.56+j1B.85 -12.17+j19.91 -12.054j19.91 12.68

16 -12.00+j25.13 -11.77+j25.95 | -11.63+j25.95 16.52

The use of integer m-values in (72) provides a method for classifying the system modes based
on their behavior for large separations. In Fig. 9, a portion of the trajectories of the modes m=2
through m=38 are shown. Each curve begins at d/L.=100, with d/L decreasing in the direction
shown by the arrow. At these d/L values, the asymptotic formulation and the IE solution yield
virtually identical results. It can be seen that for any given large separation, these modes form a
layer near to the jw axis. As d/L decreases, these modes have the following behavior, as obtained
from the IE solution. Modes m=2,4,10-24,30-38 move upwards and to the left in the s-plane in such
a manner as to form a layer for any given small separation (d/L=1, say). For small separations, this
layer is just to the left of the isolated wire first layer for sufficiently smail spacing, forming a
"secondary layer” [2]. Modes m=46 (antisymmetric) and m=28 (symmetric) become the lowest-order
anti-symmetric and symmetric modes, respectively, for small spacing. These modes spiral about,

then terminate near, sf, ; as d/L—~0, as shown in Fig.’s 3 and 4, and in Fig. 11, which is discussed

below. More specifically, the symmetric mode terminates near s, ,, and the antisymmetric mode
terminates with the real part tending towards zerc. These are the modes which have received the
most attention in the literature [5],[6]. In Fig.’s 3 and 4, these modes were called the lowest order
anti-symmetric and symmetric modes, which is a valid designation only for small spacing. Thus,
mode ordering for coupled wires is spacing dependent.

Modes m=26 (antisymmetric) and m=28 (symmetric) behave in a similar manner to m=6

and m=3_§, but spiral about, then terminate, near Sf,, as d/L -0, as shown in Fig. 10, and together
with m=6 and m=8 in Fig. 11. As with m=6 (the "lowest-order” anti-symmetric mode for small

spacing), the anti-symmetric mode m=26 terminates at Re(s)=0, Im(s) =Im{ Sf z)asd/L—-0.
In a similar manner, modes m=44 (symmetric) and m=46 (antisymmetric) spiral about, then

terminate near, Sy .4 as d/L~0, as shown in Fig. 12, where again the antisymmetric mode m=46

terminates at Re(s)=0, Im(s} =Im{ 310,3) as d/L—~0. Several of the low-valued m-modes are shown
in Fig.’s 13 and 14, where a comparison between the IE_solution and the asymptotic formulation is
made. It can be seen that as m decreases, the asymptotic formulation begins to agree with the IE
solution for smaller d/L. values.

The natural mode current distribution of the first four m-values for symmetric modes are
shown in Fig.’s 15 and 16 for d/L =10, and in Fig.'s 17-18 for d/L =100, obtained {rom the 1E
solution. It can be seen that all of the modes have associated dominant-like current distributions for
large separations (which lead to low system frequencies), as would be expected. As d/L ~oe, the
current becomes nearly real, and identical for each natural mode.

To summarize, the system modes of two parallel-coupled, identical wires, which are
represented by the solution of (60) for large separations, seem to be divided into several categories.
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One group, represented by m=46,8,26,28,44 .46, eic., is such that the modes are located near the
origin for large separations, and move into the s-plane as separation decreases. These modes spiral

about some first layer pole of the isolated wire, s;.,. This has been clearly shown in the literature
for the m=6 and m=8 modes, e.g. [2].[5],[6]. Another group of modes, m=2,4,10-24,30-38, etc.,
are located near the origin for large wire separation, and also move into the s-plane as separation
decreases. Each mode maintains its position in a "layer,” with the layer moving upwards and to the
left as separation decreases. These modes don’t spiral about, but may interact with, an isolated wire
natural frequency, and form what was called a “secondary layer” in [2]. Both sets of modes are well
described by the asymptotic formulation presented here for large d/L values. Other modes also exist,
which begin near the origin for large wire separations, but are more heavily damped than the modes
described by (72). These modes move off into the s-plane as separation diminishes, and remain more
heavily damped, i.e., reside to the left of, both types of modes described by (72). These modes are
generally of less interest due to their heavy damping.
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VI. Conclusion

In this note we have examined the natural sysiem frequencies of coupled bodies in the limit of
large separation between all bodies. The general N-body problemn is treated in the limit by replacing
the bodies with equivalent dipole moments and solving the relevant scattering problem. Singular
solutions of the scattering formulation lead to a transcendental equation which may be solved to obtain
the natural system frequencies of the coupled bodies. It has been found for two coupled wires that
the real radian system frequency approaches the origin as 1/r, independent of the relative
orientation and type of the two bodies, and that the damping coefficient approaches the origin
approximately logarithmically, as a function of the body orientation and type. The asymptotic
formulation is applied to the example of two parallel-coupled wires, and a comparison between the
asymptotic formulation and an integral equation sclution is made, indicating the accuracy of the
asymptotic formulation in the appropriate range. For completeness, further results from the IE.
solution of the two-wire problem are provided for small wire separation, to show the evolution of the
modes obtained from the asymptotic formulation beyond its range of validity.
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e T(L+T) =K, %)

3 3
I’en L 2% g coupled loops parallel to

where X, = for two coupled, z-oriented wires, and X, =

Iz EX

the x-z plane. Separating I' into real and imaginary parts as I'=T", + JT'; leads to the two equations

T
tan T, = — A2)
1+T
e 7[(1+T, JoosT, +TisinT = +K,. (A.3)

In Fig. A.1, the left (solid lines) and right (dashed lines) sides of (A.2) are plotted versus normalized
T';. Since T',<0 for passive media, the right-hand side of (A.2) is plotted in Fig. A.1 for several
representative values of I',.. It can easily be seen from the figure that for a given value of T',, an

infinite set of intersections can be found. Since I'= %r =y r, this shows that the imaginary part of

the system resonant frequency (real radian frequency) behaves as 1/r multiplied by a number which
depends upon the specific intersection of the left and right-hand sides of (A.2).

Although (A.2) cannot be solved analytically, some general observations can be made from
Fig. A.L.

(a) For T',=0, Pi=0,{ﬂ,n'=3‘,5",7',...}

(b) For -1<T'<0, I‘izo,{nT-“,n‘=3',5',7',‘. . .},{a—; , 0<a<l, (onevalue)}

(¢) For -2<T',<-1, I‘izo,{nz" ,n*=3‘,5*,7*,...}
(d) For -o<T' <-2, low order T'; =0, {E‘ZE ,m"=2",47,67, .. }

high order T'; ={-I%r-}

where nn; are nonnegative odd integers. In the above, the + and - superscripts denote a number
slightly greater than and less than the given integer, respectively.
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At this point, if one assumes that I, = % for nn an odd integer, (A.3) can be solved to

obtain
* nx (A.4)
I' =ln|x(-1) 2 —| .
r -1 2K,
el
Since I' is real, ¥ (-1) 2 >0 such that the upper sign indicates n=3,7,11, ... while the
lower sign indicates n=1,5,9, .. .. For the case of mirror symmetric objects, the upper sign

corresponds to symmetric modes, and the lower sign to antisymmetric modes. The final expression
for the approximate solution to (A.1) can be written as

r=) 1o

ax ] nn (3,7, 11....]_ (A.5)
2Kz 2 ree

The other equation of interest, (60), which arises from a study of parallel-coupled wires and
parallel-coupled loops, can be written in a general form as
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r3sx

where X, = (or with £,,) for two parallel coupled wires and for coupled loops parallel to the
XX
x-z plane. As before, separating I' into real and imaginary parts leads to
T, (1+2T,
tan T, = (A.7)

1+T +T2-T7

e Tr[(1 4T, 4T -T7)cosT, + (L, +2T,T,) sinT, | = =X, . (A.8)

In Fig. A.2, the left (solid lines) and right (dashed lines) sides of (A.7) are plotted versus normalized
I';, where the right-hand side for two values of I are shown. Although the right side of (A.7) is
more complicated then that of (A.2), it can still be easily seen from the figure that for a given value
of I, an infinite set of infersections can be found, showing that the real radian frequency behaves as
1/r multiplied by a number which depends upon the specific intersection of the left and right-hand
sides of (A.7).

As with (A.2), (A.7) cannot be solved analytically, yet general observations from Fig. A.2
indicate that the high-order resonances for small I',, and the low-order resonances for large I'_,

occur approximately at T', = % where m is a even integer. If we assume I'; = %, m=24.6,...,

10

:

\‘J-lllsllll

G/ (rm/2)

Fig. A2, Right and left-hand sides of Eq. (A7).
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(A.9)

then (A.8) leads to
. @
2 -

If we can further restrict our attention to high-order resonances for small I, such that mr >|T",[,

2
(A.9) can be solved as
m v
T =Injz(-1)2 mxy 1) (A.10)
2 /K,
a
Since I'_ is real, + (-1) 2>0 such that the upper sign indicates m=4, 8,12, . .. while the lower

sign indicates m=2,6,10, . ... The final expression for the approximate solution to (A.6) can be
written as

e m[[ﬂ)z_l_]+. jmE =[4’ 8, 12,::)_ (A.11)

It should be noted that the solution (A.11} was obtained under more restrictive conditions than {A.5). .
Actually, (A.11) and (A.5) tum out to be quite robust formulas, in that they yield fairly accurate
system frequencies upon specification of the correct value of m. Unfortunately, as can be seen from
the tables, m is not actually an integer, but takes on continuous values somewhat close to the integer
values obtained above. Even with the specified integer values of m, the natural frequencies provided
by (A.11) and (A.5) yield sufficiently accurate numbers to use as initial guesses in a numerical
solution of (A.6) and (A.1), respectively. Perhaps more importantly, the approximate solutions
provide a means of classifying the modes according (approximately) to integer values of m, as
discussed in Sec. VIL.

The reason that the approximate sclutions of the asymptotic equations are qualitatively correct
and helpful for theoretical considerations, and provide reasonable numerical approximations, can be
understood from Fig.s A.1 and A.2, and the form of {A.11) and (A.5). It can be seen from the
figures that regardless of the value I'_, a discrete set of intersections between the right and left-hand

sides of the plotted equations will be obtained. Thus T'; will be accurately described by some
discrete set of values, and from the figures % seems a reasonable choice, with m perhaps nearly

integer values for a wide range of I, values. As for the real part, the logarithmic dependence on m
contributes to the insensitivity of the approximate solution. For (A.11), it would be expected that the

. . .. T . . A
solution becomes more accurate as the condition T>|1"r[ is satisfied, which indeed occurs as can

be seen from the tables in Sec. VII.
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