Interaction Notes
Note 548
14 December 1998

Wideband Time- and Frequency-Domain EMI: Phenomenology and Signal Processing

Lawrence Carin
Electrical and Computer Engineering Department

Duke University
1.J. Won and Dean Keiswetter ’ CLEARED
Geophex, Ltd. FOR PUBLIC RELEASE
Raleigh, NC AFRY/ DECE- 174
22 ISV 7Y
Carl E. Baum

Air Force Research Laboratory
Directed Energy Directorate

Abstract

The phenomenology of frequency- and time-domain electromagnetic induction (EMI) is examined
in detail, through use of a rigorous electromagnetic scattering model, and through appropriate signal
analysis. Particular attention is placed on the potential of the new GEM-3 sensor, an EMI device
developed by Geophex, Ltd. for very wideband EMI operation. We demonstrate that both the time-
and frequency-domain EMI signatures can be characterized in terms of a few magnetic singularities,
thereby significantly reducing the number of features that need be stored for target identification.
Further, we examine the aspect-dependent properties of the relative excitation strengths of the
magnetic-singularity modes. Finally, we perform a statistical analysis of the relative efficacy of
frequency- and time-domain EMI operation, for a class of conducting targets.

Ar el DE T7-27



=l Geophex, Ltd.

605 Mercury Street
Raleigh, NC 27603-2343
Tel: (919) 839-8515
Fax: (919) 839-8528

AFRL/DEPH

Attn: Mr. Robert Torres, AFRL/DEHP Phone (505) 846-0296
3550 Aberdeen Avenue SE

Kirtland AFB NM 87117-5776

Dear Mr. Torres:

I would like to submit for public release the attached paper that will be submitted as
an Interaction Note. The paper is entitled "Wideband Time- and Frequency-domain
EMI: Phenomenology and Signal Processing." This paper was written under funding
of contract #F29601-98-C-0154, entitled "Broadband Electromagnetic Sensing for
Weapons Detection.” There is no company proprietary data in this Note.

If you have any questions, please do not hesitate to call me directly at (919) 839-
8515.

Sincerely,

M e el

Dean Keiswetter, Ph.D.
Program Manager

AERGDE PP 37
Richmond, VA Macon, GA Boston, MA
(804) 748-3880 (912) 929-2827 (508) 393-4600




Interaction Notes
Note 548
14 December 1998

Wideband Time- and Frequency-Domain EMI: Phenomenclogy and Signal Processing

Lawrence Carin
Electrical and Computer Engineering Department
Duke University

1.J. Won and Dean Keiswetter
Geophex, Ltd.
Raleigh, NC

Carl E. Baum
Air Force Research Laboratory
Directed Energy Directorate

Abstract

The phenomenoclogy of frequency- and time-domain electromagnetic induction (EMI) is examined
in detail, through use of a rigorous electromagnetic scattering model, and through appropriate signal
analysis. Particular attention is placed on the potential of the new GEM-3 sensor, an EMI device
developed by Geophex, Ltd. for very wideband EMI operation. We demonstrate that both the time-
and frequency-domain EMI signatures can be characterized in terms of a few magnetic singularities,
thereby significantly reducing the number of features that need be stored for target identification.
Further, we examine the aspect-dependent properties of the relative excitation strengths of the
magnetic-singularity modes. Finally, we perform a statistical analysis of the relative efficacy of
frequency- and time-domain EMI operation, for a class of conducting targets.




Contents

L Introduction
I1. Approximate EMI Resonances of Simple Shapes
I1I. Method of Moments Analysis

A. General construct
B. Surface integral equation

IV.  Frequency and Time-Domain Target Identification

A. Frequency domain
B. Time domain

V. Example Phenomenological Results
A. Characteristics of frequency- and time-domain EMI
B. Single and multi-pole expansions
C. Dependence of EMI response on target-sensor orientation

V1. Statistical Analysis of Time- and Frequency-Domain EMI

A. Theory
B. Example results

V11, Conclusions

References

=]

11

11
13

15
15
19
22
25

25
28

33

35




L. Introduction

It is well known that finite dielectric objects composed of a large dielectric contrast relative
to the background medium (air) generally support high-Q electromagnetic resonances [1]. This
concept is exploited in the design of microwave filters. If the dielectric resonator has a wavenumber
k=o[pe]'?, where @ is the real angular frequency and p and € are the resonator permeability and
permittivity, respectively, the electric fields inside the resonant structure satisfy the source-free wave

equation

V'E+K*E=0 (1)

with appropriate boundary conditions. For low-loss dielectric resonators, the resonant frequency @
is nearly purely real, manifesting the aforementioned high-Q resonances [1]. We use these well-known
properties of dielectric resonators to address the electromagnetic induction (EMI) resonances of

highly conducting and possibly permeable targets (at kilohertz frequencies) [2-5].

For a material with conductivity o, the effective dielectric constant satisfies e=g,-jo/w, where
j=(-1)'”. For the very good conductors of interest, ¢ >>1 and £~-jo/®. The associated wavenumber
k=o{-inc/e]”? and F=jpcm. We note that if ©=jw,, then &* is purely real as in (1), and therefore the
dielectric-resonator theory appropriate for low-loss dielectrics at real frequencies will be appropriate
here for highly conducting (and possibly ferrous) targets, at purely imaginary resonant frequencies.
Moreover, the modal structure of the dielectric-resonator modes at real frequencies will be analogous
to those expected for the EMI resonant modes of highly conducting targets, where in the latter case

the resonant frequencies are purely imaginary.

As for the dielectric resonator [1], a highly conducting EMI resonator will support an infinite
number of modes [2]. In the dielectric-resonator case the number of modes excited is dictated by the
system bandwidth, since the resonant frequencies are nearly purely real. For the EMI case we need

be more careful, since the resonant frequencies are purely imaginary, and therefore the connection




to real frequencies is less obvious. The resonant frequencies correspond to first-order poles in the

complex frequency plane [2,4,5], and therefore we can express the target transfer function as

H(w)=a+za—f{ﬂj"’j @)

where ©, corresponds to the magnitude of the #th pole. Equation (2) is valid at EMI frequencies,
characterized by an operating wavelength that is very large relative to representative target
dimensions. Note in the limit -0, H{(w)-~a. Therefore, a=0 for nonferrous targets, this feature may

be useful as a discriminant.

Note the w in the numerator of the terms summed in (2) (see also [5]). This is motivated by
the high-frequency EMI limit at which the skin depth is small relative to principal target dimensions.
At such frequencies minimal frequency variation is expected. Hence, this term is motivated by the
high-frequency limit, while a 1s dictated by the low-frequency regime. We will also see that the o in
the numerators in (2) will also play an important role in yielding the expected real impulse response.
In particular, to find the step response, we convert (2) to the time domain via the inverse Fourier

transform and, using residue calculus, we have

wy-— | %ewm = au)+ 3 ut)b, o @)

—an n

where u(t) represents the usual step function. We note that the expression to the right of (3) is
actually an approximation to the impulse response, valid over EMI frequencies, because the H(w) to
the left is integrated over all frequencies in the Fourier transform (including those for which (2) is

invalid). Within these approximations, the EMI impulse response is represented by a sum of damped

exponentials for nonferrous targets, each representative ofan L-R circuit. For ferrous targets, we




have the additional a&(?).

Returning to the transfer function in {2), we note that the real and imaginary parts of the #th
term in the sum are equal at the rea/ frequency o=w,[5]. As will be demonstrated when presenting
results, frequency-domain EMI operation is most effective around such frequencies, these
representing regions for which the in-phase (I} and quadrature (Q) portions of the EMI response are

particularly target dependent.
IL Approximate EMI Resonances of Simple Shapes

As discussed in motivating (2), EMI resonances at imaginary frequencies are analogous to
dielectric-resonator resonances at real frequencies. While there are rigorous analyses available for
computing the resonances of dielectric resonators [1], there are simple back-of-the-envelop
calculations one can perform to yield approximate solutions for the resonant frequency. Likewise, for
the EMI case [6] we have developed a rigorous numerical model for computing imaginary EMI
resonances. However, we first consider a solution for a simple but important class of shapes, which
will yield approximate solutions and physical insight. Consider a cylinder of radius r and height 4,
composed of matenal with conductivity ¢ and permeability (. We can analyze the resonant modes
of this structure by imposing the boundary condition that the component of electric field normal to
the target walls must vanish, constituting what is often termed a perfectly magnetic wall (tangential
magnetic fields equal to zero). This technique is well known for the approximate analysis of dielectric
resonators [1]. Such a structure supports modes with electric fields transverse to z (TE;) and

magnetic fields transverse to z (TM,), where = is along the target axis.

For TE, modes we have the condition [7]

k=Jarpo = (1 /r = OB ) (4)




withm=0, 1, 2, ...;m=1,2,3, ...;and p=0, 1, 2, ... . For TM, modes we analogously have

k= Jw 10 = (1 '/t )+ (prh (5)

where m=0, 1, 2, ...: n=1,2, 3, ...;and p=1, 1, 2, ... . The expressions }m, and ¥ ' represent the sth
roots of 1,,(-) and I,'(*), respectively, where I.(-) is the Bessel function [7]. If the currents on the
target have no azimuthal variation, we consider m=0 modes, and therefore only TE; modes are
excited. Moreover, if we assume no variation along the - direction (i.e., only variation in the radial

direction), then the imaginary resonant frequencies are approximately

onfXep Ll oy (6)
Fa ‘uO'

We note that, for a fixed target size, the resonant frequencies scale simply with changing ¢ and L.
This analysis can be used to quantify the approximate imaginary resonant frequencies of such things
as firing pins (a similar analysis can be applied for hollow cylinders), from which one can estimate the

expected decay constants (see (3)) or regions where the I and Q components of the frequency-domain

EMI response are expected to be equal (see paragraph just prior to Sec. II).

1. Method of Moments Analysis

A. General construct

While Sec. II has discussed an approximate method for the analysis of an important target
class, in general numerical algorithms are required for more-general targets. Here we have employed

a surface-integral equation formulation, in which boundary conditions are rigorously imposed on the




target surface. The tangential electric and magnetic fields on the surface are expanded in a known
basis with unknown basis-function coefficients, the latter solved for by transforming the continuous
integral equations into matrix form, using a Galerkin testing procedure [8]. For NV basis functions, we
arrive at the equation Zi=v, where i is an N-dimensional vector representing the basis-function
coeflicients to be determined, v is an N-dimensional vector representing the excitation fields at the
positions of the basis function, and Z is an Nx/V matrix representing interaction between the N

expansion functions. Once the currents i are determined, the scattered fields are readily computed.

As discussed in Sec. I, the modes of the system correspond to poles of the transfer function.
Consequently, these poles can be computed by determining the frequencies at which the frequency-
dependent matrix Z is singular, or those frequencies for which the determinant of Z{w) vanishes. This
can also be recognized by the fact that these poles represent the natural (non-driven) response of the

target, for which Zi=0. To obtain nontrivial solutions for i we require the determinant of Z to vanish.

We have developed a method of moments algorithm for scattering from a general conducting,
permeable body of revolution (a target with rotational symumetry). Many man-made targets of interest
satisfy this model. Further, we have implemented the excitation v such that it corresponds to the fields

excited by the Geophex GEM-3 [9].

B. Surface integral equation and method-of-moments

We consider electromagnetic scattering from highly (but not perfectly) conducting and
permeable targets situated in 2 homogeneous environment, e.g. free space. Moreover, we specialize
the solution to the case of a body of revolution (BOR). Because the surface integral equation
approach for treating problems involving perfectly conducting as well as low-loss dielectric BORs
has been studied by various authors [10-19] only a brief summary of the basic theory will be given

here.
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Figure 1. Body-of-revolution (BOR) model used to charactenze scattering from and the resonances

of a general conducting and ferrous target.

Considering Fig. 1, region 1 and region 2 are charactenized by (possibly frequency dependent)
medium parameters (£1,41,01) and (&,442,02), respectively. According to surface equivalence
principles [7], exterior scattered fields (E** H**") and interior total fields (E,H) may be determined

from a set of equivalent electric and magnetic surface currents. These equivalent surface currents are

related to the total tangential magnetic and electric field by J,=taxH and M, =1Ex#n, respectively,

where the upper sign holds for the exterior and the lower sign for the interior region. Coupled integral

equations
[ 2 2 F(p)
E:_:;(r)=mﬁj-’5 +mWMS= Z(-]m“’l‘(r)_‘_vcpﬂ'(r)) * VXZO-,! +j@€- (7a)
i=1 tan = ian




40| s
Hmc(r) Ry T + Ry M, l:_vxzi‘i’u—jl + Z(jaJF;(r)+V¢mz(r)) (7b)
i=t " don

=] tan

for the surface currents are obtained by satisfying the boundary conditions at the interface [14-19],

where (E{gﬁ, H {gfl ) represent the tangential components of the incident field. Herein the electric and

magnetic vector and scalar potentials are defined as follows [7]

4 = 1§ G0 1,01 (82
Fn)= %"—{éﬁ Gyl M ()5 (8)
r r_ __'—1_ ’ r, ' '
0= Lo {:}3 Gi(rr) (S = = gq(mv Ids o)

-1

i (r) = ﬁ G(r,r")q, (r)dS’ = ﬁ‘) G (r.r)V'-M(r)ds’ (9b)

with the Green's function

_;k ]r—r l

Gi(r,r') = _—l- with £; —-\/;J &M —jopo; and =12 (10)

for the homogeneous interior (/=1) and homogeneous exterior (/=2) region, respectively. The
complex wave numbers of the interior and exterior region are given by & and 45, and the vectors r

and 7 represent source and observation point, respectively.
Equations (7-10) are valid for an arbitrarily shaped homogeneous target in a homogeneous

environment, for which a Method-of-Moments (MoM) solution could be applied [ 14-19]. However,

we only consider the special case of a BOR (Fig. 1), which is formed by rotating a generating arc




about an axis that is chosen to be the z-axis of a Cartesian coordinate system [10-19]. For numerical
simulations, the generating arc is approximated by a sequence of linear segments. Coordinates (4,7
are introduced, where the angle ¢ is equal to the one used in cylindrical coordinates (p,4,z) and ¢ is
the length variable along the curve generating the arc. To take advantage of the rotational symmetry,
the incident field, all currents and scalar Green's functions are expanded into discrete Fourier senes,
by taking a Fourier transform in the azimuthal (¢#) direction, from which the general solution reduces
to an infinite number of distinct MoM problems for each of the Fourier modes (each with azimuthal
variation exp(jm¢)). The resulting sets of simultaneous equations may be represented in matrix form

as

[z’"] I"=V™ for m=0+142.43,.. (11)

where [27] is the moment matrix, I" is a column vector containing the unknown basis function

coefficients, and V" is the driving vector for the mth Fourier mode [10-19]. Details regarding the

calculation of the impedance matrix or the driving vector can be found in the literature.

If we are interested in the natural resonances of the target, the driving vector I is set to zero.
Then the system (11) of linear equations has a non-trivial solution only if the determinant of the MoM

impedance matrix is zero:
det[27(s,,,=jw,,)|=0 with s,,=jo,.=jlo,+jon]=-al+jo,, (12)

The roots of {12) in the complex frequency plane are the resonant frequencies of the modes (m,v).
Searching for these complex roots is relatively easy because, for highly conducting and permeable
targets, the real part is much smaller than the imaginary part (aimost pure exponential damping, as
expected from Sec. I). Thus it is best to search first along the imaginary frequency axis for an
approximate solution, after which Mueller's method is performed to yield an accurate solution for the

complex resonant frequency (where we have found 5 to 10 iterative steps generally sufficient).

For mode identification, it is principle necessary to compute the detailed field distribution inside

and outside the target. But, in a limited sense, this may be accomplished by studying the resonant

10




surface current distribution only. For each complex resonant frequency the surface currents, or,

equivalently, the tangential fields along the surface, can be readily calculated.

In contrast to MoM calculations for perfectly conducting objects [13], for which subsectional
basis-function discretization only depends on the wavelength in the outside region (often free-space),
the maximum subsection length here has to be chosen with respect to the wave number inside the

highly conducting and permeable object. Neglecting displacement currents and assuming a real

permeability L.;, this wave number is given by

kl=kl'—jk1"=1}9—2ﬁk(\ﬂaz|+m"—j\/]m{—m") . a3)

Reasonable results are obtained if the subsection length A (along the generating arc) satisfies the

conditions &|d4r<2x/10 and k{dr<1/2, which means at least 10 subsections per wavelength and at

least two per skin depth.

IV. Frequency and Time-Domain Target Identification

A. Frequency domain

Assume that the GEM-3 [9] is used to measure the 2Mf dimensional vector g, representing the
I and Q (real and imaginary part of frequency-domain response, respectively) at A frequencies.
Further, assume that g=s+n, where s represents the response of the target itself, and » represents

system noise. The optimal detector is effected as [20]

11




Target

- >
P,(8-5) 1 (14)
P.(8) <
No Target

where p,(+) represents the known noise probability density function and s is also assumed known. If
tt—le ratio is larger than the threshold T, the target characteristic of waveform s is declared present.
Otherwise, the target characteristic of s is declared not present. In principle, one must store the
frequency dependent signature s for all targets, all frequencies of interest, and all target-sensor

orientations. This latter condition makes this paradigm impractical.

We can make use of (2) to ameliorate this problem. The first important insight to recognize
1s that the resonant frequencies jo, are independent of the target-sensor position, with the variation
in such handled by @ and the mode coefficients 4,. If these terms are contained in the vector ¢, we
have a parametric representation for the target signature, denoted s(¢), where we have exploited the
expression in (2). A generalized likelihood-ratio test (GLRT) [20] is given by finding the ¢ that

maximizes p,{g-s(c)], for given measured data g. The expression in (14} is generalized to

max Target
CoRlgs@l
T (15)
p.(8) <
No Target

The receiver operating characteristic (ROC) [20] is determined by adjusting the threshold 7,

characterizing the probability of detection versus the probability of false alarm.

Therefore, the GLRT is effected by developing a library containing the relatively few aspect-
dependent resonant frequencies characteristic of the targets of interest. From (15), we find the
parameters ¢ from (2) that maximize the GLRT. If multiple targets are to be distinguished, the target

that yields the highest ratio in (15) is declared the target present; if none of the library of modal poles

12




yield a likelihood ratio that is above a prescribed threshold 7, the putative target is declared ciutter.

Finally, for the case for which n is white Gaussian noise, the ratio in (15) reduces to a matched filter.

From the discussion in Sec. I, it is recognized that the targets are distinct at and around
frequencies for which I and Q are equal, this frequency being target dependent and thereby aiding
discrimination. In the subsequent results, this is illustrated for several targets. An EMI sensor will
typically operate in the 0.1-100 KHz frequency band [9], and therefore this scheme is best for targets
characterized by principal resonant modes with frequencies @, in this band. This is likely to be possible
for nonferrous targets. However, from (6), we see that for highly ferrous targets (e.g., iron has
1=5000) the lowest frequencies (small modal order ») are at ©, < 1,-for most realistically sized
targets. Therefore, the frequency at which [ and Q cross is less than 1 Hz and therefore of little value
for a realistic frequency-domain EMI system. However, from (3), recall that the resonant fields decay
as exp(-0,¢) in the time domain. Therefore, for situations in which ©, is very small and therefore the
target is less attractive for a frequency-domain EMI system, the time-domain response will decay

slowly. It is for such situations that time-domain operation may be preferable.

It is interesting to note that frequency- and time-domain EMI operation are complementary.
When exp(-m,Z) decays quickly, the cross-over frequency for I and Q is likely within the bandwidth
of most frequency-domain EMI systems. However, when ®, is too small to be in the bandwidth of
most EMI systems (e.g., large ferrous targets), the decay constant is likely to be sufficiently smali,

such that it can be readily extracted from a time-domain system.

B. Time domain

Consider equation (6), which gives some feel for the imaginary resonant frequency of the

lowest cylindrical-target mode, We consider this structure in the example results. The lowest-order
mode is characterized by ¥01=2.4049. Consider a 1 inch diameter cylinder of I inch height. Aluminum
and stainless-steel targets are nonferrous, and are characterized by 6=3x 10" $/m and 5=1.3x10°S/m,

which from (6) yield lowest-order resonances at j151 and j3493, respectively. From the discussion

13




in Sec. I, the I and Q of the frequency-domain EMI responses of these targets will cross in the vicinity
of the real frequencies 151 Hz and 3493 Hz, respectively, defining regions where the EMI response
is particularly target dependent and therefore salutary for discrimination. We also note that the
predictions from (6) are slightly smaller than the method-of-moments computed resonant frequencies,

but that (6) does yield an accurate approximation to the frequency bands of interest,

Now consider a target of the same shape as addressed above, but composed of nickel
(c=3x10" $/m and u,=600 H/m). From (6), the corresponding lowest order resonance is at j0.25 and
consequently theoretically I and Q cross inthe vicinity of the real frequency 0.25 Hz. It is unlikely
that a frequency-domain EMI system can be designed to operate at such frequencies. From (6), we

see that this issue is exacerbated as the target size is increased.

It is interesting to note that this problem is manifested by the small size of w, (see (3)).
However, as discussed above, for small @, the time-domain EMI response decays very slowly,
propitious conditions for the accurate extraction of decay constants from time-domain data. These
decay constants are aspect independent, as they are characteristic of the target natural modes
(resonances), and this therefore represents an alternative tool for target identification. On the other
hand, when ®, is large, as in the aforementioned nonferrous targets, the exponentials in (3) decay
very quickly, making the extraction of decay constants far more susceptible to noise. Fortunately, as
mentioned, the large ©, are appropriate for wideband frequency-domain operation, in the manner

discussed above an displayed in the results.

The decay constants can be extracted by using a class of parametric signal processing algorithms [6],

often termed "superresolution” schemes [21].

14




V. Example Phenomenclogical Results
A. Characteristics of frequency-domain and time-domain EMI

) We demonstrate the utility of the MoM analysis in Figs. 2 and 3, where we plot the log of the
determinant of the MoM matrix [6], as a function of imaginary frequency. Theoretically, the resonant
frequencies exist at frequencies for which the determinant vanishes. Numerically, it is not possible for
the determinant to vanish exactly, since we utilize a finite set of basis fiinctions to represent the
generally continuous current distribution on the target surface (however, this problem could be
mitigated by making appropriate approximations to the integral equation [3]). However, we have

found empirically that sharp nulls in the frequency-dependent determinant occur at the appropriate
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resonant frequencies. In Figs. 2 and 3 we consider conducting cylinders of 1 inch height and 1 inch
diameter, for aluminum Figure 2. Determinant of the MoM impedance matrix Z, plotted as a function
of the imaginary frequency. The marked sharp nulls correspond to the resonant modes of the target.

Results are shown for the =0 case, implying no azimuthal variation.
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Figure 3. As in Fig. 2, but for a stainless-steel target.

and stain]ess-steel targets, respectively. In these computations we have considered the m=0 resonant
mode, which corresponds to the case for which the fields have no azimuthal vaniation. For the

relatively small targets of interest here, these are the principal modes of interest.

A couple of comments are in order concerning Figs 2 and 3. From the standpoint of a radar-
based system, it would be impossible to distinguish these two targets, for each would appear as a
perfect conductor with identical shape. However, we see that, despite the fact that these targets have
identical shapes, they are clearly distinguished by their EMI, imaginary rescnant frequencies.
Secondly, recall from (2) that, in the case of exciting a single resonance, the I and Q components are
equal at a frequency corresponding to the magnitude of the imaginary resonant frequency [5]. For the
practical case of multi-mode excitation, things are complicated further, but the general phenomenon
still applies. From Fig. 2 we see that the principal resonant frequency of the aluminum target is at
approximately 200 Hz, while this occurs at approximately 4500 Hz for the stainless-steel target.
These two frequencies are clearly quite different and therefore suggest that there is significant
potential for EMI discrimination through exploitation of the disparate frequency-domain EMI
signature. Further, we note that these “cross-over” frequencies are well inside the frequency band of

the GEM-3 sensor [9], and therefore this feature can be exploited in practice.

16




PE LB
LR B

Aluminum

i

R Y}
TL-wt

L™

-—
—
—— o
—— .,

JRTTTTTTTT
LS

e Staindess Steel
- LAy = e e e e e
i-:-u ‘— ’I,”
!1: s fem ,r’
[ »
IE oy i{ Q
[.43 =
1

'] 1
LR XL Y] LI Tadds
Frequemay (Hzx)

Figure 4, In-phase (I) and quadrature (Q) components of the magnetic field, computed via our MoM
analysis, for the details of the GEM-3 sensor. Results are plotted for the aluminum and stainless steel
target considered in Figs. 2 and 3, respectively. These data represent the GEM-3 data divided by jw.

In Fig. 4 we plot the MoM-computed GEM-3 response, as a function of real frequency. We
see that, as predicted above, the I and Q responses cross approximately at the magnitude of the
fundamental resonant frequency. Consequently, the frequency-dependent EMI-responses of these

targets are markedly different.

Above we have concentrated on frequency-domain EMI operation. Alternatively, one can
seek to exploit the resonant frequencies in the time domain, through use of (3). From (3), we see that
the time-domain EMI response from a target is characterized by a sum of exponentially damped
waveforms, and the rate of decay is given by exp(-w,t), where w, is the magnitude of the resonant
frequency for the nth mode. However, we note that the initial portion of the transient EMI response
will be a replica of the incident waveform, followed thereafter by the exponentially damped tail. If the
nominal temporal support of the incident waveform is T, with T dictated by the system bandwidth,
then'we can only attempt to extract ), for time ~T. We consider the 1-inch diameter, 1-inch high
stainless-steel cylinder addressed above. That target has a principal resonance for o, approximately

equal to 4500 Hz, with a corresponding 1/e time of 0.222 ms. This consequently places constraints
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on a transient system, such that it is fast enough to measure the exponential resonant decay, before
it is buried in the system noise. For example, a system with 100 KHz bandwidth can generate a
transient excitation of T=0.01 ms duration, short enough such that exponential decay is of appreciable
amplitude for t>T. For example, in Fig. 5 we plot the exponentially damped response of the stainless-
steel for t>T, when a transient excitation is considered with bandwidth extending from 0.5-100 KHz.
For computation of these results, we utilized our frequency-domain MoM algorithm [6], followed

by an FFT to synthesize the time-domain scattered waveform.
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Figure 5. Exponentially damped response of a stainless-steel cylinder, due to excitation with a 100
KHz bandwidth pulse. Results are only plotted in the exponentially damped tail of the scattered
response, after the early-time (<T) response has been windowed out. The results were computed via

the MoM, for the geometry of the GEM-3 sensor [9].

Before proceeding, it is important to distinguish the results in Figs. 4 and 5. While both of
these results exploit the EMI resonances, they do so in very different ways. In Fig. 4 we considered

frequency-domain EMI operation, and therefore we utilize the entire EMI response. In Fig. 5 we
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consider time-domain EMI operation, and therefore the resonant response can only be exploited at
late times, t>T. Consequently, for time-domain operation we have two drawbacks. First, we discard
all time-domain information for t<T (early-time information), while in the frequency-domain approach
we utilize all the measured information. Secondly, for a time-domain system we require sufficient
bandwidth (small T) such that the signal extracted for t>T is of sufficient amplitude as not to be
corrupted by noise. For frequency-domain operation we have no such bandwidth restrictions, other
than designing the system such that it operates over the salutary frequencies over which the I and Q

cross (Fig. 4), for the targets of interest.

We note in this context that there is an analogue between a time- and frequency-domain EMI
system. In particular, as discussed above, a time-domain system requires a large span of frequencies
to enhance noise inmunity (7.e., to reduce T). A frequency-domain system, on the other hand,

benefits from averaging over extended time, to reduce system noise.
B. Single and multi-pole expansions

In the generalizcd-likclihood ratio test (GLRT) [20] in (15), we project a library of signals
onto the measured signal, and determine the parameters that maximize the likelihood test. Here we
utilize the frequency-domain response of the targei-dependent resonant modes as the library of
constituent features to which we match the signal under test. From (2), assuming non-ferrous targets
(a=0), each resonant mode’s frequency-dependent response is determined uniquely in terms of its
associated resonant frequency w,. We assume that the set of resonant frequencies characteristic of
a given target have been computed, as above, or are known from measurement. Consequently, in the
context of a GLRT, we must determine the modal amplitudes that best match the data under test, i.e.,
the coefficients &, in (2). If the noise is additive, Gaussian, and uncorrelated, then the maximum-

likelihood (ML) estimation [20] of the parameters b,is characterized by a least-squares fit.

In Figs. 6 and 7 we consider EMI data computed via MoM for the GEM-3 [9], again

considering the aluminum and stainless-steel cylinders addressed above. We utilize the resonant
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frequencies from Figs. 2 and 3 to perform a least-squares fit of the resonant modes to the frequency-
domain EMI data. In these computations we consider the m=0 modes (no azimuthal variation of the
currents induced in and on the target). The results in Fig. 6 correspond to the aluminum target, while
the results in Fig. 7 are for the stainless-steel target. We see that a single pole does a reasonable job
o_f' fitting the frequency-dependent EMI data, while an excellent {it is obtained using two modes (poles
1 and 2 from Figs. 2 and 3).
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Figure 6. Frequency-dependent EMI response of a 1-inch diameter, 1-inch high aluminum cylinder.
The solid lines correspond to the MoM-computed EMI response for the GEM-3 sensor, and the

dashed lines represent the least-square fit to the data, using one (left) and two (right) resonant poies.

20




One Pole Two Poles

T
—

T

o]

Figure 7. As in Fig. 6, but for a stainless-steel cylinder.

The results in Figs. 6 and 7 indicate that, when the set of resonant modes is consistent with
the data under test, a very good least-squares fit can be obtained between the data and a modal
representation. However, for discrimination to. be effective, the least-squares fit should be poor when
the data under test is inconsistent with the considered, i.e., when poles from Target A. are used to try
to fit data from Target B. Considering the aluminum and stainless-steel targets investigated above,
one would expect this to be the case, given the disparate characteristics of the associated target
resonances. To examine this issue, in Fig. 8 we show frequency-domain EMI data from the stainless-
steel disk, as fitted to resonances from the aluminum target of the same geometry. We see that this

fit is very poor, indicating the utility of this technique for target discrimination.

21




3 3E-08 |= ~ Two Poles

3E-
L)

395-
]

EBE-
2.7E.
2 6E-

2 3E-

2 4E-
1 1 ]
s000 6500

1
4500 5000

§500
Frequency (Hz)
Figure 8. Frequency-dependent EMI response of a stainless-steel cylinder (solid curves), and the fit
of this data to a linear combination of the first two principal poles of an aluminum cylinder (dashed

curves). The dimensions of the two targets are identical.
C. Dependence of EMI response on target-sensor orientation

All of the results in Figs. 6-8 were for the GEM-3 coils {9] aligned such that their axis was
coincident with the axis of the targets. Since we are interested in discriminating concealed (buried)
targets, the target-sensor orientation s in general unknown. It is therefore of interest to examine the
modal representation of the frequency-dependent EMI response when the target and sensor are not
axially aligned. In Figs. 9 and 10 we consider the EMI response for the GEM-3 placed 15 cm above
the target, with the GEM-3 and target centers offset by radial distance O, 10, 20 and 25 centimeters,
for the stainless-steel cylindrical targer, Here we again use the principal two =0 modes(for cos(md)
azimuthal variation), with which we see an excellent fit to the frequency-dependent data. This implies
that, despite the fact that the sensor and target are offset with regard to one another, the induced
currents in the target are largely independent of the azimuthal direction on the target. For larger
targets we may require higher-order modes (m>0) to achieve a satisfactory match between the

measured data and the least-squares fit, when the target and sensor are offset (due to asymmetric

induced currents).




”
” .
yiEorp - LEE-or
yeEos | !
19E08 15E08
- 23500 |
SEME AT
sE01 i_
aEf !.15-(‘.:
ZLE03 P 0 cm Offset 10 em OfTset
13EDL LIEGE
2308 |
L.1E<
ZIEQE 2
A 1 L I I i L L 1 -
4000 4500 5000 3500 £060 LK 4500 Jooa 1500 600%
Frequency (Hx) Fraquency (Hi)

Figure 9. EMI response of a 1-inch diameter, 1-inch high stainless steel cylinder, as seen by the
GEM-3 system. The solid curves represent the I and Q scattered response, computed via MoM, and
the dashed curves represent the least-square fit using the principal two m=0 resonant modes for this

target. The target and sensor axes are offset by O (left) and 10 cm (right).
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Figure 10. As in Fig. 9, for offsets of 20 and 25 centimeters.

Before leaving the issue of target-sensor orientation, we note that the different 7=0 resonant
modes characteristic of a particular cylindrical target differ only in the radial dependence of the
induced currents. Consequently, one might anticipate that the excitation strengths of the various m=0
modes from a given target would be affected (approximately) in the same manner as the target-sensor
orientation is changed. If this were the case, the relative strengths of the various #=0 modes would
be independent of the target-sensor orientation. Therefore, there is only a single aspect-dependent
parameter needed to describe the frequency-dependence of the EMI response [21]. In other words,
for the cases considered above, for which two modes were sufficient to characterize the EMI
response, the ratio 5,/b; should be approximately independent of target-sensor orientation. As
discussed below, similar issues hold if more than two m=0 modes are required. This property
significantly reduces the number of parameters we must compute, and by constraining the ratio ,/5,,

we further match the modal expansion to the target of interest (we reduce the number of free

parameters).
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To test this hypothesis, in Table 1 we plot the ratio /b for the stainless-steel target, when
the sensor is placed 15 cm above the target, and the radial offset between the GEM-3 coils [9] and
the target axis are 0, 10, 20 and 25 cm. We see that, for all target-sensor orientations considered,
by/bz is approximately 1.70. This is an important property that can be exploited in the context of

discrimination.

Offset (cm) Ratio by/bz
0 1.746
10 1.767
20 1.719
25 1.670

Table 1. Ratio of modal amplitude of stainless-steel target, as a function of target-sensor offset.

The above discussion implies that the relative excitation strengths of the EMI resonances are
aspect independent. This is because each has the same azimuthal variation. However, if m=1 modes
were excited, the relative strength of excitation for the m=0 and m=1 modes wiil be aspect dependent.
However, the relative strength of the m=1 modes, with respect to each other, will again be aspect

independent [21].

VL. Statistical Analysis of Time-Domain and Frequency-Domain EMI

A. Theory

Assume that the vector /=[f; /2 ... /u]" is representative of the N discrete, real samples from

a given measurement, where the superscript T represents the transpose vector operation. In the
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context of wideband electromagnetic induction (EMI), these numbers could represent N time-domain
samples used to represent the measured exponential decay from a buried conducting target, while in
the context of wideband frequency-domain EMI, this can represent the in-phase (I) and quadrature
(Q) components measured at N/2 frequencies, the in-phase component at N frequencies, or the
quadrature component at NV frequencies. In each case, we assume that the signal fis corrupted by
additive white Gaussian noise (WGN). Hence, if s=[s; 57 ... .';N]T represents the response of the target
in the absence of noise, f=s+n, where n=[n, m; ... ny]" is WGN. The objective is to use the measured
signal £, and implicitly the underlying target response s, to identify the target, with this process
complicated by the additive noise ». It is assumed that the noise-free response s is known, from either
measurement or theoretical model. Moreover, we assume that there are A signatures s;, §2, ... S

available, representative of the M targets to be identified or distinguished.

Under the aforementioned circumstances, optimal target discrimination [20] is effected by
considering the M random variables v,,=s,, f, where fis a noisy waveform measured from a target to
be identified, as described above. We assume the signals s,, have been normalized. The numbers v,
are random, as a consequence of the additive system noise n, and under the above assumptions we
declare f representative of target X if |w| 2 |va| ¥ me[l, 2, ..., M]. The purpose of the present study
is an analysis of the statistical performance of such a identification procedure, for time-domain and
frequency-domain EMI systems. Further, with regard to the latter scenario, we examine performance
as a function of bandwidth. To perform the above discrimination paradigm, we require knowledge
of the signals s, For time-domain operation, this assumes knowledge of the late-time decay
constants, which can be computed or measured. For frequency-domain operation, it requires
knowledge of the relative excitation strength of each resonant mode, for a particular target. As

discussed with regard to Table I, this is often approximately aspect independent.

Within this paradigm, we must consider the statistical properties of the M random variables
v,, that are calculated when attempting to identify the target from the measured waveform f. The
assumption that # is WGN implies that the random variables v, are also distributed in a2 Gaussian

manner. In particular, the mean of v, represented by the expectation E(v,), is given by
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E(Vu)=E(Sm f)=sm's, where f=s+n (i.e., the measured data fis characteristic of a target with noise-free
response s, where it is assumed that s is one of the aforementioned s,, s,, ... Sp). If noise n is
uncorrelated with variance o® (E(n2%)=0"8x, where the Kronecker delta 8y=1 if i=k, and 83=0
otherwise), then the v,, are correlated in a simple manner. In particular, we define the M-dimensional
vector v=[v; vz ... w], which is computed by performing inner products of the measured data f with
the library of expected target signatures si, sz, ... s The vector v is described by the correlated

Gaussian distnobution

(V) =[(2zr)“detcr’“exp£-%<v- m) (v - m)] (16)

where m=[n; n; ... my]", mk=E(v;,)=E(s,,Tf)=sfs, and C is the MxM covariance matrix, defined as
C=E(»v"). One can readily show that the Cy, representative of the ik-component of the matrix C, is
given by Cu=c" 5,"s;. With the statistics of v defined in (16), we can now predict the statistical

properties of the optimal EMI discriminationralgorithm discussed above.

Assume that the target considered in the measurement fis represented by the signal s; (i.e.,
“target 1"). In this case, proper classification occurs if [vi| >|w|, |wvi| >{ws] . ..., [¥1] >|wu]. The
probability that this occurs is defined as the probability of proper classification, £.. Using (16), we
can explicitly compute P as [20]

o

hed hed bl
Pe= [avi | dv; [ dv,eee [ dugf(2n derCT el 2 (v-mY €' (v - )] a7
—0 A v v

The integrals in {17) cannot be evaluated analytically, and therefore are computed here via numerical

integration.
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B. Example results

We utilize the results from (17) to consider the relative efficacy of wideband time-domain and
frequency-domain EMI. We consider conducting spheres of 1 inch diameter, composed of aluminum
and brass, and address the ability of an EMI system to discriminate these targets. This issue can be
addressed for more than just two targets, but the integration in (17) becomes more time consuming.
Aluminum and brass are selected because these targets have simular conductivities, and therefore this
poses are relatively difficult case. We have shown experimentally and theoretically [6] that the
principal EMI modes of these targets have “resonant” frequencies of f;=j260 and f;=j651, respectively,

for the aluminum and brass target.

As we have discussed previously, the frequency-domain EMI transfer function H(f) for a

conducting target 1s expressed as

f
Hf) =b6—2—— 18
0= (8)

where b is an amplitude constant and f; represents the (imaginary) resonant frequency. In (18) we
assume that only a single principal mode is of importance. The real part of H() is called the in-phase
(I) component, while the imagmary part is termed the quadrature (Q) component. In the time domain,

the corresponding impulse response is expressed as

ht) = -b2m | f.| e (19)

In the test we consider, we assume that the data in (18) or (19) is sampled, at a frequency
sampling rate Af or temporal sampling rate Af. Moreover, we assume that the library of target

signatures s, §z, ... Sm are normalized (here we consider M=2), ie., Sm's»=1. The data under
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consideration is shown in Figs. 11 and 12, in the time and frequency domain, respectively. The time-
domain data corresponds to 64 data samples at A==0.1 msec, where the frequency-domain data
corresponds to 50 samples, at Af =20 Hz. As discussed, we consider measured data f=s+n, and the

signal-to-noise ratio is defined as s's/c”, where o” is again the noise variance.
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Figure 11. Late-time EMI response of aluminum and brass spheres, of 1-inch diameter.
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Figure 12. Frequency-domain EMI response for the two targets considered in Fig. 11.

In Fig. 13 we plot the probability of correctly distinguishing the aluminum target from its brass
counterpart, plotted as a function of SNR. The results were computed using a bandwidth of 1 KHz,
which from Fig. 12 is sufficient to capture the principal features of the targets’ transfer functions. By
taking Fourier transforms of the signals in Fig. 11, it is clear that the late-time transient responses
contain principal frequencies less than approximately 1 KHz. If the time- and frequency-domain

contain the same bandwidth and the same noise levels, time- and frequency-domain performance are

identical.
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Figure 13. Probability of correctly distinguishing an aluminum from a brass l-inch sphere. These
results are for either frequency- or time-domain operation, assuming that the temporal and frequency-
domain sampling are such that the sighal energy and noise characteristics are the same in the two

domains.

A very important point must be made while interpreting the results in Fig. 13. In a time-
domain EMI system, one can only use the late-time portion of the signal to effect the above target
discrimination. This implies that we only process such data for time #7, where T is the nominal
temporal extent of the driven EMI response (i.e., the temporal duration of the source). It is well
known that for small conducting targets, often over 95% of the time-dormain signal energy occurs at
<7, and therefore the late-time response is quite small in amplitude. By contrast, a frequency-domain
system need not distinguish early and late times, since steady-state measurements are being acquired.
Consequently, alf of the EMI energy is exploited in a frequency-domain EMI system. Therefore,
returning to Fig. 13, recall that the SNR is defined as s's/c®. In a frequency-domain system s's
corresponds to all of the scattered energy, while for time-domain processing s's comresponds to the
much smaller late-time signature, for &7 only. Thus, if or and &, correspond to the noise variance of

a frequency- and time-domain system, respectively, then we require o;<<o; such that the frequency-
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and time-domain systems achieve the same SNR. In other words, a time-domain system must operate

with a noise variance which is much smaller than that of a frequency-domain system if the two are
to achieve equal performance. This suggests that a frequency-domain system is most appropriate for

discrimination of relatively small targets.
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Figure 14. Probability of correctly identifying aluminum and brass 1-inch spheres, using a frequency-
and time-domain EMI system. With regard to the time-domain case, we plot results as a function of
the turn-on time T, and resonance-based transient EMI identification is performed for t>T. The
frequency-domain scheme implicitly exploits both early- and late-time information, and therefore it
is independent of T. Results are plotted for the 15 dB SNR case in Fig. 13 (the noise variance is held

constant, and therefore the actual time-domain SNR decreases with increasing T, since the late-time

energy decreases as T increases).

To demonstrate this, in Fig. 14 we plot the performance of a time- and frequency-domain
EMI system, for distinguishing the aluminum and brass 1-inch spheres. In these results the noise
variance is chosen as that characteristic of the 15 dB SNR data in Fig. 13. Recall that for time-domain

EMI processing we only utilize time £~T, where T is the nominal duration of the excitation.
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Consequently, if the noise variance and excitation strength are held constant, as T increases we are
implicitly processing a late-time time-domain scattered waveform that has been further damped and
therefore is more undermined by noise. For a frequency-domain system, the discrimination
performance is independent of T. The results in Fig. 14 demonstrate dramatically that, for the (small)
targets considered, a frequency-domain system is superior than its time-domain counterpart, since T
is always greater than zero. For a time-domain system with 2 KFHz bandwidth, T is approximately 0.5
ms. For a time-domain system to operate with the same quality as a frequency-domain system, the
bandwidth must be increased markedly such that the turn-on time T is as small as possible (relative

to the decay rate of the damped exponential}.

As we have discussed in Sec. IVB, large and/or highly ferrous targets have corresponding
resonant frequencies that are too small to be encompassed within the system bandwidth of most
practical frequency-domain EMI systems. Further, we have found that a frequency-domain system
provides poor discrimination when the target resonant frequencies are too small to be encompassed
within the system bandwidth. For example, in Sec. IVB we demonstrated that large and/or ferrous
targets ofien have resonant frequencies f less than 1 Hz. For such targets, it is virtually impossible
to build a frequency-domain systerﬁ with bandwidth that encloses f; . Consequently, a frequency-
domain system is most appropriate for small targets, while a time-domain system is optimal for large
and/or ferrous targets, This motivates a hybrid frequency-domain/time-domain system for applications

involving both large and small targets, as well as ferrous and non-ferrous.

V1. Conclusions

A detailed study of frequency- and time-domain EMI has been undertaken. It has been
demonstrated that both the frequency-domain and time-domain signatures can be parametrized
entirely in terms of the low-frequency EMI resonances, with such characterized by nearly purely
imaginary frequencies. This recognition significantly simplifies target discrimination, for the

characteristic target signatures can be expressed compactly in terms of a few parameters. We also
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demonstrated that useful properties exist with regard to the relative excitation strengths of multiple
resonant modes. Finally, we have undertaken a detailed analysis of the efficacy of frequency- and
time-domain EMI sensing, in the presence of additive system noise. Assume jo, represents the
principal resonant frequency of the target in question. If @, is within the bandwidth of a frequency-
domain EMI system, frequency-domain sensing is efficacious. However, large and/or ferrous targets
are often characterized by very smallw,, too small to be within the bandwidth of a practical
frequency-domain EMI system. A small ©, implies a slow resonant decay for a time-domain system,
implying that such targets are best interrogated with a time-domain EMI sensor. Summarizing, this
study indicates that an optimal EMI sensor will operate in both the frequency and time domains, with

the former appropriate for smaller targets and the latter best suited to larger and/or ferrous targets.
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