Pl ? .. Eliminali @05 FProc, 137H

Bip Gav”" s and Techniaal PR R
. - )t v P Vo
' FLr ' I,,,,.,{A, r72 g:.a.i"'(i:! k?#"¢ o A ka L
I:-*" o7 £ Interaction Notes C “’“)i* - -
!" ) e 1 Lr(«((j" \\ K v
g0l 142, Note 535 et
p: 7-17= ! (\,u
4/’ 13 January, 1998 VL ‘

. iqus Ways to Think of the Resolution of the BLT Equation
Vario ' with an LU Technique

Jean-Philippe Parmantier'™), Xavier Ferriéres, Solange Bertuol
ONERA. 8 rue des Vertugadins, 92190 Meudon, FRANCE

and Carl E. Baum

Ag Force Rescarch Laboratory/DEHP, bldg. 909, 3550 Aberdeen Ave., KAFB NM 87117, USA

Abstract

A popet presents different properties of the BLT equation and its generalization to the compacting of
abatects

W the \ame routine used to solve a BLT equation, scattering parameters and equivalent sources can
¢ derived fur any subnetwork. The well-known LU numerical method is used to solve the BLT equation.
fwe graph theory 1t used to analyze the solution. Similarities to Mason's rules, used in electric circuit
Oesry ad sutomatism, are mentioned pointing out the specificity of the BLT equation. The paper also
#wasBaies that the LU process is equivalent to a junction-to-junction subnetwork compacting.

P sparse structure of this equation allows several computation improvements, providing significant
&Ju%cm of memory requirement and calculation time. Due to its particular formulation, several block
@alsons can be avoided. Moreover, the junction-to-junction compacting process hidden in the LU

Pees, suggests an intuitive way to label the waves on a network and to reduce the number of fill-in
Wacks created.

0y words
MO\'Ngncuc To
bowacrery T

‘ _P010gy ; Linear Systems ; LU Technique ; Sparse Matrices ; Networks ; Scattering
fansmssion Lines ; Electromagnetic Compatibility ; Electromagnetic Coupling

® Carren
ey tly on exchange assignment at Air Force Research Laboratory/DEHP, bldg. 909, 3550

e o 3(‘]‘:\ 3::2?:(;\151\}41 87117, USA. This work has been made possible thanks to the Prospective




Interaction Notes
Note 535

13 January, 1998

Various Ways to Think of the Resolution of the BLT Equation
with an LU Technique

Jean-Philippe Parmantier'*’, Xavier Ferriéres, Solange Bertuol
ONERA, 8 rue des Vertugadins, 92190 Meudon, FRANCE

and Carl E. Baum
Air Force Research Laboratory/DEHP, bldg. 909, 3550 Aberdeen Ave., KAFB NM 87117, USA

Abstract

This paper presents different properties of the BLT equation and its generalization to the compacting of
subnetworks.

With the same routine used to solve a BLT equation, scattering parameters and equivalent sources can
be dertved for any subnetwork. The well-known LU numerical method is used to solve the BLT equation.
Flow-graph theory it used to analyze the solution. Similarities to Mason's rules, nsed in eleciric circuit
theory and automatism, are mentioned pointing out the specificity of the BLT equation. The paper also
demonstrates that the LU process is equivalent to a junction-to-junction subnetwork compacting.

The sparse structure of this equation allows severai computation improvements, providing significant
reduction of memory requirement and calculation time, Due to its particular formulation, several block
calculations can be avoided. Moreover, the junction-to-junction compacting process hidden in the LU
process, suggests an intuitive way to label the waves on 2 network and to reduce the number of fili-in
blocks created.

Key words :
Electromagnetic Topology ; Linear Systems ; LU Technique ; Sparse Matrices ; Networks ; Scattering
Parameters ; Transmission Lines ; Electromagnetic Compatibility ; Electromagnetic Coupling

* Currently on exchange assignment at Air Force Research Laboratory/DEHP, bldg. 909, 3550
Aberdeen Ave., KAFB NM 87117, USA. This work has been made possible thanks to the Prospective
Burean of DGA and AFOSR.




Intentionally blank




Table of contents

L, LT OQICEION et oo e e et e e Ao e e £ A 4 2 i e < AR e T b s 5
2. Marrix su—ucru:c of the BLT equation........ccvercuee 5
3. Extended application of the BLT eq’uanon subnetwork compacting........... -8
3.1. Recalls on the subnetwork COMPACTING PIOCESS -.ocacvarrririmmececaorsmarane ersssmersse s s s samee e e e sena 2
3.2. Physical significance of generalized scattering parameters........co.uoee. ... 10
3.2.1. Equivalent scattering parameter significance ......cccocmrme 10
3.2.2_Equivelent source wave significance................ SRR

3.3. Appilication to electric circuits and u-ansrmssmn—ime theory w13
3.4. Generalization of the BLT equation to the compacting process .............. 14
3.5, Practical compuiation iMprovements .........ccccvvevecreeen- - 15

4_ Taking into account the sparse BLT matrix structure.............. 16
4.1. Recall of the LU method and its adapration to a sparse matrix ..o 16
4.2. Creation of non-initially nuli-blacks : the fill-in ..ovoeeece e e w17

5. Topological analysis of the LU process... 18
5.1. Physical significance of the LU proccss S 18
5.2. Representing the BLT equation in a graph f'orrn 21
5.2.1. Representing the solution with graphs.... S 21
5.2.2. Attempt to use classical flow-graph calculanon rufes S — 22
5.2.3. Explanation of the fill-in with graph representation............... e e e e e ree s ean s e nn nmmns rmane 24

5.3. The BLT equation as a succession of subnetwork compacting steps Y.

6. Labeling waves on a network .. 27
6.1. Importance of wave Iabcimg - - 27
6.2. Analysis of the fill-in process on clerncntary networks... I 28
6.2_1. Chain-subnetwork...... 28
6.2.2. Branch-subnetwortks ................ 32
6.2.3. Loop subnetworks ..o eeceveemvrecees 33

6.3. Definition of an improved labeling method .............cccc. 33
6.3.1. The chain-path-march rule............... - --33
6.3.2_ Application on branch-networks .................. 34
6.3.5. Application on loop networks....... 36

6.4. Application : calculation time improvements........cccccenene 37
6.4.1. General objectives ......cccccumn 37
6.4.2. Number of tube dependence : chain-networks and branch-networks.... . cocencveriavarcomnnee 37
6.4.3. Example of loop network ....c.ovecivnenne 41

7. Conclusion.... 42
References .... .43




Table of figures

Fig. 2-1 : Fundamental terminology of a topological nerwork... ..........cccoieieiiriiiicin e s s e esvmeeres 6
Fig. 2-2 : Structure of the W, , characteristic matrix of {5] supermatrix for a specific set of waves on f pure
20 REIWOTK e et s e s e eeerereeseesesieroresemnmmasmeesresiateisceesrtiesessnsieseen ntinntn J

Fig. 3-1 : Terminology of compacted subnetworks ...
Fig. 3-2 : Equivalent network leading to the subnemork compacnng formula
Fig. 3-3 : External junction matching applied on figure 3-1 subnetwork............c.ccce i ee

Jor rhe determination of its equivalent scatiering paramerers, SEq........cccoovvrrvvivsimivievecsiinieeeecsscarssssorsen

Fip. 3-4 : Principle of the scattering parameter determination, exciting one port "".......cooeeicivivnreeenen e i2
OF the @QUIVAIERT JUHCHOM ........coviiii e ettt e ohmaeps smer s g s pen e e r e e em e ennne {2
Fig 3-5 : Applicmtion of the general scattering matrix definition to an electric circuit network ................. 13
Fig. 3-6 : Calculation of the Thevenin's equivalent...................... TP -4
generator vecior on an electric CIrcuil SUBREIWOFK............c.c.cccivmviiecram ettt ereee e 14

Fig 4-1: Location of the fill-in and modified blocks in the characteristic matrix of the BLT equation ..... 18
Fig. 5-1 : Labeling of waves and source waves on a Single tube........mveeeeiioneieeiieis e
Fig. 5-2 : Expression of W,(0) as an addition of three wave terms, A+B+C

Fig. 5-3 : Expression of W,(0) after the determination of WifQ)......cooovmeiiiviviniveesniei e e

Fig. 5-4 : Flow-graph representation of the propagation and scattering equations on a fube ................... 2]
Fig. 3-5 : Different paths for the caicularion of Wy(0) with respecr to figure 5-4 graph .........cccocvvun e 21
Fig. 5-6 : Different paths for the calculation of W,(O) on f‘ gure 5-4 graph ................................................ 22
Fig. 5-7 : Two tube ropological network... . werdd
Fig. 5-8 : Graph representation of (5- I]) e cmeares s seneseanarms s one ...._23
Fig. 5-9 : Representation of the I1, charac:ensnc matr:x of ﬁgure 5—7 nemork .................................... .25
Fig. 5-10 : Graph representation of thell, , characieristic matrices of figure 5-9 graph ......................... 25
Fig. 6-1 : Example of linear network with a random labeling ...t 28
Fig. 6-2 : Characteristic matrix of the BLT equation for figure 6-1 network ... 28
Fig. 6-3 : Graph representation of the BLT equation of figure 6-1 ............ eree e ettt e re et a e eraeean 28
Fig. 6-4 : Different reduced graph jor figure 6-1 BLT resolution ...........cocooiimrenviicincis e 29
Fig. 6-6 : New labeling of figure 6-1 network... PRSP 1/
Fig. 6-7 : Characteristic matrix of the BLT equat:on for f igure 6—6 nemrk ............................................... 3!
Fig. 6-8 : Graph representation of the BLT equation of figure 6-6 ... . ¥ |
Fig. 6-9 : Differenr reduced graphs for figure 6-6 BLT resolutfon. ... 34
Fig. 6-10 : Example of a branch-subnetwork with its associated BLT characteristic matrix.............c......... 32
Fig. 6-11 : Optimized labeling on the branch-subnetwork of figure 6-10 and .............cooivviivricrniienn. 32
associated BLT characteristic mairix.. T
Fig. 6-12 : Example of a loop network and :rs assoczated BLTcharacrensac 430 b SRR 33
Fig. 6-13 : Application of the chain-path-march labeling method on figure 2-1 network.................c.ccoveee.

Fig. 6-14 : BLT equation characteristic matrix for figure 6-13 network
Fig. 6-15 : Example of a loop network requiring tatl-path marching and general chain-path marching.... 36
Fig. 6-16 ; Generic eRBQIN-SUBREIWOPK ............oeeeerrttirs e mems e ee e e et s et e et 38
Fig. 6-17 : Generic branch-subnetwork........ SO SROUUR 7. |
Fig. 6-18 : Chain-network configuration : compurauon tlmes for drrecr and sparse LU resolution

compared 1o tube and junction parameter calculation .. S SRR 1
Fig. 6-19 : Chain-network configuration : calculation rzme for dgﬁ"erenr sparse LU rechmques ................. 39
Fig. 6-20 : Chain-network configuration : fill-in per blocks jor 3 labeling methods .................cccivvionne. -39
Fig. 6-21 : Branch-network configuration : computation times for direct and sparse LU resolution

compared to tube and junction parameter CAlCUIIION .......oov v coomurcnimire s s ess e s e rres s b s vt enas oo 40
Fig. 6-22 : Branch-network configuration : calculation time for different sparse LU techniques ............... 40
Fig. 6-23 : Branc-network configuration : fill-in per blocks for 4 labelmg methods ... 40
Table 6-1 : fill-in obtained for figure 6-15 loop network... SOOI - J |
Table 6-2 : calculation times obtained for figure 6-15 loop nemork ........................................................... 41




1. Introduction

In the past ten years, Electromagnetic topology has moved from the status of a theory ([17, [2]) to the
status of an applied technique to predict and control electromagnetic (EM) coupling on large scale systems
({31, [4], {5]). Many efforts have been carried out to demonstrate the power of the method. Most of the
calculations have focused to demonstrate the capabilities of the famous BLT equation ([6], [71, [8], [3]). As
an example, the CRIPTE code, developed at ONERA since 1990, is now widely considered as a reference
in the prediction of EM coupling on large cable networks for Elecromagnetic Compatibility (EMC) and
Electromagnetic Interaction {(EMI) purposes [10]. Of course, many modeis are still missing to improve the
prediction , especially at high frequency. But now, the method is sufficiently mamre to allow considering
numerical ppprovements [11]. With the success of the method, people want to treat more and more
complex theoretical [12] and applied problems [13], and in addition to the comfort of a computer interface,
they require high performance calculations. Even if, with the compacting capability, the method always
provides an efficient way to deal with whatever size of systems, the new perspectives of statistical
calculations and high frequency modeling would soon require computation means larger than a few years
ago, if non-improved numerical techniques keep on being used.

The objective of this paper is to point out the significance and the stucture of the BLT equation in
order to improve the calculation speed and the memory requirement in EM topology problems, Of course,
the straightforward idea will be to use the well-known Gauss LU inversion process [14]. Instead of
considering scalars, 25 usual, the modified algorithm wiil have to operate on blocks [15]. However, the
objective of this paper is not to present 2 new numerical method. In complement to the numerical aspect, it
is considered that the interesting point to emphasize here will be the physical sigrificance hidden under the
LU process and its relation to the subnetwork compacting formalism.

Compared 10 2 direct method, acting on the whole BLT matrix, taking into account the existence of
zero blocks will always lead to improvements. Morcover, depending on the way the waves are fabeled on
the network, the computation time and the memory requirement may vary. So additional optimizations,
based on the physical significance of the LU process, could be obtained by {inding appropriate ways to
label the waves.

2. Matrix structure of the BLT equation

This article is not the place to give an exhaustive description of the theory of quantitative EM
topology; this has been treaied in many references {[1],[2],3),[4]). Nevertheless, 2 quick overview of the
fundamental equations and fundamental terminology could help for a better understanding of our purpose.

From a general point of vicw, a2 topological network is made of tubes connected to each other by
Jjunctions (figure 2-1). A topological network may represent different parts of a system ; an electrical
circuit, the cable wiring, the connections berween constitutive physical volumes. The BLT equation is the
equation describing the whole coupling on 2 topological network. Its compacted form is the following
(BLT1 form, [1]) :

{I-1s]-[T]} [ W] =[S]-[Ws] (2-1)

where :

- [1] is the unit matrix,

- [W(0)] is the unknown supervector of all the outgoing waves at the junction level. On each tube, there
are two waves propagating from each exremity junction. W(0) is the value of the wave at one end of the
tube, according to a given propagation direction. W(0) is a vector itself, which components are the
elementary scalar unknowns propagating on a tube (reason of the so-called supervector),

- [Ws] is the source wave supervector. It contains all the elementary source wave vectors Ws
encountcred on the network. Ws can be seen as an equivalent source wave obtained at the other end of the
tube,




- [T'] is the propagation supermatrix, relating waves at each extremity of the tube. It is made by the
elementary [ matrices of each tube (reason of the so-called "super" matrix),

- [S] is the scartering super matrix, relating incoming and outgoing waves at each junction. It is made
by the elementary scattering parameters of each junction.

Junction

W(

Fig. 2-1 : Fundamental terminology of a topological network

The I matrix is particularly interesting when the tube happens to be a multiconductor transmission line
representing a piece of cable harness with homogeneous cross-section. In the case where no propagarion
has 10 be considered between junctions (connection of volumes for instance), the length of the tube is said
10 be shrunk 1o zero and the T" matrix becomes equal to the unit matrix. The BLT equation is then wrirten
in the so-called BLT2 form [1]. To keep this presentation its generality, we will always consider non-zero
length tubes with non-unit I" matrices.

[I'] and [S] supermatrices have a specific elementary block structure. For both matrices, the allocation
of the non-zero blocks is given by the so-called "characteristic matrices”. Those matrices are defined as a
function of the wave numbers, The presence of a "0" coefficient or a "1" coefficient indicates whether the
bleck is null or not. The structure of the [I"] supermatrix is quite obvious. It is a block diagonal matrix. The
diagonal blocks are equal to the propagation martrix of each tube. So the characteristic matrix of [I'] is
nothing more than the unit matrix.

The structure of the [S] supermatrix, W, , is less obvious. This matrix has to relate the outgoing
waves to the incoming waves at each junction. So the [S] supermatrix is not directly built by introducing
the elementary junction scattering parameter matrices of each junction as diagonal blocks. Those
elementary matrices have to be split with respect to the wave on which they apply. In this case, the use of

the W__ characteristic matrix proves itself to be of great interest. The definition of this matrix is the
following :

- W, =0, if there is no junction J into which the W, wave comes, and the W wave leaves,
- W, =1, if there is a junction J into which the W, wave comes, and the W, wave leaves

Figure 2-2 gives an example of the W, matrix for the set of waves on figure 2-1 network. One will notice
that for a total of 16x16=256 blocks constituting the [S] supermatrix, only 38 blocks are non-zero. We can
say that the matrix is filled at 15 % only. The important point to keep in mind is that the structure of the [S)
matrix would change with a new set of labeled waves, but the number of initially non-zero blocks would
remain the same.




From a compurational point of view, it is obvicus that only the non-zerc blocks have to be stored in
memory, As an example, in the CRIPTE code, the " matrix is siored for each tube but the entre {T7]
supermatrix is never loaded in memory. Identically, for each junction, the § matrix is calculated, and then
each S, non-zero block is stored in a table. The location of the beginning of each non-zero block is
referenced thanks to a data allocation pointer and the knowledge of the W | characteristic matrix.
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Fig. 2-2 : Structure of the W, , characteristic matrix of {S] supermaurix for a specific set of waves on figure
2-1 network

The resolution of the BLT equation is equivalent to the resolution of the following linear equation :

AX=B (2-2)
where :
- A =[I]-[S§][T), the sparse matrix to invert,
- B = [§][Ws], the second member vector of the linear equation,
- X = [W{0)], the vector of the unknown outgoing waves.

Because {T7] is block diagonal, the structure of A is very close to [S] one. The only difference is that it

contains unit blocks on the diagonal. We call [I,, the characteristic matnx of A, or the characteristic
matrix of the BLT equation. We can notice that :

nu_v = [I u.u] + wu.v (2'3)
where I, , represents the unit matrix referred to a W, wave.

If we take the example of the network presented on figure 2-2, the characteristic matrix of the BLT
equation shows that the matrix used for the calculation is filled at 20% of the total number of blocks only.
A direct resolution method like a LU inversion process would require one to load the whole matrix in
memory. Although the individual storage of [I'] and [S] matrices was already made by blocks, this direct
resolution method was however the one used in the CRIPTE code until this time.




3. Extended application of the BLT equation : subnetwork compacting

3.1. Recalls on the subnetwork compacting process

The success of the BLT equation does not come from the fact that it was the first network equation
ever published. Network theory for lumped elements was known since a long time before the publication
of the BLT equation [2]. A long time ago, network theory had been already applied, especially for circuit
networks [16]. These network equations were mainly based on the impedance matrix, Z ,or admittance
matrix, Y, calculations. In the past few years, it has been generalized to Electromagnetic Scattering theory
[17]. However, compared to the classical network methods, the specificity of the BLT equation lies on the
use of scattering matrices which provides two main advantages :

- scattering parameters are always defined, which is not always the case for Z and Y parameters,

- scattering parameters, associated to the propagation matnix, give the BLT equation its generality,
because they allow jts direct application to any kind of network problem. This way, the BLT equation is
perfectly matched for EM topology purpose.

Moreover, an other interest of the BLT equation formalism has also been pointed out in the recent few
years : network compacting ([4], [18]). According to the sub-problem decomposition process on which
EM topology theory is based, this operation deals with ireating a part of network called subnenwork, in an
equivalent form, closely related to a generalized Thevenin's model {16]. The equivalent topological model
is made of two quantities ;

- an equivalent junction, characterized by its scattering parameters, 5,
- a set of equivalent sources applied at each equivalent junction port, characterized by an equivalent

source wave vector, Ws,,

The interest in the compacting lies on the fact that the equivalent junction and its associated equivalent
sources can be used in other networks, with different topologies. This feature opens EM topology to a wide
variety of applications :

- the treatment of any size of problem by decomposing it in subnetworks, allowing calculation on small
computers [9], .

- the treamment of non linear junctions, applying a time domain convolution [19],

- the transformation of a network computation code into a multipie channel numerical network analyzer
(18],

- the modeling of inverse problems such as Electromagnetic Compatibility noise source determination
with an LISN device [20], or the determination of distributed generators on a test wiring [13].

Figure 3-1 presents the terminology of subnetworks. A subnetwork is made of internal junctions.
Tubes connecting two internal junctions are called internal tubes. Tubes connected to external junctions
are called external tubes. The elementary ends of the tubes, at the external junction levels, are called ports
as for classical junctions. The figure shows the associated equivalent network when the equivalent junction
is used. On both networks external tubes 1, 2, 3 and external junctions 1, 2,3 identical. On each of the
external tubes "i", equivalent source wave vectors Ws,_.qi, representing the possible existence of sources
inside the subnetwork, are applied.




Exrernal junction

Sub-nerwork

Internal juncrion _
equivalent source

Internal rube

Sub-network
equivalent junction

Sub-nerwork Iimit External tube

Fig. 3-1 : Termincology of compacted subnerworks

In {18], it has been shown that equivalent scattering parameters could be calculated applying a
topological reduction of any subnetwork of the original configuration, called "network A", in a "rastle"

equivalent network (figure 3-2), involving a "self rube" [2]. W, and W, are the supervector waves
propagating on the equivalent external tube. This tube is characterized by the ' propagation supermarrix,
made by all the elementary propagation matrices of all the external tubes. The same definitions are applied
for Wy and Iy but for internal nebes. S;p is the scattering parameter supermatrix made by all the
elementary scattering parameter matrices of the external junctions. Same definition is applied for §, but

for internal junctions. The elimination of Wy in the rattle nerwork leads to the identification of W, and W,
waves obtained on network A with the ones defined on a network where internal equivalent tubes are

removed, called "network B". So one obtains the derivation of the scattering parameter matrix, S,
equivalent to the subnetwork.

-1
Seq =Stn+Sum ‘rm-(l‘sm.m 'rm) S (3-1)

In (3-1), the only difference with the expression given in [18] is that we do not take into account the
external tubes in the compacting. The fact of including the external tubes in the relation is simply made by

multiplying {3-1), on the right and on the left, by I',.

It is aiso interesting to calculate the equivalent source waves obtained when internal sources Ws;; exist
in the subnetwork, in addition to Ws; and Ws;; source waves on the external tube. Now, the identification
of the two BLT equations for network A and network B gives the value of Ws,; and Ws; .

BLT equation for network A :
1 ~Sin -1 0 Wi S1u - Wsy
_S[],[ 'r] 1 _Su‘n! '].—.u[ . w“ = S!I..[ ‘WSI +Su'ul 'WSHI (3‘2)
=Sy T 0 1=-Syrmr-Tm/ \Wyy SoLe-Ws; +Sy - Wsp
jion_f 0
[ 1 —Sin -1"[] [W:J _ [SI.II 'Wsaqu] 3-3)
S 1 JAwy) TUsg Wy,




The two first equations of (3-2) and (3-3) give a direct identification of Ws; :

Ws. o = Wsy, (3-4)

eqtl

The interesting result of {3-4) is that the compacting does not produce any more wave source term, with
respect to W, propagation direction.

The elimination of Wy, in the third equation of (3-3) gives the expression of Ws :
. - -
Wseq, = Ws; +S8 l ‘(Sn.m “Wsy +Sim 'rm-(l—sm.m 'rm) 'Sm.mJ “Wspy (3-5)

(3-5) shows that the compacting operation produces an additional source wave term which is added to the
original one, Ws;. From a computation point of view, this relation reveals itself to be complicated because
it involves the calculation of the inverse of 5., block matrix. This is the reason why, when demonstrated in
[18], no existing source had been considered on the internal tubes. Generally, as we will see later,
Thevenin's equivalent model, although inveolving two equivalent source waves, is much more simple for
the compacting applications than (3-5) equivalent source expression.

Network A (raitle nerwork)

Sll.[ S[[.m

S!ll.! Sl[[.lﬂ

Network B
I

Fig. 3-2 : Equivalent nerwork leading to the subnenvork compacting formuia

3.2. Physical significance of generalized scattering parameters
3.2.1. Equivalent scattering parameter significance

In the BL.T equation, according to the topological network theory, scattering parameters are referenced
to a normalizing impedance matrix [Zc]. If no propagation is considered in the network (I = I), any value
of [Zc] can be chosen. For instance, the value can be chosen equal to a scalar (typically [Zc] = R_.[I], with
R, = 50 Q). In the particular case where the network is a transmission-line network, [Zc] has to be equal to
the characteristic impedance made by all the characteristic impedance matrices of the fubes connected to
the junction [2]. However, in all the cases, a general definition of the scattering matrix [S] at a junction can
be given without mentioning explicitly a normalizing [Zc] matrix. Indeed, it can be said that a scattering

parameter matrix [S] relates an outgoing wave vector [W'] to an incoming wave vector [W'] ([211, [22]).

[(W]=[S}L[W] (3-6)
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(3-6) is nothing but a matrix generalization of the welil-known reflection coefficient definition. The S,
terms of the [S] matrix will thus be equal to the ratio of the outgoing wave at port "i" to the incoming wave
at port "j", when all the incoming wave at port k] is made equal to 0 :

W
S= \—V!"—( (3-71
L

(3-7) suggests another way to calculate all the scattering parameters on a subnetwork, different from the
one described in section 3.1, and more closely related to a direct BLT formulation. Effectively, all the
incoming waves in the junction can be made equal to zero by loading each tube comnected to the junction
by 2 load which scattering parameters are equal to 0 (matched load). Figure 3-3 gives an example for the
determination of the scatiering parameters of the subnetwork presented on figure 3-1.

Mazched junction

Sub-network
equivalent junction

Fig. 3-3 : External junction matching applied on figure 3-1 subnetwork
Jor the determination of its equivalent scattering parameters, Seq

Figure 3-4 gives another representation of the figure 3-3 equivalent problem, directly derived from
network B representation (figure 3-2). We suppose that the length of the external tubes is taken equal to
zero because we are only interested in what happens at the equivalent junction port level. As figure 3-2,
two waves are defined on the tube :

- W, directed towards the subnerwork equivalent junction, and

- Wy, directed towards the equivalent external junction.

Now, let us suppose that the port "j" is excited by a localized asymmetric source, chosen equal to "1" to
simplify our problem. The source definition depends on the definition of the waves used on the tube. For
example, if the waves are defined as a combination of EM fields, the asymmetric source will be an electric
field. If the waves are defined as a combination of voltages and cumrents, the anti-symmetric source can be
a voltage generator. As seen in section 3.1, this physical source applied on an external tube gives birth to
two source wave vectors, Ws,; and Ws,g; (there is no source on the internal tubes). Because the length of
the tube is zero, the two sowrce waves have the same amplitude and opposite signs. So, on any port "i" of
the equivalent junction, the incoming and outgoing waves are given by :

W = Wi (L) = Wi (0) + Wsgg, | = Wsgg (3-8)
Wi = Wy i (0) = Wy (L) — Wy = Wy (L) + Ws 3-9)

where, Wy, W, Wsy;, Ws; are the i® components of "I" and "II" waves and source waves. It is important
to mention that, even if the length of the tubes involved in this calcnlation is zero, we introduced a generic
length "L". The reader must imagine that L is very smail. This way is convenient to point out the
distinction between the wave values at both ends of the tube when 2 source is applied on it. In our case, for

one given configuration, only the jLh component of these vectors is non-zero. Consequently, the definition
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of the scattering parameters between two ports "j" (injection port) and "i" (reception port) becomes
obvious. Considering whether "

nm

is equal to "j" or not. We can wnte :

L
1

S =Tgs, = WD), forig (3-10)
WiT Ws, + W, . (L
§; =t = — 81 )=1+.wuj(1.) (3-11)
Wsy Wsp '
0
0
Wspy
Wsi=|
< L#0 =50
W,(0)=0 W (L)
— —
s-oo‘___ ——s,,
W (L) Wi(0
—
Wsy=|0
0
-Ws;; Sub-network
’0 equivalent junction

Fig. 3-4 : Principle of the scattering parameter determination, exciting one port "
of the equivalent junction

3.2.2. Equivalent source wave significance

In section 3.1, (3-5) shows that, if there is no external source wave, only 2 Ws,, source wave is created
in the compacting process. Meanwhile, no source wave Ws_, is created in the opposite direction. We also
mentioned that this relation is not really very convenient for computational aspects. Hopefully, according
to the generalization of Thevenin's equivalent theorem, the presence of physical sources inside the
subnetwork can also be summarized in a more simple way by the application of a localized asymmetric
voltage source vector, E.. going out at each port of the equivalent junction. Consequently, as in section
3.2.1, two source waves will have to be defined. Using the general definition of source wave vector {2], we

find :
L

Weq, = - [e VB 5(L~2).d2= B, (3-12)
0
L

Ws,, =+ e U 8(2).dz=-E,, =-Ws,, (3-13)
0

Meanwhile, according to figure 3-4 definitions, the following propagation and scattering relations are
available :

Wi(L) = W;(0) +Wsoy (3-14)
W(L) = -Wseg (3-15)
W3i(0) =Sq-Wi(L) (3-16)
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W (L) is directly accessible on the real subnetwork (it could be measured in an experiment). Eliminating
W (L) and W(0) in (3-15) and (3-16), and reporting in (3-14), we obtain :

Wsgqn = (1 - Sgg )" Wy(L) (3-17)

3.3. Application to electric circuits and transmission-line theory

As an application, it is interesting to see how (3-6), (3-7) and (3-13) can be applied in the case of
electric circuits and transmission-line networks. [n this case, outgowng and incoming waves will be
expressed as a2 combination of an input voltage vector [V], and an input current vector [I] :

(W =[V]-[Zc]{] (3-18)

[W*]=[V]+ [Ze][I] {3-19)
and (3-2) takes the following form :

(IV]-[Ze] (1} ) = [S1( [V] + [Ze] (1)) (320

Matching the external junctions of the subnetwork is made by loading each tube connected to the
junction by a load whose impedance matrix is equal to the characteristic impedance of each tube (figure 3-

5). When exciting each port "j" by a voltage generator E;, the application of (3-10) and (3-11) gives :

2V, .
S;; ==—E-—‘- fori=j (3-21)
J
S = Vi (3-22)
= o= + -
pi] 'EJ
BdL) 5
N r Port i
Matched | B, (L) I Vi _
impedance [—+ = O+ L Port
Zc E, V,
|_ I Sub-network
< — equivalent
L#0 junction

Fig. 3-5 : Application of the general scattering mairix definition to an electric circuit network

We find the result well known by people used to run network analyzers in experiments. Between two
different ports, a scattering parameter is equal to two times the gain between the output voltage and the
input generator. But, on the same port, the scattering parameter is equal to "1" plus the same gain [21].

For the determination of the Thevenin's equivalent generator voltage vector, E, it is possible to derive
a circuit scheme simitar to the one we derived on figure 3-5 (figure 3-6). E_; can also be seen as the voltage
obtained if the ports of the subnetwork were loaded with open circuits. Z, is the impedance matrix
obtained from the S, scattering marrix [4] :

13




Z=(1=Seq (1 +Seqp.Zc (3-23)

Knowing the output voltage on the Zc load, Vs, {(calculated with a BLT resolution), we obtain the value of

Ecq:

Eeq= (ZegZc -1).Vs=[(1-S )" (1 +8,) + 1]Vs =2 (1-5) "' Vs (3-24)

If we had taken (3-17) instead of applying electric configurations, W (L} = 2 Vs (because the external
equivalent junction is matched} would have given the same resuit.

. N
Wi(L) E_/ Seq
7e e or
Vs zeq
I |

Fig. 3-6 : Calcularion of the Thevenin's equivalent
generator vector on an electric circuit subnerwork

3.4. Generalization of the BLT equation to the compacting process

The problem with (3-1) is that the compacting resolution technique is not really a BLT equation
resplution. From a computation point of view, it would be suitable to have the same subroutine for the
resolution of the BLT equation on a total network and for the calculation of the equivaient model on a
subnetwork. Equations (3-10), (3-11) and (3-17) demonstrate that it is possible to calculate the equivalent
scattering matrix, S,, and the equivalent source wave vector, Ws. by solving several BLT equations on
different configurations, dealing with specific source excitations on ¢ach port of the subnetwork. All those
configurations are obtained by virtually "discornecting” the subnetwork from the rest of the network and
by loading each external tube by 2 matched junction.

Now, from a numerical point of view, we must remember that the resolution of a2 BLT equation is
nothing more than the resolution of a linear system. Consequently, in (1-1), it is easy fo replace the [Ws]
supervector by 2 NxM [Ws,] generalized super-matrix. [Ws,] is made by the assembling of different [Ws,]
supervectors, k being a k™ source configuration applied on the network and M the total number of source
configurations). By this way, we obtain a generalization of the BLT equation to a multiple source state
second member.

((0-(S)-Ir1) - [ = [5]-{Ws, | (3-25)
with :
{w53}={[w5[] [ws,] - [Wsy]) (3-26)

In the particular case of the compacting problem, the elementary {Ws; ] supervectors are associated with
the excitation of one given port of the subnetwork by an elementary localized source. Moreover, the
calculation of the equivalent source vector can be calculated in the same way because it can be achieved by
the same load configuration as the one used for the subnetwork scattering parameter determination. In this
case the supervector is made by the application of the actual sources existing inside the subpetwork limits.
So, if the number of ports of the subnetwork is M, the second member matrix will have a 2Mx(M+1) size
in the multiple source state BLT equation.
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in the future, the multiple state source BLT equation will certainly have further applications, especially
for the treatment of inverse problems. [t will be particularly suitable in the so-called fesr wiring method, in
which, thanks to the knowledge of the response of 2 wire to elementary distributed sources, it is possible o
come back to the actual voltape generators of the transmission-line modei [13].

3.5. Practical computation improvements

As we saw in the previous section, the interest in 2 multiple state generalized BLT equation relies on
the fact that the same numerical method can be applied to solve a classical BLT equation problem or a
subnetwork compacting probiem.

As an example of the computation improvement, we can mention how convenient such a calculation
has become in the CRIPTE code. Before, either the BLT equation resolution, the calculation of subnerwork
scattering parameters, or the Thevepin's generator determination requested respectively three differsnt
calculations :

- the resolution of a linear system {BLT equation),

- the computation of (3-1), involving multiple matrix block inversion (compacting equation}),

- the resolution of a linear system on the subnetwork when all the external junctions were open circuits
{BLT equation).

Nowadays, in the CRIPTE code, all the network calculations are based on the same numerical subroutine.
Depending on the user's choice, the classical BLT caiculation can be made on the total network or the
compacting calculation. In this case, the calculation of the equivalent scattering parameter matrix and the
calculation equivalent Thevenin's generator vector can be achieved on the subnetwork. The scattering
parameter calculation is always performed, because they are required in the equivalent source definition.
But, if there is no source inside the subnetwork, the equivalent source calculation is not performed.

In addition, this methed is also interesting for the significant memory improvement it provides. Indeed,

(3-1) requires the declaration of several matrix blocks, whereas they are less numerous for the multple
state BLT equation.
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4. Taking into account the sparse BLT matrix structure

4.1. Recall of the LU method and its adaptation to a sparse matrix

As we pointed out in the previous section, the "A" matrix to invert in the BLT equation (3-2) is widely
sparse. The location of the zero blocks is not random, but imposed by the topology of the network.
Moreover, this topology leads to a block structure in which zero values and non-zero values are gathered in
blocks. So it is natural to think of applying a Gauss linear system process by acting on the matrix blocks
instead of acting on the scalar components of the BLT matrix. Let us recall the general method of a Gauss
inversion process or so-called LU process. The first step is to organize the system to solve as a triangle
systemn. Then, beginning from the lower side of the triangle the solution of the system is found easily by
climbing up the triangle.

Let us consider A, the NxN matrix to be inverted and B, an NxNsecm second member matrix. N is the
size of the matrix and Nsecm is the number of second member column vectors. We can propose the very
simple algorithm written:

#DoforlI=1,N-1
#DoforJ=1+1,N
#IFA(JIL =0 then
coef = A(JI/A(LD
#DoforK=I+1,N
A(JK)=A(LK) - A(LK)*coef {4-1)
Enddo#- —
#Do for K =1, Nsecm
B(J.K) = B(1,K) + B{I,K)*coef
End do #
End if #
Enddo #
End do #

Of course, in this simple algorithm, we suppose here that A(I,I) terms are all non-zero. It is well known
that more algorithms are based on the search for the best pivor and that many pumerical methods are
available to optimize the computation time and memory requirement. In our case, this siraightforward
algorithm will find a direct utility when the "A" matrix is block constituted. Consequently, (4-1), let us
remove ail the brackets and now think an "A, ;" coefficient in terms of a matrix block instead of a scalar.
Let us consider that N is now the number of blocks. The scalar coefficient "coeff” becomes a matrix block
"COEFF,,". The algorithm becomes the following :

#DoforlI=1,N-1
#DoforJ=I+1,N
#IfA;; =0then
COEFF ;= Aj; *Ay,"
#1f Ay =0 then
#DoforK=1I+1,N
AJ.K = AJ.K ~- COEFFI:K *AJ_K (4-2)
end do #
End if #
# Do for K =1, Nsecm
Byx =By + COEFF x *Byx
Enddo #
End if #
End do #
Enddo #
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The interesting point of (4-2) is that the A;; block is generally non zero. Indeed, as seen in (2-1), the
diagonal blocks of the BLT matrix are unit matrices. Even modified by the "ndangularization" process, the
chance to obtain a zero block is quite null.

Compared to the previous scalar algorithm, al] the interest of this block algorithm deals in the "# If A}
= 0" and "# If A;x = 0" conditions. Indeed, if these conditions are verified on a matrix block, 2 whole set
of operations can be avoided. The number of operations is much smaller than the one for the direct method
N{N -1){2N +5)

6
process, because the number of operations depends on the number and the location of non-zero blocks, it is
difficult to give a similar formula,

operations # Ns, when N is large). For the sparse inversion

on the whole matrix (

4.2. Creation of non-initially nuli-blocks : the fill-in

Looking at the matrix block Gauss algorithm for a sparse matrix (4-2), one will notice that some biocks,
initially equal to zero in the matrix can become non-zero. Let us suppose that we are at the step "i" of the
triangularization pracess with A;; as the pivot block. Such a modification of the matrix structure may
cccur on an Ay, block, if A and Ay, are non-zero blocks as well. This modification is called fill-ir. By
extension, we will call fill-in number, the number of newly created non-zero blocks. We will also call fill-
in this number.

At the step "i" of the process, considering an A, block pivot, with K>I and J>1, three conditions have to
be satisfied 2t the same time to have a fill-in on an A, block :

1) Ay, has to be a originally zero block,
2} A has to be a non-zero block,
3) Ay, has to be a non-zero block.

It has to be noticed that, in the process of fill-in affectation, the newly created non-zero blocks can
themnselves participate to the creation of other fill-in blocks.

Before the calculation, the fill-in allocation can be easily determined considering the IT, , characteristic
matrix of the BLT equation (see section 2.). This way, the number of blocks to be stored in can be
determined in advance, before the calculation. The important point to notice is that the fill-in number varies
as a function of the labeling of the network, Figure 4-1 gives an example of the fill-in allocation for the
network described on figure 2-2. One will notice that the diagonal terms are non-zero with respect to the
structure of the BLT equation matrix. The fill-in blocs are written "x". The number of fill-in blocks is equal
to 14. The total number of non-zero blocs is now equal to 68. The matrix is sl 26% filled only.

The initially non-zero diagonal blocks, modified during the process, are denoted by "!". Effectively, as we
mentioned, the structure of the BLT equation matrix presents unit terms on the diagonal. So, if 2 diagonal
term is not modified by the process, it remains equal to a unit matrix. Consequently, its inversion and the
multiplication by the A, block are not required anymore. So other calculations can be avoided. In figure 4-
1, 8 diagonal blocks are not modified. The condition for 2 non modification of a diagonal block A, is the
following :

1} I=1 : this condition is always verified and this term always remains equal to a unit block,

or

2) for K<I<l, Ay or Ay are non-zero blocks, If Ay, and Ay are non-zero blocks as well, A;; is
modified in the process.

Whenever it is possible, one will have interest to choose a first labeled wave on a "big" tube, made of
INANY COMponents.
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Fig. 4-1 : Location of the fill-in and modified blocks in the characteristic matrix of the BLT equation

5. Topological analysis of the LU process

5.1. Physical significance of the LU process

From the numerical point of view, the LU process cxpresses one unknown of the problem as a function
of a second member, by deriving an equation in which all the other unknowns have disappeared. From a
physical point of view, it is interesting to analyze the result obtained analytically. Of course, in the general
case, the equations can become very complex. To simplify the explanation, we will take a single tube
network (figure 5-1).

If we consider two waves, W and W, propagating in opposite directions on the tube, the propagatior
equarion for both waves can be expressed as :

W(L) = [.W{0) + W, (5-1)

(5-1) means that W, (L), the value of the wave at the other end of the tube, can be decomposed in two parts

- T.W{(0) : the wave at the origin of the tube when it has propagated on the tube, on a length "L"
(multiplication by T matrix, providing a delay),

- Ws,, the equivalent source wave seen at the opposite end of the tube. As an example, if the tube is a
multiconductor transmission line, the source wave can be written :

Ws, =

- (L-a [(Vs(z)+ Zc.Is(z)].dz {5-2)

S e

where : Vs(z) and Is(z) are respectively the per unit length serial voltage and parallel current generators
distributed all along the tube. y is the propagation factor matrix. The meaning of {5-2) is that the equivaient
source wave is equal to the collection (integral summation) of ail the elementary source waves at the "z"
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position (Vs(z) + Zc.Is(z)), taking into account for each of them the phase delay between position L and
position z ((L-z).y).

fn figure 5-1, S,, and 8;, represent the scattering parameter matrices of the two terminal junctions. Both
of these matrices obey the following scattering equation :

W,(0) = S;. W(L) (5-3)
Wi(i)- Ws, r W,(0)
‘g i [ S
Sz CI:—[* ——§I® S
: W, (0) s, 1 wW(L)

Fig. 5-1 : Labeling of waves and source waves on a sfng!e tube

The different steps of the triangularization of the BLT equation, applied on this one tube system are
summarized in (5-4) and (5-5) :

[ 1 ~s[z-r] [wl(o)j (0 SlZJ{WSLJ [Su-WSIJ
-8, T 1 \w,(0)) \Sy; 0 J\Ws,) \S, -Ws, (3-4)
(1 -8, -T J [wl(o)] [ S.; - Ws, J

0 1-Sy T8y -T) \W,(0)) “\Sy Ws, +S5, -T-Sy3-Ws, (5-3)

The second equation of (5-5) cen zlso be written :

This means that the W,, wave at position 0, is equal to the summation of the three following terms,
represented on figure 5-2 :

1-awave A =85, IS, I"W,(0) : the same wave W,(0}, having propagated along the tabe direction
(multiplication by I'), having been reflected on junction 1 (multiplication by S,,), having propagated in the
other direction (multiplication by I'} and finally, having been reflected on junction 2 {multiplication by
Sa1)s

2 - a source wave B = S,,.Ws, : the source wave | in the opposite propagation direction, reflected on
junction 2 (multiplication by S,,),

3 - a source wave C = 5,,.I'.5,;, Ws, : the source wave 2 having been reflected on junction 1
(multiplication by 8,;), having propagated on the tube (multiplication by I') and having been reflected on
Junction 2 (multiplication by 8,,).
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Fig. 5-2 : Expression of W,(0) as an addition of three wave terms, A+B+C

When W,(0) has been calculated, it becomes a source for the determination of the second unknown
W,(0). So W,(0) can be easily calculated thanks to the first equation of (5-5} :

W,(0) = 8,5, T.W,(0) + §,,. Ws, (5-7)

Figure 5-3 gives a graphical explanation of this equation. The disappearing of W,(0) unknown induces
the disappearing of junction 2. As junction 2 does not exist anymore, it is not possible to find anymore
possible paths propagating and scattering W,(0). However, it is still possible to say that W,(0} is equal to
the summation of all the existing sources having propagated until arriving at the position of W,(0) :

- source wave A' = 8,,."W,(0)
- source wave B' = 5, Ws,

Fig. 5-3 : Expression of W,(0) afier the determination of W,(0)

For a more complex network, involving a greater number of tubes, the result would have been the
same. This provides us the opportunity to define a rule we called the "all-paths-and-sources" rule. A wave
W(z), taken at 2 z position, is equal to the sum of two types of terms :

1 - W(z) itself, having taken all the possible paths leading to the same position,
2 - all the source wave multiplied by the delay of all the paths leading to the "z" position.

This summation is exactly what an LU process does numerically. After the triangularization process,
the last labeled unknown Wy equation obeys the rule previously expressed. Once calculated, this wave

becomes a source with respect to the other unknowns. The Wy, will then follow the same all-paths-and-
sources rule, and so on.
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5.2. Representing the BLT equation in a graph form

5.2.1. Representing the solution with graphs

Both the LU numerical process and topological networks can be represented with graphs. Again, let us
consider the one tube topological network described on figure 5-1. Considering the two propagation

equations given by (5-1) and the two scaftering equations given by (5-3), one can easily express the system
to solve as the flow graph described on figure 5-4.

Fig. 5-4 : Flow-graph representation of the propagation and scartering equations on a tube

With this representation, we have an efficient tool to visualize the different paths involved in equations

(5-6) and (5-7). Figure 5-5 shows the three successive paths (bold lines) leading to the calculation of W,(0}
and figure 5-6 shows the two successive paths leading to the calculation of W (0).

W, s,
5 .
wy(L) WH(0) W (L} W ,(0)
5 5
21] 5“ 11 5“
WL} WL}
W(0) ~ W) -
r r
We, Wi,
Calcularion of wave A Calewlation of source wave 8
Hs,
r
~
W (L) W (@)
S:] sl!
wyL)
Wio) >
-
Hiy

Calculation of source wave C

Fig. 5-5 : Different paths for the calculation of W,(0) with respect to figure 5-4 graph
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Fig. 5-6 : Different paths for the calcularion of W (0) on figure 5-4 graph

5.2.2. Attempt to use classical flow-graph calculation rules

In the theory of linear systems, the use of flow graphs is widely spread. For instance the theory of flow
graphs proposes elementary reduction rules which allow the simplification of complex graphs. More,
general rules have been established by Mason [23] to calculate the transfer function, or so-called "gain™, at
any poimnt of a graph, with respect to any source applied on this graph. Let us recall mason's rule. The ruje
supposes that a preliminary inventory of all the paths "k" relaung the two variables involved in the gain
and all the loops existing on the graph has been made. Then, the gain "G" between the two variables can be
calculated by the following formula :

> Gy -4
G-

A

(5-8)

wherein :
A=1-3 P+ D Pry=D Prg+—. . . +(=)™ D P, iscalled the determinant, (5-9)
m m m m

P, = gain of the m® possible combination of "r" non touching loops,
A, = the value of A for that part of the graph non touching the k™ forward path, called cofactor of
forward path k.

For our purpose, the problem of Mason's formula lays on the fact that it is valid only for scalar transfer
functions, but not for matrix operators. Nevertheless, its application shows us how closely Mason's rule is
related to the rule we previously called all-paths-and-sources rule. For example, for the determination of
W,(0), assuming that each tube has only one component, the application of the Mason's rule on the one
tube problem described on figure {5-4) would follow the different steps below:

1) Inventory of the Joops : only one loop,
P, =T.5,,T.5;

Transfe i tween W. d Wsl ;
G' =5,
3) Transfer function between W,(0) and Ws2 ;
G'=8,.I. S,

So the application of (5-8) would give:

Wa(0) = (1 - [.8,,.1.S;) (G Ws, + GEWs,) = (1 - [8,,1.8,))7 ( §,,.Ws, +S,.['S,, Ws;)  (5-10)
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which is entirely equivalent to (5-6) in the scalar case. In the general case of matrices, it is easy to figure
out what order the different products appearing in (5-10) have to respect. However, even if the problem of
the commutativity of the transfer function product was not a problem, the application of Mason's rule
would become more complex for more than one tube network topology. Because network theory deals with
two waves propagating on the same tube, many loops would quickly appear on the graph. To emphasize
this remark, let us give the example of the BLT resolution on a rtwo connected tube network (figure 5-7).

Sy Sy
S-il
W, r W ws, W,
S @E :—_./*\_q—— :@ S
W, ws, w, 12 Ws,

Fig. 5-7 : Two tube topolegical network

The BLT equation on figure 5-7 network can be simplified in the following form:

1 +a,; 0 0 W) S,
+25 1 0 +ay,||W; _ 5, (5-11)
+ay;; O 1 tay || W, S,

¢ 0 +a,, 1 W, S,

where :
2;; ==S5;3.14
ay =—5;1.1G
ay; =-5;.G
2, =841
gy = —Sq4.17
a3 ==8y.I;
S, =5,;.Ws;

S; =8,,. Ws, +8,,. Ws,
S; =8y, Ws, £5;,. Ws,
S4 =S!3.W53

This equation is equivalent to the graph depicted on figure 5-8. This graph is nothing more than a
reduction applied on propagation and scattering equations in order to eliminate waves W(L), taken at the
opposite ends of the tubes.

\
N
N
WLD

5,

S1 > - — S
7w, Ty ow, o f

Fig. 5-8 : Graph representation of (5-11)
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The LU process allows the determunation of W,. We gbtain :

-1
{1-343-[334 +a,1.a12.(1—a2,.a12) ]-324-W4 =

-

s, +au.[s, +ay,.8, —ay.2,;.(1-a5.a,) 7 (s, +;a:l.sl)] (5-12)

The application of Mason's rule would have given :

1) loventory of all the loops : ~
Tl =a,,.a4
T2 =a,;.a5
T3 =ag.33.2)2.8,

2) Inv fs) touchin
T1.T2 = a53.234-23-2
3) Gain between W4 and S1 (multiplied by cofactor) :

G' =n,.2;,(1 - a,3;)
4) Gain between W4 and S2 (multiplied by cofactor)
G* = ayy.a5.2,
b W ltiplied b
G =ag,(1-22y)

be 2 iplied by cofactor) :
)
G" =1 - a,ay,

So, the application of (5-9) gives :

(1—:3.43.a34 —85.84) —8,45.84,.217.8p,4 +a.“3.a34.au.az]).‘.‘i.i’4 = (5-13)

a43.a31.(1—a,2.a21.)-S, +a,.85-213-5, +a43.(]—a,z.azl).S3 +(1—a,2.an).S4

Assuming that all the a;; terms are scalar, the reader will check that (3-13) is fully equivalent to (5-12).
Nevertheiess, this simple example provides us two important lessons ;

- because of the non commutatitivity between matrix operators, Mason's rule cannot be applied directly

and one has to apply the all-paths-and-sources rule,
- whereas, its direct application becomes complex for networks made of more than one tube, the all-

paths-and-sources rule is antomatic and efficiently performed by the LU process.

5.2.3. Explanation of the fill-in with graph representation

Another interesting aspect of the flow graphs is that they give a tangible explanation of the fill-in
creation process. Let us take the example described on figure 5-7 and let us generate a graph representation
of the [T, ., characteristic matrix of the BLT equation (figure 5-9). This graph is closely related to the flow
graph represented on figure 5-8. In this case, the difference is that, we only consider the interactions
between waves, without taking care of the value of the operators. Except for the self loops representing the
unit terms on the diagonal of the equation, this graph would be the same for the W, scattering
characteristic matrix. On such a graph, it is easy to recognize that the two opposite arrows relaning two




graph nodes represent the coupling between two junctions on the same tube. Figure 5-10 describes the
different graphs obtained after the elimination of each wave, from W, to W,. The fill-in appears in the
elimination of W, graph, with the creation of a new branch from W, to W,. The requirement to create this
new branch is clear when we analyze figure 5-9. When eliminating W, we suppress a possible pass
coming from W, to W, (through W,). If we want the solution still to obey the all-paths-and-sources rule,
we need to keep track of it in the reduced graph.

Fig. 5-9 : Representation of the 11, , characreristic matrix of figure 5-7 nenwork

Wy
W, W, W, @G‘m O

H«’} elimination ;V: eliminaiion H"J‘ elimination

Fig. 5-10 : Graph representation of thell, , characteristic matrices of figure 5-9 graph

As 8 conclusion, we can say that the fill-in process is a way to keep track of all the possible paths
existing on a network. From a graphical point of view, this phenomenon consists in the creation of new
branches,

5.3. The BLT equation as a succession of subnetwork compacting steps

We saw that the general LU process is equivalent to eliminate the waves cne after the other. In this

section, we will suppose that the waves on each tube are labeled continuously as W and W, If now, the
elimination of the waves is considersd by groups of two waves belonging to the same tube, it is easy to
figure out that the LU process will act as a succession of junction-to-junction compacting steps. Let us take
the example of the two tube network described on figure 5-7. Previously, the BLT equation of this network
has been presented in a condensed way (see (5-11)). For the purpose of this section, we will write the
different steps of the triangularization process in its explicit form, involving the propagation and scattering
matrix blocks.

Step 1 : original BLT equation : : 3
1 =S, 0 0 W, (0) S,2-Ws,
—Snr] I 0 _5141—'2 WI(O) _ SII.WSI +Sz4.W54 (5 14)
-5, T 0 1 =Sy, Ty || Wy(0)| | S3;-Ws; +S;5,. Ws,
0 0 -8, 1 W, (0) S.-Wsy
2 : istcol limination
1-8,,.1.5,;.T; 0 —8,:.T5 ) (W, (0) S, -Ws, +8,,. Ws, +5,,.1.8,, . Ws,
-84,-17.8;2., 1 =S I || Wi (0| =[ 8,,. WS, +85,. Ws, +5,,.'.8,;,. Ws, | (5-15)
. 0 =541 1 W, (O S4-Ws;
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Step 3 ; 2nd column elimination

1 —534.1‘2-sz,.r,.s,z.rl.(l—sﬂ.r,.sll.rl)“.su.r,}_(wa(o)]___ (5-16)
-S,.15 1 W, (0)
S3|.Wsl +'S34.‘VS4 +S3l.r1.su.\VSz +

-1
S51.T).S12-T1.{1~84,.1,.853 ) Sy, - Ws; +82,. Ws, +55,. .84, Ws,)
S4. Ws,
In the left part of (5-16) we recognize easily the BL'T form of a single tube, in which the first tube of
the original network, supporting W, and W, waves, has been compacted in an equivalent junction whose
scattering parameters are (with respect to (3-1)):

Seq =53¢ +55-1.5,2.T) A1~82.T,.8y, -rl)_l S (5-17)

Indeed, (5-17) obeys the general formulation of the subnetwork equivalent junction. In our case, the
different marrix blocks involved in (3-1) are the following :

(T, 0)

Ty —( 0 T, {5-18)

Sy =S4 (5-19)

Snm = (Sn 0) (5-20)
0

Sy = [Sz-ij (5-21)
0 S,

S = (S-.l 0 ] (5-22)

From the source point of view, the second component of the second member of (5-16) clearly shows
that 2 non additional source wave has been created according to the Wy, = W; direction, as respect with (3-
4). The identification of the first component of the second member with the general definition of the
equivalent source wave given in (3-5) is less straightforward and requires a specific mathematical
treatment. [n our case, the definitions of Ws, and Wsyy; are the following :

Ws, = Ws, (5-23)
and
Ws,
W = 5_ 4
S (WSIJ (5-24)

Using (5-18) to (5-23), the application of (3-5) gives in our example :

-1
WSeq) (compacnng) = 5€G Wy +837. Ws; +831. 11813 T;.{1 - 833 [3.8y2. 1) .81 Wy + (5-25)
-1
S;l.rl-(l_slz.r!-SZI-l‘l) .Slz-WSZ
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whereas, according to (5-16), the definition of the equivalent source wave calculated by the LU process
gives :

-1
Ws 1y =Seq. Ws, +85,. Ws, + 8. 11.8,.17.(1-8;,.13.8,3. ). 5;,. Ws, + 5:26)
-1 -
(Ssl-rt-stz+Sa1-1—l-st2-r1-(l'Sn-r:-slz-r1) .SH.I“,.SH).WS-_.

The only difference between (5-25) and {5-26) seems to be in the last term of the summation applying
on Ws,. If we make the following transformation in (5-26) :

X =5,,1.5,.T
we can demonstrate that both relations are fully equivalent :

-1
ssl.r,.sn.(l+r,.(1-szl.r,.sn.r1) .sﬂ.rl.su).w.«, =

- —11-1
S]l'rl'{l"'[(sll'rl) 1'(1_32!-1-1'SIZ'TI)'(SIZ"FI) ]] }-Slz-wsz =

S50 T [14(07 857187 = 1) S W, =85 1+ (X7T 1) ] 8, W, =

(5-27)

- -1
Sy.[y.(1-X)" .8, Ws; =8y, 1. {1-8),.1,.8,,.10) 7 .85 Ws,

This simple example demonstrates how a LU process can be seen as a the calculation of waves on a flow
graph, and how, as well as a succession of compacting processes. The generalization to a2 more complex
network becomes straightforward if one considers that in figure 5-7, junmction 1 and source wave Ws,

represent now an equivalent junction and equivalent source coming from the compacting of 2ll the rest of
the network.

As a conclusion, we can say that, what labeling waves on the same tube as W, and W.,, the LU
process is equivalent to eliminate the two wave set on each tube, one after the other. This is equivalent to
say that the LU process, consists in a succession of 2 pairwise junction compacting steps.

6. Labeling waves on a network

6.1. Importance of wave labeling

As we saw in section 4.2, the L1J process generates the creation of non-zero blocks. This phenomenon
is known as fill-in. We mentioned that the location and the number of fill-in blocks strongly depend on the
way unknowns are labeled on the network. Even if the number of initially non-zero blocks is mot modified
by the labeling, an improvement of the labeling could widely improve the memory requirement and the
computation time required for the resolution of such a sparse linear problem [15] as the BLT equation. In
this document, we will consider that the size of the blocks is big (typically more than10x10}). Consequently,
we can consider that the reduction of the number of fill-in blocks will always lead to 2 memory and
calculation time improvement. This would not be always the case for small size blocks. Indeed, a full
optimization would have to evaluate the time necessary for the inversion of each block. In this case, the
research of the optimum quickly leads to prohibitive calculation times.

Most of the papers dealing with sparse matrices are numerical papers and have the objective to find the
best labeling algorithm in order to perform paralle! calculation, involving several processors or computers.
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For instance, the well-known technique named maftifrontal deals with finding the maximum number of
independent branches on a network, each branch being treated by a processor ({[11], [24] and [25].

According to the way of thinking of EM topology which focuses on the systematic decomposition of
problems in elementary problems in order to simplify its treatment, our purpose is different in the sense
that we do not want necessarily to run parallel calculations. Consequently, to make the BLT eguation more
useful for many users, it would be suitable to be able to use it on single processor computers. In the past 10
years, many studies have demonstrated that EM topology provided ail the tools for treating a large scale
problem on limited computation means ([7], [9], [131).

Before defining a labeling rule, we will first analyze the fill-in creation process on elementary network
configurations : chain-subnetworks, branch-subnetworks and loop subnetworks.

6.2. Analysis of the fill-in process on elementary networks

6.2.1. Chain-subnetwork

In this section, we will call chain-subnenvork, a subnetwork for which each junction is not connected
to more than two tubes as described on figure 6-1. In this figure, waves have been labeled randomly.
Figure 6-2 gives the IT,, characteristic matrix of the BLT equation (see definition at section 2.). Fill-in
blocks have been noted with an "x" character. For such 2 simple configuration, the fill-in obtained is
relatively high (fill-in =10).

As we did in section 5.2.3, we will use graph representations to help to understand how the fill-in
process happens (figure 6-3 and figure 6-4). The process deals with eliminating the waves in a progressive
order, from W, to Wy, New branches are created to keep the memory of existing path between two nodes
in the network. Those paths remain until all the branches related to those nodes are eliminated. For
example, on figure 6-4, the graph representations show that the elimination of W, node creates itself three
new branches.

W, W
I 1 L 1 S— 1 L 1
W W, Wy W,

Fipg. 6-1 : Example of chain-subnerwork with a random labeling

(10 00 1 0 0 0)
010G 0100
0011 0001
I.I=1001:|:010
w1 0001 010
011 > x 1 x x
0001 x 011
011 x x x x 1)

Fig. 6-2 : Characteristic matrix of the BLT equation for figure 6-1 subnetwork

Fig. 6-3 : Graph representation of the BLT equation of figure 6-1
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Fig. 6-4 : Different reduced graph jor figure 6-1 BLT resolution

In the case of a chain-subnetwork, we see that, when a node W, conpected to another node W, is

eliminated on the graph, it would be better if the following elimination step was applied on W,
Particularly, two branches connected to the same two nodes should be eliminated just one after the other,
This remark is related to the elimination of a junction in a compacting process as described in section 5.3,
Moreover, the newly created branches can be eliminated in the following elimination process, if the waves
at the end of the graph are systematically eliminated.

Figure 6-6 shows the same subnetwork as figure 6-1, labeled in this sense. The characteristic matrix of
the BLT equation is represented on figure 6-7. Compared figure 6-2, the fill-in is much smaller (3 instead
of 10). The intercst of this labeling is also that the fill-in appears ip repetitive motives related to the
connection of two tubes.

Figure 6-9 shows the different elimination steps on the related graph, described on figure 6-8. The
branch created at one step always disappear in the next step. So they do not contribute to the creation of
new branches anymore. The different steps presented on figure 6-9, are also equivalent to the elementary
compacting of junctions on the network. By this way, in accordance to the fill-in calculated on figure 6-7,
only three new branches are created in the elimination process.
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From now, because of the importance of chain-subnetworks in network configurations, we will call rafi-
Junctions, the junctions connected to only one tube and chain-junctions, the junctions connected to two
tubes. These definitions come from the fact that the caiculation of the compacting they offer is equivalent
similar to the one provided with chain matrices ({21], [22]). The chain matrices can be used only on chain-
junctions connecting two tubes only. On the contrary of scattering parameters they relate waves taken on
the same tubes. As an example, according to figure 6-6 definition, we can define the chain matrix for the
second junction from the left as :

[WJ(O)] _[TM Tsz]_[w1 (L) 6.1)
Wi (L} [Ty T |[W2(0
Considering the scattering parameter matrix definition of the same junction, [S] ;
[Wz (0)] _ [Szl S }_[wl(m} 6.2)
Wi(0)] [Sy Sy ][ WD)
It is easy to demonsrate that we have the following refations :
S31 —S34-834 -8, —S31-8
[T] =[ 31 7534 _;v[4 21 24_I z::, (6-3)
S.u "S24 814
and
-1 - Ta T
[s] =[ o i} (6-4)
T, _T41 'Tul 'Tn Tsz 'T42l

The obvious interest in a chain matrix is that the chain matrix of two chain-junctions is nothing more
than the preduct of the chain matrices of the two junctions. This way, the chain matrix of a whole chain-
subnetwork can be casily calculated. Using (6-4), the scattering parameters of the equivalent network are
then calculated giving the same result as (5-17). The simplicity of the chain matrix product is indeed
closely related to the low fill-in rate generated by the chain-subnetworks. Nevertheless, strictly speaking of
the BLT equation general formulation, originally expressed in terms of scattering matrices, the dedvation
of (3-1) and (3-5) are easier than the conversion of each junction scattering parameters into chain
parameters, because they are automatically performed in the LU process.

Conseguently, whatever calculation way is used to camry out the equivalent junction-to-junction
compacting process, two main lessons have to be remembered from the chain-subnetwork analysis :

1 - waves have to be labeled successively on a same tube, to allow the elimination of junctions in a2

compacting process,
2 - waves have to be labeled successively from one tube to the other, to avoid new created branches

participating to the fill-in process.

W, W, Wy Wy
Fig. 6-6 : New labeling of figure 6-1 subnerwork
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o {0 0110100
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000011 x 11

000000 1 U
Fig. 6-7 . Characteristic matrix of the BLT equation for figure 6-6 subretwork

Elimination of W[ :—-—b : imingtion of W

Eliminarion of ﬁ"_,

Fig. 6-9 - Different reduced grapks for figure 6-6 BLT resolution




6.2.2. Branch-subnetworks

It is interesting to analyze how the labeling rules previously defined for chain-subnetworks can be
applied for branch-subnetwork, that is to say subnetworks involving several branches. With respect to the
tail-junction and chain-junction definitions, we will call a branch-junction 2 junction connected to 3 or
more fubes. Now, the successive labeling of two waves on the same tube is still possible, but, of course,
the successive labeling on a junction is not applicable at the branch-junction level anymore.

Figure 6-10 gives an example of a labeling on a branch-subnetwork, involving one branch-junction, and
its associated characteristic matrix. This matrix shows that waves W,, W, and W, are eliminated before the
waves located at the tail-junctions. This way, the existing paths between junction 3 and junction 5 have to
be kept in memory during the elimination of W;, W, and W and thus lead to the creation of new branches.
Consequently, the fill-in of figure 6-10 subnetwork is equa) to 7 and can be optimized. One has only to
notice that the previous drawback can be avoided if the waves at tail-junctions are eliminated as soon as
possible, This remark is equivalent to the requirement of compacting all the tail-junctions existing on the
original subnetwork or the newly created equivalent subnetwork. Because we saw at section 6.2.1 that
waves had to be labeled successively on "tqil subnerworks", the compacting will have to appiy on each
branch, from the tail junction. Figure 6-11 shows a new labeling of this subnetwork allowing such a wave
elimination order and the associated BLT characteristic matrix. The fill-in is now much lower and is equal
to 4. The interesting thing to notice is that no fill-in bloc participates to the creation of new fill-in blocs.
This makes the matrix been constituted by two elementary sub-blocks :

- one for the branch configuration at the level of junction 2,
- one for the chain configuration at the level of junction 4.

11 00 000 0)
11 01 0001

1 x 11 0001

s 0011 0610 x
uv 001 x1 10 x

0O 000110 x

1 x 01 0 x 1 1

\0 0 0 0 0 0 1 1

(1 1.0 0 0 0 ¢ 0)
11001010
00110000
o 00110100
w0 001 x 11 00
1 x 001110
00000011
\t x 0 0 1 x 1 1

Fig. 6-11 : Oprimized labeling on the branch-subnetwork of figure 6-10 and
associated BLT characteristic matrix
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As a conclusion for the analysis of branch-subnetworks, we can define two general rules to improve
the labeling way of both chain and branch-subnetworks :

1 - waves have to be labeled successively on each tube. This rule had already been derived from the
analysis of chain-subnetworks,
2 - waves on branches of branch-subnetworks have to be labeled successively from the tail junctions..

6.2.3. Loop subnetworks

We call loap subretwork, 2 subnetwork configuration for which two nodes connected by the same tube
can also be connected by another path made by a series of different wbes. Figure 6-12 gives an example of
a simple loop subnetwork configuration and its associated BLT characteristic matrix. The labeling of the
waves follows the rules defined in the previous section. The problem with such a configuration is that,
when compacting junctions one into the other, the first junction considered never becomes a terminal
junction, From a graph point of view, this means that the wave elimination processes always have
remember the path due to the loop. Consequently, the fill-in of such a configuration is necessarily high
(equal to 10 in our example), and fill-in blocks contribute themselves to the creation of new fill-in blocks.
Nevertheless, the two labeling rules defined in section 6.2.2 can be applied and still provide a significant
fill-in improvement.

W, (110000 1 0

=0 1101 00x0

W | w, | [|w 1 x 1100 x 0

oo 001101 =x0

w001 x 11 x 0

000011 x 1

W, L] We W, (L] 00001 x 11

4 3 W 1 0 x 0 x 1 1
w5

Fig. 6-12 : Example of a loop subnetwork and its associated BLT characteristic marrix

6.3. Definition of an improved labeling method

6.3.1. The chain-path-march rule

The analysis of labeling methods on elementary subnetworks has led us to define rules improving the
fill-in. Tt has been shown that the labeling must allow a continuous elimination of the junctions by the
automatic compacting of pair of junctions provided by the LU process. The labeling must be achieved in
such a way that tail-junctions remain the less time as possible in the subnetworks on which the compacting
is carried out. We also showed that these rules can still be applied to loop subnetworks, even if they do not
provide the same improvement as for branch-subnetworks. The methods we propose give a significant
reduction of the number of fill-in blocks, specially for chain and branch-subnetworks. In the case of loop
subnetworks, it is hard io say that this method provides the optimum number of fill-in blocks. Nevertheless,
it always provides a better fill-in than other classical methods.

To define the rule, we introduce the definition of a chain-patk P(1,]) between two junctions I and J (I
and J being a tail-junction or a branch-junction), as the succession of chain-junctions, allowing to connect
the external junctions I and J of a chain-subnetwork. If a chain-path contains a tail-junction, we will call it
a tail-path. In the particular case of loop nerworks, any configuration of chain-path encountered on chain-
networks and branch-subnetworks can be found, but chain-path can also relate two identical junctions. For
example, we can write :
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-P(2,5
- P(l1.1

{2.4,5} s P(1,2) ={1,2} ; P(3,2) = {3,2}, for figure G-11,
{1,2,3,4,1} for figure 6-12,

T et

Now, we can propose the following general recursive labeling method, we call the chaein-path-march,
where “march" means here : "label continuously the waves on the tubes connecting the chain-junctions of
the path”. This method deals with creating "reduced-subnerworks". We call a reduced-subnetwork, a
subnetwork containing all the tubes non already labeled in the process, Two kinds of reduced-subnerworks
must be defined:

- branch-reduced-subnetworks : these subnetworks still contain iail-paths. The reduction of this
subnetwork is performed by applying the tail-path-march: this march is a chain-path-march applied on a
tail-path. The reduction is made from the tail-junction of the tail-path. ]

- tail-irreducible-subnerworks : these subnetworks do not contain any more tail-paths. They
subnetworks necessarily contain loops.

The recursive process we propose is decomposed in two steps :

- the creation of the irreducible subnetwork applying the tail march method,
- the reduction of the irreducible subnetwork applying the general chain march method.

It can be summarized by the following algorithm :

# Begin "Creation of an original tail-irreducible-subnerwork"
#Do while tail-paths still exist
# Begin "Reduced-subnetwork definition"
# Make the inventory of all the remaining chain-paths
End "Reduced-subnetwork definition" #
# Begin "Reduction of tail-reduced-subnerwork"
# March on all remaining tail-paths
End "Reduction of tail-reduced-subnetwork™ §
End do #
End "Creation of original rail-irreducible-subnetwork" #
(6-1)
¥ Begin "Reduction of tail-irreducible-subnetworks"
#Do while chain-paths still exist
# Begin "Irreducible-reduced-subnetwork definition"
# Make the inventory of all the remaining chain-paths
End "frreducible-reduced-subnetwork definition™ #
# Begin "Reduction of irreducible-reduced-subnetwork"
#March on all remaining chain-paths
End "Reduction of irreducible-reduced-subnetwork" #
End do #
End "Reduction of tail irreducible nerworks" #

Consequently, the labeling process is equivalent to a compacting process in which all the chain-
subnetworks are systematically eliminated in one equivalent junction. The reduced-subnetworks are the
equivalent networks obtained when introducing the equivalent junctions determined in the previous
reduction step. The process is repeated until the reduced-subnetwork obtained is equal to 2 single junction.

6.3.2. Application on branch-networks

To demonstrate the application of the chain-path-march rule, let us first take the example of figure 2-1
network. This network does not involve any loop. Consequently, its reduction is limited to the first step in
section 6.3.1 algorithm. Here are the different chain-paths encountered on the original network. Figure 6-
13 presents the labeling obtained by the chain-path-march rule.
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-P(1,3)={1,2,3} ;

- P(9.3) = {9.3};

-PB(5,3)= {543},

-P(7,6) = {7.6} ;

- P(8,6) = {8.6} ,

The reduced-subnetwork obtained contains only one chain-path ;
The final subnetwork is made of only one junction : junction 6.

The last junction of the chain-path always belongs to the newly created reduced-subnetwork. It must be
noticed that the length of the chain is not important in the process, and for a given reduction step, chain-
paths can be reduced in any order.

The resultant BLT characteristic matrix is presented on figure 6-14 and provides a significant
improvement of the fill-in. As on figure 2-2, the fill-in blocks have been noted "x" and the originally non-
modified diagonal blocks have been noted "[". The fill in is now equal to 11 instead of 14, and the matrix
is now 25 % filled. No fill-in block contributes to the creation of new fill-in blocks. Now we can say that
the first labeling proposed on figure 2-2 was not so bad, especially because waves were labeled
continuously on cach tube.

P(3

(&

2nd step reduced
network

P(6,6)(6)

3rd step reduced
network

Original network

Fig. 6-13 : Application of the chain-path-march labeling method on figure 2-1 network

(11 00 0000 0 0O0O0COCO0 0 O

110100000000 CO0O0GO00

f x 11 0000 O0O0CO0O0CO0O0O0O0

0011 1000CGC100600O0O0T10

o 00011 00C0O0CO0OO0O0CO0CCO0CO0

00t x 11001 00O0O0O0T1O0

00900 O0CO0CI!1I 1 O0O0CO0O0OQDO0O0OO0

o ¢ 000 O0O0C1]1 01 006UO0CO0O0CDO

w=l0 00 0001 x 1 1 00O0O0O0O

001 x1 x 001 10000O0T1OCO0

9 00 0O0O0O0COOOCI1 1 0O0O0OTUD

9 ¢ 0 00O0COC6ROCODOTT LI 1T 0O

OO0 00O0CO0O0CQO0O0CO0CO0T 1 OO0

0O 000CO0O0O0CO0OCDODOI1 X1 1 01

¢ 00C 0O O0CO0OO0O0OT X I x 11

\0 0 1 = 1 x @ 0 1 x 0 0 0 0 1 U
. Fig. 6-14 : BLT equation characieristic matrix for figure §-13 network




6.3.3. Application on leop networks

The application of the recursive process explained in section 6.3.1 will always require at least the .
reduction of one ureducible network. Figure 6-15 gives an example of a network containing several loops.
Two labeling ways of this network have been considered :

- the implicit labeling for which the waves are labeled in the order they are created in the network
topology description. This means that the first created tube will support waves W, and W, ; the second

created tube will support W, and W, And so on,
- the chain-path labeling applying the chain-path-march rule.

Tai- irreducible-
subnerwork

Fig. 6-15 : Example of a loop networfk requiring tail-path marching and general chain-path marching
The reduction process leads to the foilowing network reduction :

1) Creation of the original tail irreducible network
-P(1,2) = {14,13.8,7,2}

-P(15,4)={15,10,9,4}

2) Reduction of the irreducible network
-P(11,31) = {11,1,2,3}

-P(3,12)y={3,4,5,12}

-P(11,12) = {11,12}

-P11, D ={11,7}

-P(7,12) = {7,12}

-P(3. 7 ={3, 7}

One must notice that the jrreducible network is the network defined by all the connections existing
between junctions 3, 6, 11 and 12 (figure 6-15). Even if the fill in is bigger than in the case of branch-
subnetwork, the chain-path method provides a better fill-in, The implicit method gives a fill-in equal to 163
whereas the chain-path method provides z fill-in equal to 82.
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6.4. Application : calculation time improvements

6.4.1. General objectives

Taking into account the sparse property of the matrix is particularly useful for large size matrices. In
this section we present different CRIPTE code calculations carried out on different nerworks. For each of
them, we have written down the calculation times dealing with the different steps of the BLT equation. To
manage with the different BLT calculation options presented in this paper, we introduce for each of them a
specific encoding. Here are the different calculation steps we have checked :

- calculation of the rube matrices,

- caleulation of the scattering parameters of junctions,

- resolution of the BLT eguation linear system :

- option D : Direct method, without taking inte account the sparse property of the matrix

- option S§_Un : taking into account the general Sparse properties of the matrix, treating Unit
diagonal blocks as 2 common non-zero block

- option 8_Uy : taking into account the specific Sparse properties of the matrix (avoiding
diagonal Unit blocks calculations),

For the calculations taking into account the sparse property of the BLT matrix, we have considered four
different labeling methods. For each of these methods, the waves have been labeled continuously on each

tube (as W and W, ;,. The labeling methods, all implemented in the CRIPTE code, are :

- option Im : the "[mplici" labeling method, already mentioned in section 6.3.3,

- option Cm :the "Chain-path-mparck" labeling method.

- option Co : the "Cploring" labeling method. This method is the one generally proposed to improve
parallel calculation algonthm. It contributes to the generation of independent branches which can be treated
separately [15]. Waves are labeled in such a way that connected tubes must not have continuouns labeling.
This way, different "color” families are created

- option Mp : the "AMinimum path" labeling method. This particular method has for objective to
minimize the distance of the off-diagonal blocks to the diagonal blocks. The recursive labeling process can
be summarized as follows. One has to begin marching on the Iongest path on the network, the length of the
path being defined as the number of the junctions invoived in the path. When a branch-junction is
encountered, all the paths have to be labeled, marching from the longest path. After this, the user marches
again on the original longest paths. And so on.

Finally, with respect to the caleulation type, the name of a BLT calculation type will apply the
following rule : "resolution type" "labeling #ype" " unmit block calculation type". For instance a
configuration called "S _Cm_Uy " means a sparse resolution technique avoiding calculation on unit
diagonal blocks with a chain march labeling method.

Three network configurations have been considered : chain-networks, branch-networks and a loop
network. For the two first types of networks, we have tried to analyze the improvement obtained as a
function of the number of bes introduced in the network description.

6.4.2. Number of tube dependence : chain-networks and branch-networks

In this section we want to show the gain obtained on two peneric network topologies by the different
resolution techniques when the number of tubes increases. The different chain-network configurations are
obtained by connecting one tube on a tail-junction (figure 6-16). Beginning with a simple three tube
branch-network, the other configurations are obtained by adding two tubes connected on the same tail-
junction (figure 6-17).

In all of these networks, we have taken the same tube model. Tail-junctions are 50 Q2 scattering
parameters (file "ter50_20.s"), chain-junctions and branch-junctions are ideal connections between the
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wires on each tube {respectively "con40.5s" and "con60.5s"). The same transmission line, 1 meter long, with
20 conductors (file "rube.+") has been considered for all the tubes. Tubes and junctions have been chosen in
such a way that their parameters are frequency dependent and must be calculated at each frequency. On
each network, calculations have been achieved with the CRIPTE code at 5 frequencies between 300 kiHz
and 100 MHz : the calculation times displayed are an average of the time for those 5 frequencies. For each
of them, the source considered has been the same : a serial 1 volt generator applied on wire 1 of tube 1. The
version of the code used in the calculations does not invoive any compiling optimization option.

For the chain and branch-configuration, the maximum number of tubes considered is equal to 19.
Consequently, the maximum number of unknowns is equal to 760. There are 19 chain-petwork
configurations (from 1 to 19 tubes) and § branch-network configurations (with 3, 5, 7,9, 11, 13, 15,17, 19
tubes). For the chain configuration, the minimum path labeling option was not worth considering because it
gave the same labeling order as the chain march option. To have significant calculation times,
computations have voluntary been carried out on a slow computer, 2 SUN SPARK ONE. The avérage time
to carty out the 205 calculations is close to 15 days.

ter50_20.s cond0.s. con40.s. condQs. condOs. cond40.5. cond0.s. ter50 20s
O—A ——O)—"COO—0—O—L0—)
wbet ~ tubet ~ tubet fube.t tubet ~ tube.t — tube.t

I=1 =1 I=1 1=1 =1 I=1 =1
Fig. 6-16 . Generic chain network

ter50_20.s

ter50_20.s

=1 ) ter50_20.s
Fig. 6-17 : Generic branch-network

Figure 6-18 and figure 6-21 represent the calculation times with respect to the number of tubes for
different critical steps of the BLT calculation. The gain brought by the sparse technique is obvious. One
will notice the N’ variation of the direct technique, which is a characteristic of LU technique (limit of the
relation mentioned at section 4.1 when N is large), and which had been observed in many calculations
performed with the previous versions of the CRIPTE code [9], But the two sets of plots point out the fact
that the improvement obtained with the sparse technique would soon require in the future the same kind of
improvement for the calculation of scattering matrices of the junctions. The plots rclated to them clearly
show their linear dependence with respect to the number of tubes. Nevertheless, let us recall that, in those
calculations, we have forced the calculation of the scattering parameters and the characteristics of the tubes
at each frequency and that no compiler option has been used to genemate the code.

Figure 6-19 and figure 6-22 show the different calculation time obtained for different sparse techniques.
Avoiding calculations on upit diagonal blocks always give better results than making the calculation on
these blocks. The gain is particularly noticeable for chain matrices. For 19 tubes, the sparse matrix
technique, using the chain-path-march labeling, is almost 50% faster than the implicit labeling technique
for the chain-network and 25% faster for the branch-network. Figure 6-20 and figure 23 represent the fill-
in obtained with respect to the number of tubes. The plots allow to setup a classification of the four
tabeling techniques for their efficiency to optimize the fill-in : 1™, chain-path-march labeling technique ;
2™, minimum path labeling technique ; 3™, colored path labeling technique ; 4®, implicit labeling
technique.
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Fig. 6-18 : Chain-nerwork configuration : computation times for direct and sparse LU resolution
compared to tube and junction parameter calculation

45 (- -2 - -TS_Im_Un
40 {|—=—TS_Im Uy
35 |- -& --T5_Co_Un
30 {|—k—TS_Co_Uy
==0--TS_Cm Un

Time (8)
S
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1 2 3 4 5 6 7 8 9 10 1t 12 13 14 15 16 17 18 19
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Fig. 6-19 : Chain-network configuration : calculation time jor different sparse LU techriques

Number of fill-in blocks
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Fig. 6-20 : Chain-nerwork configuration : fill-in per blocks for 3 labeling methods
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Fig. 6-21 : Branch-network configuration : computation times for direct and sparse LU resolution
compared to tbe and junction parameter calculation

140 (-0 -- T S_Im_Un
—&—T 5 Im_Uy

120 T

—a—T 5 _Co_Uy
80 T|---0---T S Mp_tn
60 +|——T 5 Mp_Uy
==-0--- TS Cm_Un
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0 — +
3 5 7 9 11 13 15 17 19
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Fig. 6-22 : Branch-network configuration : calculation time for different sparse LU techniques
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Fig. 6-23 : Branch-network configuration : fill-in per blocks for 4 labeling methods
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6.4.3. Example of loop network

The loop example we have chosen in this section is the one depicted on figure 6-15. All the tubes have
the same characteristics as the one used on section 6.4.2 networks (20 elementary wires). In the same way,
the tail-junctions (14 and 15) have been applied the ter50_20.s file. The chain-junctions (1, 5, 7, 8 ,9,10,
£3) have been applied the con_20_20.s file. And the branch-junctions (2, 3, 4, 6, L1, [2) have been applied
the con_20 20_20.s file. The excitation is equal to 2 1 volt serial generator applied at junction 14.

The fili-in obtained for the four previously mentioned labeling methods is reported on table 6-1. The
calculations confirm the fact that the chain-path march method provides the smallest fill-in. The
computation times for the BLT matrix inversion are reported on table 6-2 as the fanction of the type of
calculation (see section 6.4.1 for the encoding of the calculation type). Avoiding calculation on unit blocks
still provides an improvement. Apain, as for chain and branch-networks, the important fact is that the
junction scattering parameter calculation limits the total computation time in the sparse matrix technrigue.
Nevertheless, a test has been performed using a version of the CRIPTE code compiled with an optimization
option of the compiler, The time to calculate the junction was the equal to 5 min. 14 5. and the BLT
equation resolution time on the S_Im_Uy configuration was lowered to 13 5.

Labeling Implicit Coloring Minimum path Chain-path-
march
Fill-in 163 123 91 82
Table 6-1 :Fill-in obtained for figure 6-15 loop network
Labeling Implicit Coloring Minimum path Chaip-path-
march
Tubes 2 min. 25 3. 2 min. 25 s. 2 min. 25 s. 2 min. 25 s.
Junctions 24 min. 25 s, 24 min. 25 s. 24 min, 25 s. 24 min. 25 s.
D xx 1h. 13 min. 01 s. X .3 X
S xx Un 1 min. 34 5. 1 min. 19 5. 1 min. 00 s. 58 s.
S xx Uy 1 min. 27 5. ] min. 13 s. 53 s, 52 s.

Table 6-2 : Calculation times obtained for figure 6-15 loop network
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7. Conclusion

In this work, more than the presentation of a numerical resolution of a linear system, we have tried to
emphasize different ways to understand the significance of an LU technigue applied to the BLT equation.
We have also shown how this technique could be generalized to the powerful compacting of subnetworks.
But we also wanted to demonstrate that it was.

First, with the same routine used to solve a BLT equation, we showed that scattering parameters and
equivalent sources could be derived on any subnetwork. The natural LU method we used to solve the BLT
equation, hides very interesting physical properties. Using flow-graph theory, we have shown that the LU
process is equivalent to express the wave on a network as the sumn of all the possible paths scattering this
wave on the network and possible sources arriving to its location. The similarity with famous calculation
rules, such as Mason's rules, well known in the domains of electric circuits and automatism has been
mentioned. It could have been a great help. for the resolution of the equation but it is valid only for scalar
variables. So, this rule does not fit with the matrix block formulation of the BLT equation.

Second, tbe bi-directed coupling existing on tubes suggests 2 way to label waves continuously on a
same tube. This way, the analysis of the analytical solution and the analysis of the related flow-graph
demonstrated that the LU process automatically provides a real junction-to-junction subnetwork
compacting.

We have also emphasized the fact that the sparse structure of this equation allows different
computation improvements. Taking it into account gives significant reduction of memory requirement and
calculation time., Moreover, due to its specific formulation, particular calculations dealing with unit
diagonal blocks can be avoided. But, the most significant improvement is certainly that the junction-to-
junction compacting operation hiddenr in the LU process suggests an intuitive way to label the waves on a
network to reduce the number of fill-in blocks created.

In the past few years, electromagnetic topology had proved it was an efficient method to treat EM
coupling on large scale problems. Thanks to the subnetwork compacting capability, it was always possible
to decompose a big system in small systems. However, the desire to keep munning the BLT equation on
small computers, required numerous subnetwork calculations, increasing the number of network
manipulations, the number of calculations, and the number of intermediate data to store. Now, the new
considerations on the sparse structure of the BLT equation allow one to avoid all these drawbacks and, in
the future, will make the user more inclined to apply the method on industrial rype problems.

Meanwhile, these improvements open new theoretical application fields to electromagnetic topology:

- the generation of statistical data-bases because of the capability to run nurmerous calculations ¢n
different configurations of the same network,

- the resolution of inverse problems based on multiple source state excitations on the networks,

- the implementation of the non-uniform BLT (NBLT) equation, which takes into account non-uniform
bundles, because the theory lays on the calculation of chain matrices,

- the generalization of the applications of network calculations on 3D structures with their large block
requirements.

Tomorrow, because the computation requirements will no longer be a problem, EM topology and the
use of network theory will go on spreading in laboratories. It will also be able to extend its applications to
low frequency problems (the site protection against lightning for example) and high frequency problems
(the freatment of an aircraft up to several GHz for example},
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