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Single Modal Speed for Analytically Solvable Sections

Carl E. Baum

Adr Force Research Laboratory
Directed Energy Directorate

Abstract

A nonuniform multiconductor transmission line (NMTL) can have its propagation represented
(and computed numerically) by a product integral corresponding to dot multiplication of the product
integrals for a set of uniform sections. For a smoother transition from one section to the next (continuous
characteristic-impedance matrix) one can interpolate the characteristic-impedance matrix for each section
from its end-point values. The procedure discussed in this paper concerns the case of all modal speeds
the same (such as the case of perfect conductors with a uniform dielectric medium). The interpolation is

accomplished in a way that preserves the symmetry of the characteristic-impedance matrix (and hence
reciprocity) throughout each section.
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1. Introduction

A nonuniform multiconductor transmission line (NMTL) has the general telegrapher equations as

(Valzs) = =(Zmlz.s)) - (Tals) + (P (z,5)
(Talza)) = ~{Fam(z9) « (Tuls)) + {1 (z.9))

(1.1)

Pl |l

for N conductors plus reference (zero voltage). The vectors have N components and the matrices are
N x N. These equations can be combined in various ways to give a single supermatrix equation 2N x
2N) [5, 6, 13]. From a numerical point of view these can be solved via the product integral [6]; this is
basically a staircase approximation with the per-unit-length impedance and admittance matrices assumed
as constants within each short section of the transmission line.

If the modal speeds are all the same the matrix equations simplify considerably [4, 5]. This
corresponds to the case that perfect conductors (transmission-line conductors) are embedded in a uniform
medium, but the conductor positions and sizes can vary as one proceeds along the transmission line
(increasing z coordinate). This allows one to concentrate on the characteristic-impedance matrix (a
function of z) for diagonalizing the systemn of equations. In [5 (Section 6)] a method for common
diagonalization over a section of NMTL is developed by normalizing this impedance matrix by
postmultiplication by the matrix inverse at one value of z (the beginning of the section), diagonalizing the
product at another value of z (the end of the section), and interpolating the eigenvalues between 1 (at the
beginning) and the ending values. This gives an approximate way to define each section in such a way
that analytic techniques can be used to define the propagation in terms of tabulated functions
(exponentials, Bessel functions, etc.). Furthermore, the characteristic-impedance matrix is made to
smoothly transition from one section to the next {only slope discontinuities). Unfortunately, however, the
interpolation between section end points produces an approximate characteristic-impedance matrix
which is, in general, to some degree nonsymmetric. Ideally a symmetric interpolation matrix is desirable,
thereby satisfying reciprocity. In this paper such a symmetric interpolation is developed.




2. Propagation Matrix as a Scalar Function Times the Identity Matrix

Assume a uniformn medium with permnittivity £ and permeability p giving

1
v = [p&] 2 = wave speed
(2.1)

1
Z= [%F =Y = wave impedance

There can also be a conductivity o, but this can be combined with £ to give a complex, frequency-
dependent permittivity. If uz and £ are positive real constants this will give special convenient properties

for waves in time domain. Assuming perfectly conducting transmission-line conductors we have

(2,’,,,,,(z, s)) =su ( fnm (2)) = per - unit - length impedance matrix

(~£,m(z: 5)) =sE (f Sn,m (2))_1 = per - unit - length admittance matrix

(Fenm )

1
(25 m(z9) - (Vamis)J2
?(s)(lu,m) = propagation matrix

I}

¥s)

5 .
o propagation constant

two — sided Laplace ransform {over time 1)

2 + jo = Laplace - transform variable or complex frequency @.2)

H

(ch'm (z)) Z( anm (z)) = (ch’m (z))_:l = characteristic - impedance matrix
gnm )

T
= ( fanm (z)] = geometric - factor matrix (dimensionless)

The geometric-factor matrix is not only symmetric (reciprocity); it is real-valued. Furthermore,
due to its impedance/admittance properties in (2.2), the passive nature makes it positive semi-definite,

and we will generally assume it to be positive definite except in special limiting cases. Then we have

N
(fenm @) = Elfﬁ(z) (n (2N g2

f(z) > 0 (positive eigenvalues) 23)

(fu(z)) B
(fn (z))ﬁl . (fn(z))pz

real eigenvectors

n

1 B1.Ba {orthonormal}




As a real symunetric matrix (special case of Hermitian matrix) this is always possible. This allows us to

write

[#4 N o
(fonm@) = ﬁ%fﬁ (2) (fn(2)) (=) g (2.4)

fg(z) > 0 for o real

This gives us expressions for and ways to compute the inverse matrix as well as the square-root matrix
and its inverse. Note that for real a, the matrix as above is also positive definite, real, and symmetric.




3. Symimnetric Renormalization for Each Section

Starting from some zp (which can be zero meters if desired) let us label a set of values of z as
Zp € 7] <2y € €Ly € Fgy] < - (3.1)

Then some section {£th} of the transmission line is defined by

Z) S Z S 44 32

For this section, let us choose (fg, . (z,)) for purposes of renormalizing the telegrapher equations via

(v'.'rs,!)(z,s)) ( Sonm (zz)) 2 w(Z, s)) normalized voltage vector
({n(tl(z's)) =2Z (fg"’m (zz)) (I,,(z s)) = normalized current vector
( () (z,s)) = (fg"’m (zz))_ (V(‘)’ z,s)) = normalized per-unit-length voltage-source vector (3.3)
( (s.0) (Z,S)) =Z (fg7I m(zz))i ( i (z, s)) = normalized per-unit-length current-source vector
Note that the normalized voltages and currents have the same units by appropriate inclusion of Z.
Y approp

The telegrapher equations (1.1) then become

% ( )(z,s)) _#(s) (X,(,lm(z) ( (z s)) + [v(5 4 (z, S)}
% [ e, 5)) _y(s)[ x4, (z)) 1 [ )(1,5)) + ['i',fs,z)'(z,s)]
(xh)

N|u-l

1
7(5 (fg" m zt) ,m(z’s)) * (fgn.m(z!))__z_ Y

1
= (fgu,m (Zt))_i - (f.ﬁ’ﬂ,m(z)) y (fgn,m(z‘)) 2
- (<)

1 1 (3.4)
(XR0) " = 73 2 gm0 - (B8] - (o2

3 1
B (fgn,m (zt))E ’ {fgn,m.(z))_] ) [fg"f"' (z!))i




Now (X & m(z)) (as well as its inverse) is symmetric and positive definite (as a product of positive definite
matrices). As such it can be diagonalized with positive eigenvalues and real eigenvectors.

Instead of diagonalizing (Xs,zzn(z)) for each z in the interval {and thereby have eigenvectors
undesirably as a function of z), let us perform the diagonalization at z= z,, 1 giving

(%88utzes)) = 35Dt (40),(49),

B=1
X.(Bt)(z!-}l) >0

det[(igln(nﬂ))- xfg”(lzn) (ln,m)J =0

[(ngn(zeu)) . (x&"]ﬁ = (ng))p- (Xﬁ’,?n(zm)] = x,(sl}(zu—l)(xa(f)]ﬁ] 55
[x,(:))ﬁl - [xg))ﬁz = lg,8, (orthonormal)

(xg)]ﬂ real

Note that the eigenvectors are not indicated as functions of z (deliberately). At z=z, (beginning of the

interval) we have

(000)) = () = 240, ()

A B 3.6)
XP) =1 for p=12-N

The same eigenvectors can be used in this case since any complete set can be used for the identity.

So let us define an approximation to (Xfﬁn(z)) as

(e = 32 (£9) (<9)
! B

A=1 B
(%48(20)) = (tnm) = (X$nfze)) @7

(Xg w (ze+1 )} (Xn m(z!+‘i))




(with superscript a identifying an approximation). The eigenvalues of the approximating matrix are

chosen to match those of the original matrix at the interval end points as
£, 4 LALS =
X(ﬂ a)(zl) = X(B)(zl) =1, X(; a)(z£+1) = Xg)(zt+1) (3.8)

and assume a convenient smooth functional form {(polynomijal, exponential, etc. in z) in the interval. Of
course, let us require

X};’“)(z) >0 for z; < z < zg41 (3.9)

so that the approximating matrix is real, symmetric, and positive definite in the interval.

From (3.4), using the approximating matrix we have an approximation to the geometric-factor

maltrix as

1

1
) = (punee® - (5760 - (e
N 1 1
S [(fs"'m(“))z - (""’ﬁ] [(fs,,,,, alf? - (xnm]
=1

real, symimetric, positive-definite matrix (3.10
lonm0)  (frteen)) = (fpumtaen)

[f(z'a) (ze ))

En,m

By this interpolation scheme then ( fg’") (z)) is kept continuous as one passes from one interval (£) to the
.1

next {£+1), crossing each boundary between adjacent intervals. Furthermore, as compared to the scheme

in {5, the geometric-factor matrix {and hence characteristic impedance matrix) is symametric for all z,

exactly satisfying reciprocity.




4. Solution for Each Section in Normalized Form
In supermatrix form the telegrapher equations as in (3.4) become
(v D (z,5)) [(5“’ . s)) J ® (i"r(ﬂ(z,s}) . (v(‘ D(z,5n
(:,,D(z,s)) T e Gz, 5)) (Z59 (z,8))
- (0r,m) (XS‘,L(:)] @1
(B%69), ) = =76y
PP [X"’m(z)) {On,m)

The related supermatrizant equation is

&{(_,Sf),,,(z z,;s)m,) ((g,(,fl,,(z s)])p,}!'] ® [[iﬁfl:(z,zz;s)]m P,)

[(—-n m(Ze. 2458 P, _,,-) = [(ln,m)},,pf]) = [E;::)) E?:‘:}) 4.2)

(boundary condition)

. with the solution in product-integral form [6] as

50
[(ég)?ﬂ(z! ,z,;s)l, p'J - ]f[l( e ‘)] p.p ] dz’ 4.3)

LY

In terms of this, the solution to (4.1} is

(%Sf)(z,s)J _ [ t) (z s))
({96.9)| (o), ] (196.9)
(s’t} z’,s
- [(=“’m()] ]@ [ | )] a @4)
2 P [;n(s,!) (. s))

. So all we need is the solution {product integral) for the matrizant. For convenience we also have




[(Egﬂ,. (z’z,;s))p‘p'] _ ([_E_(t)(z,z,;s))np'] ((é(!)(zz.z‘;s))p,p,]
2 @5)
- [(__::(l)(z,zg ;S)JP,P'] [(E(f)(z',zzﬁ))p_?,]

50 that one can have all supermatrizants referenced to z, if desired.

®
®

In Section 3 an approximation is developed for [X,‘.:,fg,,(z)) This can be used to give an approxi-

mation for the matrizant via

(e | eem)  (x9)
(e ) gl

(0n,m)
N (te) 2 (£0Y [0
=-¥s)| » (¢,0)71 o) ﬂngB ()( ]ﬁ[x )ﬁ
ﬁzﬂxﬁ' ) (xSf)Jﬂ(xﬁ’))p (On,m)
(0s,m) 5 @) (9] (=
o i - 0 ) Xp (-" ),6( )ﬂ
B xg" () [xn ]ﬁ[xﬁ")) , (0n,m)

4.6)

N o xlfp)
= —7(s) Z[(zﬁf’ )ﬂ[xg) )ﬁ] ® [Xg'")_l @ ﬁo J

This can then be applied to the normalized voltage and current variables in (4.1) to give approximations
(i’rgf’“)(z,s)) and (f,,(l’n)(z,s)} (See Appendix A for the use of the direct product ® in forming

supermatrices.)

Notice in (4.6) that there is a partial decomposition of the matrizant since

10




(¢.9)
[(z) (z) o O KB @)
X(‘r‘} (I) 0

[ (9. (49) ] o| ° X(ﬁ'z'a)(z")J

xg’z-")'l @ o

- (&), (x%"J,,j 16,6, ]

-3 a ( -:)
0 x(ﬂ" )(2) . 0 xfg" )(z) ¢
x{ea” (z) 0 xa (z") 0
B B

= (O,,,m) @ (Up,p-) for f1# Ba and all (2, z") pairs in the interval

With the terms in the exponential thereby commuting we have (using (B.8) and (B.20))
(£,a) 2,8
e[( ) ))’ ; ]
(¢,)
sl (0 (0 0 Xt
-1 ) [y
|: (Ir:,m) - [xg))ﬁ [Ig)]ﬁ] ® (1P:P')

N 0o xa)
+ l:(::g,ﬂ]ﬁ (x,(,f))p} ® v'p[— ?(S)[Xg-‘)-l o B . H @s)

where the terms in the N-fold products over the eigenindex f§ can be taken in any order due to the

OLIK

[]
-

8

(0)=

—

ﬂ:

commutativity of the terms. This result can be further simplified by successively dot multiplying the
terms and using the orthogonality of the eigendyads as

11




[Eamte), )
[oenr - S0, 60), | 6o

(¢,3) 2)
+ i[(xgt))ﬁ(xgl)]ﬂ} ® exp[—?(s) [xg-:))‘l " X,BO ( ]]

M=

1

™
i

p=1

),
- ﬁ[(xg))ﬂ(xg))ﬂ] ® exp *7(5)[ Xf_cf ’;;_1 " X}f ( J]

B:‘l 0

4.9)

where the expansion of the identity as a sum of eigendyads in (3.6) is used. This is extended to the
. product integral (using (B.14) and (B27) as

[(ggg;;)(z,,,;s))w]

- i o X(l,a}(z)
—¥(3)| {xn) o (X _ A dz’
:[:IEXP{ ¥ )[( ) )g] ® [tha) 1(2) o

OF:

oy

B=1 1

= CI:) T[(I"”") - [xgz)Jﬁ(xgt)JJ ® (1) (4.10)

p=1
(2,a),_,
+ () x(!) : expl —¥(s g xﬂ ) =

Again the N-fold products can be taken in any order due to the commutativity of the terms. (See
Appendix B for various formulae involving the product integral.) This can be further simplified by
multiplying out the terms and using the orthogonality of the eigendyads as




[(égfr:)(z, zg;s))p‘ P,]

< 3](4),(4),

g=1 ]

S04, o 6o

z 0
® exp| —¥(s) ~
h} ‘{ [Xfé’"’ @

0

LI;'I exp[_:v(s)[xg, ‘)—‘1 (z')

x5,
a
(‘E’a) P4
a

The matrizant is now decomposed into a sum of product integrals, with each product integral

4.11)

. over only a 2 x 2 matrix function. This constituent product integral is the next step.

13




3. Solution for Normalized Supermatrizant via Second-Order Differential Equation
In order to solve for the matrizant, it is instructive to return to the telegrapher equations (3.4)

which are now stated in terms of our approximation for (X,,,,,,(z)). Writing out the telegrapher equations

in terms of our approximation we have

37 (%99 = -5 (xEa) - (H.9)) + [v&’-‘f (z.s)]
2 (#9%9) = -6 () - (49) + (“"’ (z,s)}

(57N gy Yo FE%). ¥ )
24

| (#99) +

(#%%9) ("if"“" (,,s)]

For purposes of the matrizant we need only consider the homogeneous equations {no sources). From the

(5.1)

diagonal representation of the coefficient matrix in (3.7) we have

N

(o) - Elx};'“)ﬂ(z) (), (4), 62

Defining
¥z,s) = (xﬁf’Jp - (#99) -
{5.3)

:Tj(;)(z,s) = (xg))p . (ﬁgf’a)(z,s))

we have

(Gg,a)(z's)) - iig)(z,s) (In)p
p=1

N

(#9e9) = X506 ()
p=1

(54)

scalarizing the equations (homogeneous) as




i“'&(!)(z,s) = —¥(s) X(l’a)(z) f(!)(z 5)
—:ﬁ Nas) = -7(s) XY 97 () ¥ zs) 55)

Wt )(z,s) _#9 0 X(;'a)[z) i’rg)(z,s)
“)(z,s) 7w 0 ) %

The product integral of the coefficient matrix is exactly that appearing in (4.11).

Following the procedure in [5] we form the second-order differential equations

[ -1z x50 | 5 _,z(s)} ¥Da,s) = 0

(5.6)
(2,2 J = (£
|:-a—z!- + [Ezn[xﬂ )(z))]a; —72(5)i| ig )(z,s) =0
These have two linearly independent solutions (superscript § = 1, 2) related by
2 55z = -7 X))
7 a)~! a
250z, = -76) X5 () 75z 52

§=12
Examples of such solution (linear and exponential variation of eigenvalues) are treated in [5 (Appendices)].

This can be restated for the matrizant

z 0 X[!r‘)(z')
7 z,zx = exp| -¥(s P z’
( (z.24:9) ) Ll @{ #( )[X)(B!,a)-l @ o d

o xIy
: (Wp,,](%zz:f-)) 5 exp[ﬁ(ﬂ[xﬂ’ A . . (‘.l;p,p'(z:zl;s)]p 53

15




such as appears in (4.11). Writing out the equations for the four components we have the first-order dif-

ferential equations

- (¢,a) (2.24:8) = —F(s) Xf;’a)(Z) v”rg‘;)p(z’zus)

az Vipig
~1
2 5 (e zais) =~ XSG () $sD(e.z439)
=12

It

and second-order differential equations

S [l -]t -o

’:-—2- + [——— tn(x(l ")(z))]— ‘7’2(5)- sz p(z 24;5) = 0

p =12

subject to the boundary conditions at z
and have the solutions in {5.7). Therefore we write

2
ngp ﬁ(z z(,s) = gld{ﬁp”a) {rg:S)(z,S)

2
> a8 10z,0)
d=1

Y NCERE

p =12

H

There are then eight coefficients d?(,ﬁ r’f) for each B to determine

From (5.7) and (5.9) we find

(voltage like)

{current like}

G

(5.10)

zg in (5.8). These second-order equations are the same as (5.6}

Gan




£ i) = -7 X )6):_14?;:’” 5

2
- ¥(s) Xg")(z) E dg”‘.s) -z:é!’ %) (z,5)

3 5 (s, 20) = ~7(e) X () zd‘ﬁ A ) z,6) 512
= —F{s) Xg'a)_ (z)ngﬂ,’fj) i'rg’s)(z,s)
12 5=1
from which we conclude
858 = dPD) for pr=1,2and 5 = 1,2 (5:13)
leaving only four unknown coefficients. Apply boundary conditions at z = z, from (5.8) as
e o zss) = 1= S B {9
¥y 1p(ze.2e8) = 1 = 62=; V3" (2e9)
o) = 0 = S0 ey
8=1
P epurs) = 0 = i 45 0z, 5.14)
&=1
ﬁgﬁ%(u,zz:s) =1= id{%’ﬁ) E)g"a}(z,,s)
8=1
giving
Ny _ [ 9§ (459)
(o] N \;é!,l)(z £:5) ;(:,2)(z 0] ) dgﬁ;,z)} 15

- (§e0) § e ()
0) " ¥ ar.s) %”(m 9) 4

L2

This is inverted as

17




4 3 -
{0 0 1(z,) 7D(ze,s) 1] - 19 iét’tz)(zbs}
0 g (21,

\d{ﬁ’z)) —t(“)(z .5) '( )(zbs)

4 h! - ‘ )
(ﬁJ] ) _E(l)(s) vg. )(z 0.5) - ‘gt,l) (z2.5) 1 ] _E(l)(s) V(ﬂ"z)(zt,s)
= B - . . = ; _-(!,1)(:!’5)

gpz 2)) k_i-,g,l) (z2.5) i él,l) (22.9)

-1

Z\(;) (s) = {’g'l)(zzrs) ;}(’1,2) (z¢.5) —ﬁg’z)(zhs) ;‘F'l)(zt,s}

.
TS PRy PCA ) 9 (e _=(22) 3 (L) (5.16)
¥ (s) vg (z¢.5) = '8 (z,s4 Yg (z¢.5) = VB [z,siﬂll

=TI,

_jlen),, ) LA ;(l’])(z,s ]
8o 3 Ln

|

= ¥71(s) [?él'l)(z s} J (E 2)(z 51

=Xy

~ thereby solving for all the coefficients. Note that the determinant above has the form of a Wronskian of
the two independent solutions of the second-order differential equation. This will be useful when specific
problems are considered and special functions (e.g., Bessel functions) are encountered. Note that 7(s) can
be included with dz as 3(F(s)z) for this purpose.

So now we have the matrizant

z 0 X(!")(z)
— = B ,
('Fp o /(z, z;;s)) = ]_;Iexp{ ¥(s) [Xf;’a)—l - o dz

r'[f,g”z)(zz,s) vf; (z,s) - Eg‘fl)(z,,s)vgﬂ)(z, s)]
__5(1,2)(2 5) ;’(M)(z 5)+ v5:‘3!’1)(21':5)555;'2)(z, S):’ (5.17)
[( 2)(2 5):( 1}(1 5) - ,(l )(z s)z(t )(z s)]

54D e ) 50 5 )]

= "'(‘;)(s)

The reader can verify that this is the 2 x 2 identity for z=z,. Inserting this in (4.11) as

[(ﬁg{;)(z,z,;s)]p’pj -

i[(x,(f))p[xg))p] [ 7 a)(z 2458 ))p (5.18)

B=1




we have the supermatrizant for the £th section. This, in turn, can be substituted in (4.4) to solve for the
voltages and currents in the £!! section, noting that

((ES:{L:(ZJZ';S))M,J = ((é(!)(z’z£;5))}’:?'] ® ((i(f)(zz,z';s))m P'}
[0, o v,
] o

[xt) ﬁ["g) }9 (Fppr(zzeis)) (""’P-P’(z"z'“))ﬁ]

x"] [rﬁf) J @ (Fppr (z.209)) 5 (‘T’P»P’(“"“"))ﬂ

which is needed in case there are sources to be integrated.

19




6. Full Product Integral Decomposed by Sections

Returning to (1.1} the NMTL equations can be written in supermatrix form as

3 [(1.-,,,(2,5)) ][ Onm) ¥ (z,;,,.,cz.sn] o [(v,,(z,s)) ]

o A (f,,(z,s)) -Z (?r;,m(zfs)) (On,m) Z (fn(Z,S))
((
b@@ﬂ

z [r,ss)' <z,s)]

\

[ (On,m) (fgn’m(z))] ® [(ﬁn(z,s)) ] 6.1)

(fenm@) " (Onm) ()
((‘—,,gs)’(z,s)J

YA T,(,s)’ z,s}
!

+

= —¥(s)

+

where the wave impedance/admittance has been included to make the voltage and current variables

have the same units. To solve this equation we have the supermatrizant equation

L{@nnteon,) - (Brnte ) © (Buntezo,

& _ = (Oﬂ.m) [fgn,,., {z))
(( nm{ 'S))P;P') = —F{s) [(fgu’m (z))_l (Un,m ) ]

(@nmtzo2059), .| = ((1nm), ) = (1nm) @ (1) (62
-1
{(61'1,"1(2' ZOFS))p'p.) = [(&’n,m(ZOr z; s))P»P')

For the fth section of the NMTL we have

(G,,(z,s)) _ (& s (~n(zt,5))
[z (Tn(z,s))J - (( n,m(z t))p,p'J O [z ('I',,(zhs))]




x (‘71(‘5) (', 5)]
@ dz’ (63)

¢ [(@antno, o (17 .9

[(5:-:,3!(:!-&1:3';5))}”’;) = [(&’n,m(zﬁl:nis)]M,J O) [{‘5n,m(z'rz¢;‘))p,p']_l

Applying the normalization as in Section 3 we have

r'('ff‘"(x,s)) ] _ [fgn'm(Z!))liz (O, ) o [ig)(z,s))
Z (Ta(z.9) Oum)  VomG) ) \(62s)
(59 (o % W (20
[V" (= )]} _ [(f&:.m (z2)) (Omm))_uz] ® ( J 6.4)

2 (Fal=9) Onm)  (fonml=0)

Then following the approximation procedure in the previous sections we have approximate voltages and

currents given by

) (g 1o ) ][50
3e o))" BF)) 2 [w »
o .

[V,(,"a)(z,s)) (ta (V(t a)(z s)J

kz (ﬁl‘r‘)(z’,‘,) = [(cbgf,m)(z,zz;s)]an ® , (j ¢ m}(z’s))

(ﬂs)' (=", s)]
dz’

z ()2, 2; ®
.[ [(‘I’ (Z z S)]P-p'] z [f?(f),(z"s)}

L2

[[&%:)(z’s))rrp’]
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(fonm@) " (Onm) ( () ]
_ |Ven 2| @ [(f9e9) |@
[ (On.m) (fgmm(zt)) 2 ( , ( ))P'P'

(fgn,,,, (z¢ ))_% (On,rr:) J .

1
(On-m) (fgn,m (z‘t))i

(0n,m) (xSf,;::’(z))J o [(fg,,,,,,(zz))"% (©n,m) }

®f, o
[(X,Q,,(z)) (On,m ) (On, m) ( fgn’m (z ’ ))%

1 :
- 5| Venm =02 (0"'"')_1
(On,m) (fg,,,,,, (zt)) 2

[(ﬂ,‘,;:’(z.zz:s))mj

St | () )0 fmtil > ) ]
Onm)  (fgumze)) 2 " Onm)  (frmE)2
( 1 )
| VfemmE (Onm) ” (z) (0) 7(64) J
= 1 Z Vo o (z.z¢:5)
(On m) (fgnm(z!)) J 1 [ J J ( )

\

®

B=
Usam (e : 65)
( n "‘1) (fgn m(zf)

[( Bz, 2 S)JP p’J

_| n-m(z‘))i (0 m) [N : ‘J
{ 8(0;;,;") (fg"’m(q))-‘% © ;;[(AI)J,B(J&)],&] ® (Vg;)(z,z!,s))ﬂ ( 74a ){z 2y; S))_B

(fomm (22 ))_% (On,m) }

O,

1

(0r,m) (fSn,m (ze ))2

With these results we are in a position to write the solution (approximate) for the complete /th

section of the line (z, S 2<z,,1) as

(LA, +1:8
[(Vn_ z(al | )) ]J ] ((6£€;:)(zl+l'zt;s)Jp-P'J ®

z (I,(,’ Mzea105)

(7e..9) J

z (f,‘,"“’(zz,s))
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[ff,ﬁ‘)' (2, s)J

Ze41 (2
+ I [[¢£l,’:l) (z£+1’ z’;;)) '] @ , (6-6)
s P:P Z [f,(,’) (z’,s)]
Now to go to the next section (¢ + 1) we have the continuity of voltage and current as
(17’:(:”1“) (z:+1,5)) (ﬁgl")(zz,S))
= ©.7)

2 ()| |2 (16)

By this procedure, one can go from the voltage at z=zj (Oth section) up through the L-1st section to z7

by successively computing the voltage and current at zj, 23, ..., 27 via (6.6).

For the case that the sources are zero along the entire NMTL, we have a matrizant for the entire

line as

(Aen) | (o (78 z0.))
\z (}"S,L-‘)(ZL,S)) = [[tbn,M(zr_,!o:s))p'P,J ® 7 (T,(,"')(zo,s))

(8hen), )~ @ ((@nson) )

\ £=0

(c8)

with multiplication as # ascends always taken on the left (as in Appendix B). With the section matrizants

as in (6.5) the terms involving the geometric-factor matrices can be combined to give

1

((&’gﬂu(zz.,zo;s)) '} = (fsn'm(ZL_I))E (Onr) 1
i (On,m) (fg,,,,,, (ZL—1)) 2

® ;CS)} é{[r@)ﬂ(é’))ﬁ} ® [u};f;)(zl+1,zz‘;$))ﬁ:|




f,,',,,(zl)-%' f,,m Ze-1 2 n,m
@{(s Pt o m o

1
(On,m) (anm (22))7 - (fi m (ze1)

® [i[(ng))ﬂ(x,(f))ﬂ] ® [f’,(,?;)(ﬂ- %;s))ﬂ] ® {(fg,,’m () 2 (Onm) }

=1 1
[Oﬂﬂﬂ) (fg,.,m (zo0 ))2




7. Concluding Remarks

For the case that all the modal speeds on an NMTL are the same we now have a way to
approximately calculate its response based on an interpolation scheme for the geometrie-factor matrix (or
equivalently, characteristic-impedance matrix) in individual sections of the line. This makes a smoother
transition in going from one section to the next, the discontinuity being in the slope (first derivative) at
the section boundaries. Compared to the scheme in [6], this also maintains a symmetric characteristic-
impedance matrix in the interpolation throughout each section. A previous paper [4] has considered the
high-frequency, or early-time propagation on such NMTLs. The present paper extends this to all

frequencies within the transmission-line approximation.

While the present development has been in the context of an approximation, this need not be the
only case of interest. Since the characteristic-impedance matrix is now symmetric everywhere along the

" NMTL, thereby satisfying reciprocity, we can use this to define NMTL examples for which the solution is

exact (within the transmission-line assumption). These can in turn be constructed, thereby giving a
synthesis procedure for NMTLs for special applications.




Appendix A. Operations with Supermatrices

In [1-3] supervectors and supermatrices are formed to arbitrary levels of partition, i.e., dimatrices
(two sets of indices), trimatrices (three sets of indices), etc. For present purposes we will be considering
dimatrices and divectors (two sets of indices), corresponding to the cases in this paper.

Summarizing, we have addition

[(a,,'m)u’v) +- ((bn,m )u,v) = ((“n,M)u,v +- (b"'m)u,v)

= ({c,,,,,, )u‘v) (A1)

Cumu,v = Bmomuy + bn,m;u,v

. and generalized dot product (contractive multiplication)

CRISLICRIELD W W
= ((dn,m)u_v) (A2)

M N
dn,m;u,v = Z Zan,m’;u,v’ bm’,m;v’,v
v'=l m'=1

Here the matrices are taken as square with

nm=12,...,N (for N xN blocks) (A3)
u,v=1=%12,...,M (for M xM matrix of blocks or submatrices)

Similar to supermatrices, supervectors follow the same rules as above except that each index set has only
one element (e.g., ({e,)y). Here the index sets are set apart by semicolons when writing out varicus
elements (or even higher-order aggregates, each semicolons basically replacing a set of parentheses).
Each index pair of indices in an index set for a supermatrix takes the form of (row, column). This differs
from the convention in [7, 8, 11] where the two row indices are first, followed by the two column indices.
We find our convention more convenient, especfally when multiple levels of partition are involved. For
supervectors, the index set is a set of single indices which are all separated by semicolons when exhibiting
an individual element. MNote the vectors are not distinguished as rows or columns; for contractive

mulfiplication (dot product} when placed on the right surnmation is over the last of the index pair of a
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preceding matrix, and when placed on the left the summation is over the first of the index pair of a

following matrix.

Note that for these operations the supermatrices and supermatrices are partitioned in compatible
ways such that the operations make sense. This can be extended to rectangular supermatrices, but for
presernt purposes the supermatrices are square and of symmetric compatible order so that both addition and
dot multiplication are defined in any order [1-3]. This also allows one to form an inverse supermatrix in
terms of its blocks [3].

One can construct supermatrices and supervectors from elementary blocks in various ways. The
direct sum @ is applied to supervectors as

((‘n)v) = (‘n)'l & (’n)z 6...0 (‘n)M

= (3) (en)y A4

and to supermatrices {(block-diagonal} as

[(A"'m)u,v) = (A’!aﬂ‘l)l'l ® (An,m]zrz ©...0 (AH,M)M’M

= @ (An,m)u.'u.

=1
. 3y
(A,,,,,,)L1 O

= (An’m )M;M (Aj)

k O (Au,m)M’M ),

(A“'m)u,v = (O"'m)u,v for u»v

Note that the direct sum in non-commutative, but that sums and dot products of supermatrices/
supervectors formed as direct sums are themselves direct sums. Furthermore the inverse of such a

supermatrix is merely

-1 M -1
(Anm)y ] = @ (Anmlr,, (A6
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and the eigenvalues and eigenvectors are found by diagonalizing the individual (square) blocks or

submatrices. From this we have the relationships

(W)

ir

Mz

(Anm)yr )

:\
1l
-

Mz
Mz

Foo?
Ape m' s
=1

=\
1l
L
3
i

[eigenvalues of (An,m)u; u,]

M
M=

:\
N
[
a\
U
.

(A7)
Arm) )

=
B
—

det(((A,,’m)u'v )J -

o]
~
|

—_

[eigenvalues of (A,.,,,,.,)u, u,]

=
=

1)
-

m’=1

7 Now we come to the direct product ®, also known as the Kronecker product [7]. This is used in
group theory to form the direct product of groups [12]. Here, however, we are concerned with products

of matrices to form supermatrices as

((Brm)y ) = (Bom) @ (850)
(Bam)Bl1 (Bam)Bl2 -~ (Bnm)Bim

(Brm)BE1 (Bim)BL2 (A8)
(Br,m)Ba,1 o (Bm)BRa,M
Bn,m;u,v = BP"I.,M B:':,v

Here we can see that order is important, so the direct product is non-commutative. In this form we see the
simple interpretation that the blocks are just the first matrix multiplied by an element of the second
matrix. (Here the blocks and the supermatrix are square, but these can be rectangular in a more general
case.} By ordering the indices as we have, the above can be extended to higher-order supermatrices by
successive direct-product multiplication on the right by (Bg 2} etc. The direct product can be readily
seen to have the properties

(Bl y) = (o) © (Bim)”
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{A9)

® (Bum), ) = o) ® (35"

from which we find that ((B“'”’)u v] is orthogonal (unitary) if both (B,’,,m) and (B;,’m) are orthogonal
(unitary) [11]. Furthermore, we also easily find

(Brm) ® [(BEv) + {Civ)] = (Bim) ® (BLv) + (Bam) ® (Biyv)

(A1)
[(Bm) + (Crim)] ® (Biv) = (Bam) ® (BLv) + (Crm) ® (BE0)
As special important cases we have
((‘I,,’m)u’v] = {1,,',,,) ® (lu,v) (identity supermatrix)
1 _lfornm=mand u = v
=Y T 10 otherwise
((O”f’")u,v] = (0,,,,,,] @ (Du'v) (zero supermatrix) (A.11)
on,m;u,v =0
(On,m) ® (BZv) = (On;m} ® (Ouv) = (Brm) ® (Ouv)
An important general property of such supermatrices is (7, 8, 11]
[(B2.m) ® (B2v)] © [(Crm) ® (Civ)]
= {(Bim) - (Gom)] © [(BZ) - (Chv)] (A.12)
This can be applied to supervectors of the form
((en),,) = ) ® (bi)
(b7 b7
_ (br't)bi (A.13)
(b )b3s

by regarding one of the supermatrices in (A.12), say ((C,,’m ]u v) as having a single column for dot
multiplication on the right, or a single row for dot multiplication on the left as

. [(Bm) ® (Bzv)] © ((8n)y) = [(Brm) - (B2)] ® [(BZv) - (82)]
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((tn),) © [(Brm) ® (Biv)] = [(B8) - (B5.m)] @ [(82) - (Biv)] (A14)

The eigenvalues and eigenvectors of such a direct product matrix can be found from those of the

constituent matrices which have the form

(Bom) - [b;,‘“')) - ;.;,.(b,',("')) for '=1,2,...,N

(Biv) - [b5u') )= M,(,,&(w)) for wel2,.. M (A15)

The eigenvalues need not be distinct, nor the eigenvectors all linearly independent in the general case for
each of the above matrices. Considering arbitrary values of #n’ and &’ we have

501 501 © () (5] - - (47 s - (]

- [ (5] © [ ()] = 2 () & (52)
which says that
[bﬁ("‘)J ® (b{"(u') j = efgenvectors of (B;,'m) ® (B;,v) (A17)

Aptar = Agrdg» = eigenvalues of (B,’,,m) ® (Bﬁ,v)

there being NM of each of these (not necessarily all distinct). One can similarly construct left

eigenvectors as well. With these results we also have

{(Bum),.,




-|frefl

*,

= detM ((B;,,,,,)) =detN ((B;:,v))

] (A.18)

Extending from (A.12} we have if either of

(Brm) * (Chm) = (On,m) » (Biv) - (Civ) = (Onm) (A.19)
holds, then
(Brm) ® (Brim)] © [(Com) ® (Civ)] = (Onm) ® (0uv) (A20)

+ of course, the eigenvalues are then all zero. Other special products (such as the identity) appearing in
(A.19) also simplify matters.

One can also have functions of supermatrices. As usual these can be defined in terms of power
(Taylor) serles describing the functions as

=Ya ¢t

£=0

oy = F 7 f (i (A.21)

where due atfention is paid to the radius of convergence of the series. For a direct-sum supermatrix as in
(A5) we have

f((An’m)u,v) = f((dﬂ,m )u’,u'J

(A22)
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For the direct-product supermatrix we have from (A.12) for positive integer powers

[(B;!,m)‘ ® (B;v ] @ [B,, m) © (BI v}] - (B,‘.', m)!+1 ® (Bﬁ,v)!ﬂ

[(B7m) ® (B:'I.v] = (Bam) ® (Bov) (A23)
For f =0 we have
[(Bam) ® (Biv)] = Baw)’ @ (Bin)’ = (tam) @ (1uv)
(A24)

= ((1?1;"1 )u,v]

. provided the constituent matrices are both non singular (no zero eigenvalues since 07 is undefined) and

have complete sets of eigenvectors spanning their respective spaces. There are cases, however, for which
(A.24) does not hold. For the series expansion in (A.21), the £ = 0 term is defined to be the supermatrix

identity as
f((B;:,m) ® (B;,v)) = og (ln,m) ® (1u,v)+ ial[(B;:,m) ® (B;,v)]t

£=1 (A25)
=g (1n,m) ® ( luv Za‘ (85, '") ® [B‘:“')

If either of the constituent matrices is the identity we readily have

f((1n.m) ® (Biv)) = (1n,m) ® f((BLv))

n
(A.26)
f(Brm) ® (luv)) = f{(tnm)) ® (1uv)
If, however, we have
(Bym) = (Bom) fore = 1,2 .. (A27)

but not being the identity (as in the case of a dyadic product of a pair of biorthonormal right and left

eigenvectors), then we have the more general expression




f((Brm) @ (BZv)) = @0 [(1n,m)~ (Brm)] ® (Luv)+(Bam) ® £((BZv)) (A28)
and similarly for (BJ,y)’ as in (4.25) we have

(Brm) ® (B2v)) = @0 (1n,m) @ [(1av) - (B )]+ ((Bom) @ (B2v) (a.29)
As one can see, these reduce o (A.24) for the special case of identity matrices.

A general property of a supermatrix as in (A.8) is its inverse given by

[(Bsm) © Biv)] = Brm) " ® (Brm) " (A30)

" which can be verified by dot multiplying the two sides and applying (A.12) to give the identity

supermatrix in (A.11). Of course both constituent matrices must be nonsingular for this to apply.




B. Product Integrals

As in Section 4, the product integral is a gencral way to give the solution of the first-order linear
matrix (or supermatrix) differential equation [10]. This has been applied to the solution of NMTLs in [6]
with the appendices tabulating many of the properties of product integrals. Here we develop some
additional properties.

First consider functions of square matrices as in (A.21). Beginning with scalar functions suppose
that we have

f(a+b) = g(a, b) = some combination of functions of a and b separately (B.1)

From (A 21} we have [9]

— - £
fla+b)="Y ofa+p] = Zaz[ 3 [;’Jat—z'bz'jl

=0 =0 [£=0 B.2)

£ £1 ¢ . ; .
(!,] = m = [l-l') = binomial coefficient
If N xN matrices (a,,,m) and [b,,,m) commute then we also have (since the matrices move through each

other just like scalars)

{(amm) + (oum)) = 3 @c](an )+ (o m)]

= (B3)

with appropriate attention to the radius of convergence of the series in terms of the matrix eigenvalues.
The point is that if the matrices commute the manipulations of scalars and matrices in the various

functions in f and g are exactly the same 50 that
f((an,m) + (bam)) = {(anm), (n,m)) (B4

Note that all multiplications of matrices are dot products in these series. As examples one can consider

the well-known expansions of trigonometric, hyperbolic, exponential, etc., functions of a sum in terms of




functions of @ and b separately, and hence of (a,,,,,,) and (b,,,m) separately. Note the use of integer
powers (¢) in the expansions! Fractional powers can be a problem since one needs to define sheets for the

roots of the various eigenvalues. A simple, but important, example is

Janm}t (bam) - [(onm) | fonm) _ fomm) | [(onm) (B5)
Note also that commuting matrices have

fil(anm)) + fa(bnm)) = f{(Bnm) - Fif{an,m)) (B.6)
where both f; and fp are assumed to have power-series representations as in (A.19).

Now extend the properties of commuting matrices to the product integral. This solves the

matrizant differental equation as

%{An,m(z'zO)) = (ﬂn,m(z)) . (An,m(zazﬂ))
(An,m(zl)azﬂ]) = (ln,m) (B.7)

(A,,'m(z)) = f[e(""'"(r)) ax {product integral)
*o

The product integral can be considered as the limit of a product as

k1
L r

[ lenmt) e @)
I

Az = I, = 1) + pAx

Lm e{“".m(zl-)) ar e("ﬂ,ﬂl(’Z)} Az e(‘n.m(zl)) az

L—pes
(az—0)

with continued dot multiplication taken to the left.

Summarizing some important properties of the product integral we have
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det[ﬁ e(""”’ (z'))dz’] = exp[ Ib‘( ay, m(z ]
zy

[TlemmN _ [ 2nmz))az’ } [H, (2’ J
% %
-1
ﬁ e(‘n,m(z’))dz' - ﬁ c(“ﬂ,m (z’))dz’
z0 x
The inverse operation is the product derivative D, given by

Dz[ﬁe(‘mm(z’))db] _ Dx((,q.,,,,,,(z.zo)))
zg

= l:% (An,M(z'zO))] ) (Anfm(".:"ZO))_.l
= (an,m(z))

which for scalars is just the logarithmic derivative. The sum rule is
ﬁe[(an,,.,(z')) + (b, m(z)]
zH

= (An’m(z,zO)) . IE‘[C(An.m(Zrlo))_I . (bn,m(z’)) . (An,m(z:zo))
L

The similarity rule is

P, m{2)) - [He n.m() } + (Pamlz0)) ™
= Hc[ (Pr.m(20)) + (B, m () + (bn,m(2)) - (P ""”(z‘))b]}dz'

(B9)

(B.10)

(B.11)

(B.12)

Now if {a,,’m(z’)) and (u,,,m[z")) commute pairwise for every pair (2’,z*} on the interval we

have




ﬁe(a,,,m(r))dz'

zo

= Jlim w[i(“u.m(zr)]ﬁ"*} ®13)

Lo p=1

]:(a,,'m (z )) iz']

I0
In this case the product integral can be written in terms of the usual sum integral.

Now consider two matrices (a,,,m(z)) and (b,,,m(z)) such that (a,,,m(z')) and (b,,,m(z")) commute
for every pair (z’,z") on the interval from zg to z. Then we have

f-[e[(ﬂn,m(f )) + (bn.m(z' ))]dz'

Lo @ dlennlerl) + (o) o

= lim e(’z"r" ZP))A’ . e( "-’H(’P))A‘
L—ae po1
o & ] [ & e
=1

1
= He(“n,m(f))dz_' . He bﬂ.m(z’))dz'

79 | 7

_ flc(b,,,m(z'))dz' i ﬁc(a,,m(z'))dz'
/)

L 20 4L |
which is a commmuting product of product integrals.
For supermatrices constructed by the direct product (Appendix A) there are specdial results. First

the series representation in (A.23) gives for [NxNIl @ [MxM] supermatrices for the exponential
function
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B ) ® (B ) _ (Lnm) ® (L +2%[B;,,,, i)

£=1

luv)"'z (Bn Buv)t

!‘-1

(B.15)

which can simplify the computation of this function. For either of the constituent matrices as an identity

we then have

llnm)®(Biy) _ (ln,m) ® JBiv)

ABum) () _ Bim) g 1, )

For such terms appearing in product integrals we have

z 7

[ Bhm O [ﬁe“*""“""}" "}9(1”)
% 29

Another special case of interest has
(Bim) = (Bim) for £=1,2,--,00

where (B;,,m) may be singular with one or more zero elgenvalues. This means that
(Brm) * (1n,m) (undefined)

Then we have

o(Brm)®(BLy) _ (nym) ® {1y v )+ (Brm) ® [f‘, 5 (BL, v)‘]

=[(tn,m) = (Br,m)] ® (Li0) + (Br,m)® ABiiv)
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(B.17)

(B.18)

(B.19)

{B.20)




Noting that

[t )~ (B )] @ (1))

= [ 1n,m) = Bﬁm]@(luv) for £=1,2,-,0
[[(tn,m) - ( ]@ (Lv)] ® [ L)~ (Bm)| @ (L) + (Blm) @ (B;;,,..(z,))m] B2D)

= [(1,m)- (Brm)} @ (1uv)

we have the product integral formula

()~ )] 90)] © ﬁ,(s;,m)@(a,;,v(,.,)d,.}
= [[(n.m) - (Bl ® 10,
- By v(zy)]AZ
® |: i @ [[(1"-’") - (B;I-m)] @ (lu,v) + (B;!,m) ® e( u'v( ")) ] ®22)

Lo

p=1

oo @ [[1’”") nm)]‘g(lu.v)]

p=1
= [(ln,m)‘ By m ]9 (tu,v)

Noting that

[(B:'a,m)a[lu,v)]’ =(Bp,m) ® (1u,v) for £=1,2,--,00

[(Bm) ® (1v)] © {[(lu.m)-(sa,m)]e(lu.v)  (Brm)@ Ll ) ®23)
= (Bim)® e(B;"" (= ))Az

we similarly have

[(Brm) ® (1u)] @ lﬁ,(B;,m)e(B;,v(z')yz:]

g

39




= [(B;I.m) ® (1u,v)] ® [hm @ [1,;," B,, ,,,)]@ lu v) (Bn m)@,(B“" zP)) J .

p:
L

= lim [(B;,m) ® e(B:,v(ZP))Az]

L—pee
p=1

= m)@[ C:) e {8z, v(z’))dz]
=1
e

(B.24)

Adding (B.22) to (B24) and noting that the coefficient on the left-hand side is the identity we have
z ’ » ,
He(Bn,m) ® (Bu,v(z ))dz’
zp

(B.25)

) [(In,m)—(Br'z,M)]e(l“" )+ (Bhm) [H (Biv(z ))dz:’

The reader can cbserve that (B;,',,,) can be the zero or identity matrix in the above formula, replicating
known rasults.

A similar case has

(B;,V)l = (B;,v) for t = 1,2, ,00

(Bﬁ,v)o * (1n,m) (undefined)

(Bom)® (i) _ (1,

(B.26)
n)®[(1uy) - (Biv)] + ) e (B74)

Following the previous steps we obtain

[(ln,m)G[(lu,v) - (B;,v)]] ® [ﬁe(ﬂ;;,m(z'])@(a,:,v)dz'}

= (tum)®|(luv) - (Biv)]
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@ [(tn.m) ® (B24)] @ [I’I,(Ba,m(z-))o(s;,,yf]
)

il -
[ Fnt) @lEim)er

20

= (tnm) ® [(tu,0) - (BW)] * {I’Ie“"’--m"”)""] ® (Biv)
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