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Abstract

Natural frequencies are an important target identifier due to their aspect independence. For the case of
symmetrical targets using the low-frequency diffusion poles in magnetic singularity identification, the dyadic
residues and constant dyadics group the poles and eigenvalues into scalar sets which have common angular
dependence. This allows one to define ratios of scalar residues and eigenvalues as additional aspect-independent

parameters which can be constrained in the target library for use in matching to experimental target responses,




I. Introduction

In identification (discrimination) of buried metallic targets magnetic-singularity identification (MSI), using
low-frequency diffusion poles in the singularity expansion method (SEM), is an appropriate technique. One can use
the aspect-independent natural frequencies s, (real and negative) of particular targets to atternpt to fit the data and
thereby decide which (if any) of the targets in a library is present in a rneasurement.

Besides natural frequencies there are the scalar M, parts of the residues and the eigenvalues of the
constant dyadics which are aspect independent. For symmetrical targets the natural frequencies and scalar residues
and eigenvalues are grouped into sets, all with the same aspect and target-distance dependence. This paper then
discusses how to use ratios of these within each set as aspect-independent target identifiers along with the natural

frequencies.




2 SEM Representations of the Magnetic-Polarizability Dysdic

Summarizing from [1-4, 7] the magnetic-polarizability dyadic has the complex-frequency dormnain forms
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where the various terms have the properties
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Mg = real scalar
Sg < 0 (all negative real natural frequencies)
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M, = peal eigenvectors (three)
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My, * My, = ly,,y, (orthonormal)

NG

My = real eigenvalues (non positive, not necessarily distinct)
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MO} = Z My My My = slatic response (a constant dyadic)
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M, = real eigenvalues (three)

=) =0

M Vl - M Vz = IV[ .Vz (Orthﬁnormal) (2.2)
M, = real eigenvalues (non negative, not necessarily distinct)

5 = ) + jw = complex frequency or two-sided Laplace-transform variable

Multiplying and dividing by s in (2.1) we have the altemate representations

(step-associated delta-function response}
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(delta-associated step-function response)

The first of these forms is particularfy convenient because, as one considers the lower natural frequencies (small

[ 5o [) in extraction from real data, the constant term is easily isolated, and we know that

& =(0p,,) = non-ferrous target
M(O){ o (2.4)

# (0, ) = ferrous target

All the pole terms in this case take the form of modified poles giving zero response at zero frequency [5].

Comparing the two forms of the delta-function response we have
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M(e0) =

P M., — — :
M@ +3 —EMaMa (2.5)
S
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where we have assumed this series to be convergent. Combining this result with the properties of the high- and low-
frequency dyadics gives us some idea of the properties of the M, (particularly for small | s, [} noting the negative
real property of the 5, .

In time domain the magnetic-polarizability dyadic is a convolution operator. From (2.1} we have

interesting time-domain functions for this purpose as
3 &
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(step-function response)
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The second of these forms is particularly convenient in that M (0) is exhibited as a clearly distinguishable term, the

others decaying to zero in late time, and (2.4) applies.

For completeness we also have time-domain functions corresponding to (2.3) as
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(step-associated delta-function response)
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(delta-associated step-function response)

These seem less convenient to use than the forms in (2.6).

(2.7)




3. Properties of Residue and Constant Dyadics

All the M, (scalar parts of residues) and all the eigenvalues M ,(_,") and M EO) of the corresponding
constant dyadics are aspect independent, i.e., they are invariant to the relative orientation of the target with respect

—
to the transmitter and receiver. The effect of the target orientation is contained in the Mg and the cigenvectors

(=) (0)
- —
My and M\, of the corresponding constant dyadics. These all rotate with the target.

The magnetic-polarizability dyadic appears in the scattered magnetic field as [1, 6]

S 1 N - & o inc) .
H (F;,J‘)=m[3 lR1R-—-1]- M(s) - H (rg.s

—* ;
ro = target location
-—)
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-+ =

- - = rs—ro
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R

— - 9 — — . .
lE[xlx'i'lyly'l'_]zIzE[denuty

where R is assumed large compared to the target dimensions so that the scatiered field need include only the
magnetic-dipole term. The incident magnetic field can be quite general (quasistatic). If the transmitter loop is small

enough it can also be characterized by a magnetic dipole, giving

Sline) 1 S o S S
H (ro.s)=——u-;——[3 lglg—1]+*m (s (3.2)
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-’ r 1]
r; = transmitter location
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lg=—£ 9
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[ orientation of transmitter coil
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One can combine (3.1) and (3.2) using 1, asthe orientation of the receiver coil. If, in addition _r?, = ?_, such an

expression becomes quite symmetry.




So one way to identify the target is to have a stored set of the 5., M, . eigenvalues (aspect independent),
and the corresponding E}a and eigenvectors (aspect dependent). Then one aftempts to rotate and translate the
target in a computer to match the measured data. Note that if there is a problem with the absolute amplitude (say due
to the sensitivity of the result to the target distance R), then one can scale the M, to one particular one of these (a
dominant cme) which we might cal M;. The relative values M, /M| will be insensitive 10 R, but are still
weighted by the target grientation via the ﬁa. This gives more consiraints on the fitting than the s, alone. Of
course, the 5, can be used without rotating and translating the target, but this does not use the aspect-independent

M, and eigenvalue information.




4. Influence of Symmetry

_ As discussed in [2, 6], various symmetries of the target (point symmetry groups) simpiify the form of
(;d‘(s) . Table 4.1 summarizes these results. Here we see the various ?'Ia lining up according to symmertry axes
and planes. Thus we see in symmetry category 1 the scalar function #,(s). The vectors associated with poles and
constants in this function are all the same, i.e., —l: . Since these all have the same dot product with the incident field

and vectors pointed toward the receiver, all the residues and constants scale the same way with aspecr and distance.

As such the ratios of such terms appearing in the experiment are independent of the presumed unknown target aspect

and location.

Generalizing, consider some scalar magnetic-polarizability function appearing in Table 4.1 which we write as

4(s) = Mg(e) +2Mqa[s—sqa]_l

o
@.1)
- 1 - M _
~Hg(s) = ;Mq(0)+z S"“ [5=54, 17"
a Ja
Table 4.1, Decomposition of Magnetic Polarizability Dyadic According to Target Point Symmetries.
i
Form of M (s) Symmeitry Types (Groups) SCa) te gg;y
- - = Y R, (single symmetry plane)
M,(s) 17 1z + M:(s) )
- C, (2-fold rotation axis)
— —p -4
(M:(s}+ 1z = 0)
44 A . s | Cas= R, ® Ry(two axial symmetry planes)
Mi(s) Uz lz + My(s) Lx L + My(s) 1y 1y Dy (three 2—fold rotation axes) 2
NN e Cn for N2 3 (N-fold rotation axis)
My(s) 1z 1z +M(s) 12 Sy for N even and N2 4 3
L AAdE (N - fold rotation - reflection axis)
Iz = 1-1;1z= double degeneracy .
Dy (three 2 - fold rotation axes plus
diagonal symmetry planes)
— H )
M(s) 1 O3 (generalized sphere) 4
PN T, O, Y (regular polyhedra)
[ [ = triple degeneracy}




following (2.1). the alternate forms ffom (2.3) are

5
| o (4.2)
< Hg(s) = Mg () D Mg s [s—sq]""

o

The time-domain forms in (2.6) and (2.7) can be similarly written by inspection. Here the subscript g is coordinate

related as

z in symmetry category 1

x,y, and z in symmetry category 2

4,
z and ¢ (for transverse} in symmetry category 3 “3)

0 (or whatever, for 03 and related symmetries in symmetry category 4

So take some dominant pole in Af g (%) . say the [owest order one designated by Sat with residue Mq] , and

form the ratios

M
R, =13z R, =1
q, ' q1
“ M‘ll
M, (0
RO = M@ (=0 for nonferrous target) (4.4)
7 M
q1
Rl = Mg
q1

Then in processing the data for, say the delta-function response by dividing out the transmitter and receiver

responses, the will be an invariant of the measurement. If one of the residues is increased by moving andfor
a 4

orienting the transmitter and receiver, all of the residues in this set will be increased by the same factor. The ratios
in (4.4) can then be stored in a computer as an invariant part (aspect and location independent) of the target

signature, just like the s, .

It should be emphasized that the invariance of these ratios applies within each scalar M g(2) separately.

As we have seen, there may be zero through three such functions depending on the kind of symmetry (or lack

thereof) applicable to a particular target. In general our target response as seen by the sensor will invelve a linear

combination of the q (5) ., together with perhaps other terms. This means that the target response can be written as




HGO 5y = glinc) (5)2 ag ﬁq (5) + possible other terms
o

= ﬁ(mc) (s)Zaq Mq] |iRé,0) + 2 chz j [s— Sga ]_l + possible other terms
r (74

q
~ {inc)
- ; -
— —
H  (Fo.9=H")s Tinc (4.5)
—
1 ine = orientation of incident magnetic field at target (frequency independent)
~( :)(Jc} - e d
ASVNsy = H  (rgs) 15
_’ -
I s = orientation of sensor coil

where the form in the first of (2.3) has been used but other forms can be used as well. Here the significance of the
ratio invariance within each Jﬁq(s) is apparent. Only the coefficient ag or equivalently a, Mg, depends on

target location and orientation. The natural frequencies and ratios are invariant for a particular target and can

presumably be determined beforehand for storage in the target library. Of course, M‘?l can also be determined

beforehand, but it is masked by the variability of ag .
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5. Concluding Remarks

Symmetrical targets, having various alignments of the residuc dyadics giving sets with common
alignments, give a tighter target discriminant due to ratios within each such set. 5o besides having to match some
number N, of natural frequencies in the set, there are N, —1 residue ratios plus one ratio involving the DC

response, ar N, ratios to be matched as well, doubling the number of aspect independent parameters within that set

to be matched. With more than one such set in a target signature a linear combination of the responses for the

various sets is required to match the data.

In the case of Cpy symmetry for N 23 we have a common type of target symmetry, including the case of
a body of revolution with axial symmetry planes (C.,, = O symmetry). As discussed in [6], this symmetry can be
used to locate and orient such a buried target. As a part of this the M 2{5) and parts of the response need to be

separated. The present discussion has shown that one can use the residue and eigenvalue ratios in each of these sets

to better identify such a target and more sensitively characterize these two parts of the rasponse,

11




References

L

C. E. Baum, Low-Frequency Near-Field Magnetic Scattering from Highly, But Not Perfectly, Conducting
Bodies, Interaction Note 499, November 1993,

C. E. Baum, The Magnetic Polarizability Dyadic and Point Symmetry, Interaction Note 502, May 1994,

C. E. Baum, Discrimination of Buried Targets Via the Singularity Expansion, Interaction Note 521, August
1996; Inverse Problems, Vol. 13, 1997, pp. 557-570.

C. E. Baum, Symmetry in Electromagnetic Scaitering as a Target Discriminant, Interaction Note 523, October
1996; in H. Mott and W. Boerner (eds.), Wideband Interferometric Sensing and Imaging Polarimetry, Proc.
SPIE, Vol. 3120, pp. 295-307.

C. E. Baum, J. E. Mooney, and L. 5. Riggs, Use of Modified Pole Series in the Singularity Expansion method,
Interaction Note 525, April 1997.

C. E. Baum, Application of Symmetry to magnetic-Singularity Tdentification of Buried Targets, Interaction
Note 543, June 1998. .

C. E. Baum (ed.), Detection and Identification of Visually Obscured Targets, Taylor & Francis, 1998.




