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Abstract

In transient scattering measurements one needs an adequate received signal to successfully detect and
perhaps identify the scatterer. This depends on the properties of the scattering dyadic and the transmit and receive
antennas. For the case of backscattering (colocated transmit/receive antennas) received signals are estimated with
choice of some kind of impulse radiating antenna with a large band ratio. The effect of propagation through an

interface (e.g., air/soil) is also included.
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1. Introduction

Over the years much calculations (e.g., [17]) and measurements of electromagnetic scattering have been
performed. While these are performed primarily in the frequency domain, they can be applied in time domain as
well by inverse Laplace/Fourier transformation provided phase is retained (which is not the case for radar cross

sections).

For transient remote sensing, one has some transmitting and receiving antennas which send out a pulse and
receive the pulse scattered by some object of interest. Such antennas also need to be characterized and optimized for
their transient performance. Various types of impulse radiating antennas (IRAs) are suitable for this purpose [22].
One needs to know what are the characteristics and amplitudes of the received voltage as a function of the
transmitter voltage waveform and amplitude and the scattering dyadic operator for the object of interest. In the

present paper, some simple canonical scatterers are considered for this purpose.

In addition to the antennas and scatterer, one may need to consider the properties of the intervening media.

A common example concerns the interface between air and soil for the case of buried targets [10, 21].



2. Transient Scattering

Approximating the wave incident on the scatterer as a plane wave in free space, we have [18]

Sline) _ - i
E  (r,s)=Eylpf(s)e? licr

- -

__)(inc) N - Ljor

E (r.,y = Eglpflt-

c

_)
= direction of incidence , lp= polarization

._.
-
I

1i « 1p=0, f(tr) = incident waveform

1
[10€0] 2 = speed of light

o
It

&
I

amplitude factor (V/m)
y = S s propagation constant
c

time

[l

Laplace transform (2-sided) over time

s = Q+ jo = Laplace-transform variable or complex frequency

The far scattered field can then be written
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Here, r = 0 is located at some convenient position on or near the scatterer.

For the important case of backscatter we have
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In thlS latter case we can have the usual h,v (horizontal-vertical) radar coordinates with a right handed system

(1h lv,—lz)wnh

0 (2.4)

._)
In this case, one envisions an observer at the radar looking in the direction l i (toward the scatterer) with 14 to

the right and 1 v (approximately) up.

While the general form of the temporal form of the scattering dyadic is a convolution operator, there are
special cases which simplify its form. As discussed in [18] one has cases in which the scattering dyadic takes the

form
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which are simply temporal derivatives or integrals. Our canonical examples include such cases.

A commonly used measure of far-field scattering is cross section (real) A.(jw) typically defined by
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However, this loses phase information when considering individual frequencies, and loses dispersion information,
making it unsuitable for transient scattering. It can be calculated from the scattering dyadic [6, 7]. Note that A, is
also a function of the polarization of the incfdent wave and whether one is considering some particular polarization
of the scattered field. Using linear polarization (circular polarization being unsuitable for transient fields) then (2.2)

becomes
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A (jw) = e Apm(lo, 1 jo) = — Abn.m (1j;jw) for backscattering (2.8)

The formulae in this paper can then be converted to cross-section for frequency-domain purposes.
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3. Scattering Signals

Besides the properties of the scatterer one needs to radiate a pulse from some antenna and receive the pulse
from the scatterer with an antenna (the same antenna or a different antenna). Beginning with the transmitting
- .
antenna located near r it has a far-field [1] given by [3]
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where we can approximate this field as a plane wave incident on the scatterer, giving
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In reception an antenna at r receives the scattered field as
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Reciprocity [3] relates the transmission and reception properties of an antenna by
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where R is the assumed input impedance (which we take as a constant resistance) and load resistance (in reception)

of the antenna of concern. In time domain, we have an operator equation
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The transmitted field then can also be written as
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Combining transmission and reception, perhaps with two antennas near r (the observer) we have (4, 19]
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as our basic radar equation in both frequency and time domains.

For an impulse radiating antenna [22] we have a constant aperture height wl?,, across a broad band of

frequencies (a few decades [20]) on the main beam (boresight). Let us assume that the signals of interest are
dominated by this band of frequencies so that we need not consider other details of the antenna response (prepulse,
etc.). There is also a delay in the propagation of signals through the antenna, but this is a simple correction which
need not influence our present discussion.

For a simple version of the radar equation, let the same (or an identical) antenna be used for both

._)
transmission and reception. Let h 4 be frequency independent. Choose some particular linear polarization (h or v)

so that we are considering Ap, , or Ap, v

Then a scalar form of (3.8) is
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where the delay of 2 r/c has been deleted for simplicity. For the special case that the scattering dyadic is

proportional to " as in (2.5) the above reduces to
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4, Flat Surface with Normal Incidence

Consider a perfectly conducting flat disk of area A. For early-time purposes, this also includes other

materials extending back from the disk (away from the radar [18 (Section 3.2.6)].

For the simple case of normal incidence we can evaluate the backscattering dyadic by treating the disk as

S(inc)
an antenna aperture S, with tangential electric field given by — E . Then like an IRA [2], we can evaluate the
scattered far field as
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This has the form in (2.5) with the additional property of no depolarization. In time domain we then have

i 24€ d
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S. Curved Surface with Specular Scattering

) . ——> __) .
Now let there be a convex perfectly conducting scattering surface S. Let 7 = O be the first point on the
scatterer touched by the incident wave. As a smooth convex (incident-wave side) scatterer this point is a specular

point, i.e.,

- —
J

1; 1S at 6.1

The high-frequency, early-time scattering near a specular point is governed by the curvature of the wavefront as it

leaves the scatterer [16(Section 1.4.3.5)].

The curvature of S at such a point is given by the two principal radii of curvature n and . We also have

the total or Gaussian curvature [14] as the reciprocal of the corresponding radius of curvature as

1
o =[rn]2 (5.2)

Now the wave leaving the specular point has curvatures exactly twice those of the surface. An incident plane wave

- o
(zero curvatures) has an extra distance to reach S away from r = 0 and an equal extra distance to return from S.

The high-frequency, early-time scattered field then takes the form

(se) Zline)
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From (2.2) we identify
S - o
Ap(li,s)=="2mrol; (5.4)

This has the form in (2.5) with no depolarization. In time domain the scattering dyadic operator becomes

- - ©
Ap(li,t)o ==2mrg1; (5.5)

(i.e., just dot multiplication). As a simple example this formula applies to a perfectly conducting sphere of radius a .
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6. Circular Cone on Axis

Moving on to scatterers with yet smaller backscattering consider a perfectly conducting circular cone as in

Fig. 6.1. From [18)] we have the general result

S -5 - e o
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>

So we need to have some estimate of K .

For backscattering we have

o > e T

Kp(1i)=K(=14,1;) 6.2)
Referring to Fig. 6.1 we have axial backscattering defined by

- - -

lo=—1;=1, (6.3)

on a perfectly conducting circular cone defined by the angle 0 from the z axis with 7/2 < 68; < x. This is

treated in some detail in [17 (Section 18.4.3)]. For a wide cone (61 near 7/2) we have

Kb(=1z) = —mcos™ (@) 1 =-msin™ (01— -E) 1 6.4)
and for a thin cone (6 near m) we have
} 2
o - & © o
Kp(-1z) = —4nsin(%[7z—el])1i=—z§z[n-01] 1 (6.5)

For off-axis backscattering the scattering is greater and the reader may consult the reference.

While a thin cone has reduced scattering, real cones are not semiinfinite, but are truncated or mounted on

other structures which can give larger scattering.

11



Fig. 6.1 Circular-Cone Scatterer
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7. Thin-Wire at Broadside

Previous examples are associated with early-time scattering. For late-time scattering resonances are a

feature of interest for which the singularity expansion method (SEM) is the appropriate way to view this
phenomenon. In this form the backscattering dyadic can be expressed as (7, 9]

<>

— 1 - —
Ab(li,s) = Z[S—Sa] Ca(1)Call i) + possible entire function (7.1)
(24

The entire-function contribution is an early-time contribution, which we neglect here to look at the amplitude of the

. hd
resonances. For calculating ¢ o we have the general formulae

- - -
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- - T .20 o
Ca(li) =( lielali*r j ")
-1
- - & - - 5
W = =Sg o Ja.(r);é—S-Z(r,r,s) s Ja(r)
S=S5g
S = natural frequency (7.2)
- -
J @(r’) = natural current mode
e i N W
Z(r,r;sa);]a(r) =0
S - )
Z(r,r’;s) = integral equation kernel

Consider the thin wire of length ¢ and radius b, as in Fig. 7.1, which has been the subject of numerous
investigations. The lowest order natural frequency is [5, 15)

Y . ¢ ¢

—— = —0.082+;0.93 for — =100, ¢n|= |=5. .

- j or n[bJ 53 (1.3)
We also include the conjugate natural frequency si" . This fits into a damped sinusoid of the form

o sprvy . siid @ Re(sqt+)

S| esattY 4, a@ 27 |u) = RS cosim(syr + y)ur) (7.4)

2 Z ¥ ¥
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14



From this we find the number of cycles to decay to el as [13]

Imis
g _Llmla] g (7.5)
pu :
where A is also called the logarithmic decrement. For purposes of estimating the transient amplitude of such a
resonance we can use the value at r = Q. ‘

For a simple analytic mode! .of the scattering (consistent with the more accurate numerical models) we have

the current on the wire (first pole pair) as [11]

- ey - -1 ‘
I(z,s) = E (0,s>-1z“ig—c‘)s[ﬂj{[“s‘]_l*[“ﬂ J (7.6)
zozn(;) ¢

- - 5
where the incident field is taken as parallel to the wire (i.e., to 1 z)and 1; 1 1, (broadside). One can extend this

to other angles as approximately sin(6; ) where 6; is the direction of incidence as measured from the z axis.

The current produces a scattered far field (broadside) as [7]
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5 - . 7r r > e e ]
Ef (r,s) = ~f&e——je7lo" Lie J(r,s)dV
arr
|4
Z/2
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drr
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_ -1]> -
- _5 — 2te [[S—Sl] 1+[S—Sf] JE (0,5)
" m°n(¢/b)
The scattering dyadic is then
acs 8¢ -1 " ~-1|—= -
Ap(s) = ~———5|fs~5 +[s—s:] 1,1
b(s) ZIn21D) [[ 1] 1 z 1z
(7.8)
I 4 S, s TZT '
wn(e1b)| s-s g z
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with magnitude about 5.4 ¢ at first resonance (s = jow = JIm(sy)). This can be extended off broadside with an
- -
approximate sin2(9,-) 1g, 1¢ factor.

In order to estimate the transient backscattered signal consider the simple scalar form in (3.9) with

- o ~
ha/l 1 ; and, of course, Ap(s) being the z, z component. Then for a resonant scatterer we need to evaluate all

terms except [s —s; ]"l and [s —sl* ]—l (which become damped sinusoids) at the resonance giving

( vi¢ ) hZ 8 g e -
(rec) _ a (trans)
axV, =~ 2 1% 7.
Vi )E m[ () 87r2cfgr2 liizé’n(f/b)} ISI, 1 )’ (7:9)
ls ,
p

We have already assumed that h, is approximately frequency independent for frequencies of interest

(around sy in this case). This leaves the characteristics of V75 (5) 1o be evaluated near s1. For a simple case

of interest let

v (trans)

V(trans)(t) - Vo(trans)u(t), V(trans)(s) = Yo - (7.10)
Then (7.9) can be rewritten as
max e - __ha 8¢__|lsily crans) (7.11)
]{\3 e 87[2‘fgr2 wn(€/b) | ¢ 0 .

This requires that the rise time (t,,,) based on the slope of V@) (;) pe sufficiently short (i.e., << lsll—l ). This

allows us to define an effective backscattering dyadic to be used with Vo(mms) in a formula as in (3.10) as

- (eff) 6
1b Ky, = 2 'slle—f T, =281,1 7.12
b _Zn(llb) zc tlr e etz .12)

which is dimensionless and independent of ¢. This applies only to the magntitude of the first resonance and

neglects any early-time contribution.
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8. Two-Way Transmission through Interface

An additional complication occurs when the scatterer is in a separate medium (e.g., soil) from that (e.g., air)
surrounding the antenna(s). Such is the case in searching for buried targets such as mines and unexploded ordnance

(UXO) [21].

Figure 8.1 shows the problem geometry with an incident plane wave incident on a plane interface. We are
interested in the transmission coefficient for both vertical and horizontal polarization as indicated. The scattering

from the buried target will follow the same path back to the radar and is similarly evaluated. So we define

~(in) '
_s Ty (¥, $) 0
TWy,=| " 7 i
0 Th Wi, s) .
~(out) ’
~(out) Tv (V/jys) 0
T Wi, ) = = (out)
U )

in two-dimensional form, since we have only transverse electric fields. Here w; is the direction of incidence

measured from the z axis with
cos(y;) = —1; « 1, (8.2)

.._)
Note the direction of incidence 1, on the scatterer in the lower medium. For this purpose ¥, is needed when

evaluating the scattering dyadic there. For convenience, however, both 70 and 74 will be referenced to ;.

In the radar equation in Section 3 we need to include 7% to modify the incident field and T

modify the scattered field giving

} se_z},r ylrec) S o » S(trans)y :
v(’“)(s)=g 2fer? ho Clis) s Ap(1e) « TP o k0 (= 1asV g 33
T 8ar

where the depth of burial is small compared to r to avoid a correction for the wavefront curvature in passing through

the interface. Thus we have an effective backscattering dyadic
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Fig. 8.1 Plane-Wave Transmission through Interface.
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Ap  (1i,9)

=(out) o2 ~(in) .
T (Wi.s) « Ap(ly,s) « T (y;,5)
Reciprocity requires

NG/ RN ST » S - .
A (Lis) = A (145 = TW@s « Ap(1rs) « T

showing that 7™ and T(°*) can be interchanged.

S &)
For cases of diagonal Ap then Ap  is also diagonal and we have

o) - S oo S - .

Ab  (1i,8) = TW;,s) « Ap(le,s) = Ap(1r,5) « T(y;.5)
N (l)(out) (_:)(in) (:_)(in) (;)(out)
Tyi.s) =T W)« T W) =T (Wi.s)T i.s)

S| Twes 0
0 TyWi.s)

B fy(‘o“t)(y/,-,s)f#")(y/,-,s) 0
0 7:,&) ut) ('//,',S)fk(}n)(%, s)

—)
Such occurs in the case of scatterers with a symmetry plane containing the z axis and parallel to 1; [8].

(8.4)

(8.5)

(8.6)

h h

Transmission and reflection of plane waves is a well understood problem [10, 12]. Referring to Fig. 8.1 we

have for the two media

1
[s;t,, [on +s€, ]JE = propagation constants
1

Yn

. s 2 .
z, —n 1% o wave impedances
Op +5E,

n=12

and for later use we have the “simple dielectric” case as

£
M=y =My, Oy =0 =0, & =251
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Matching the propagation of the incident and transmitted waves along the interface gives (Snell’s law)

Asin(w;) = 7asin(yy)

relating ¥, to y; through the media parameters and frequency.

Following [10] we have for vertical polarization

i E Z . N
B0 = <2 = Z2[147,] = 221+ 7,
E 7 1
7y = Zy cos(y;)
V' Z) cosy;)
- 2 23
Z % .
= —:‘lsec(y/i) 1—[—?—} sz('//i)
Z; 72
1
- 92 2 2
Zy O] + 58] .2
= sec(y; —==| —=|———1 sIn ;
) I:Z]:, {0’1-*—382] = (y;)
/1//" =&, lsec(l//i)[sr—sinz(y{i)]z (simple dielectric)
A

Interchanging the roles of incident and transmitted waves gives

- 7 -1
T\gout)(l//i,.s‘) = —E-I—-ZI:I-Q-,Z;]:I
Zy

these can be combined to give

- _ a7l
Tv('/’i’s) 4[1+fv] 1[1+Zv1}

-1
4[2+jv +,{/",1]

For horizontal polarization we have

» E . AN
Tn(m)('l’i,S) = ETz =1+ 7y = 2[1+ 73] 1
]
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. Zjcos(y,)

S
Il

Zacos(t/&')
- 12 5
Z .
= Zlsec(yy) 1—[—{’1—] sinZ(yy)
Zy 4 72
1
- 92 2 B
Z . -
= sec(y;) [—:1—} —[ﬂ] smz(l//l)
Zy M

1
= sec(y/}.)[sr—sinz(l//[)]z (simple dielectric)

Interchanging the roles of incident and transmitted waves gives
=(out) 177!
n" g, = 2[1+;(h ]

These can be combined to give

-1

Ty Wi,s) 4[1+,?,~’h]—1[1+f;:1]

i

-1
4[2+;2,, +,{f;‘]

For the case of normal incidence we have

v, =y =0
~ _ _2 — ~ =1
Av Z Ay
5 ]!
TV(O,S) = Th(O,S) = 4[2+*~—1 + TZ-}
2 4
o7
=42 + €2 + g2 (simple dielectric)

(8.13)

(8.14)

(8.15)

(8.16)

For £, =9 then T, =3/4 =0.75 and this not a big effect. There is also the Brewster angle at which there is no

reflected field a the interface. For vertical polariztion we have
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’\k( v =1, T8 =1
Z~ 2 + 2
cos?(y) = [_2} _[M]sz(%)

Z] 0'2 +s£‘2 (8.17)

= &7l —£7%sin%(y;) (simple dielectric)

—

tan(y;) = €2 = tan(y;g) (simple dielectric)
i iB

For horizontal polarization one can have a Brester angle if there is a difference in permeabilities between the two

media. For the case of a simple dielectric we have at the Brewster angle

1

Xh = SCC(WiB)[Sr—SiDZ(WiB)F
= g, (from (8.17)) (8.18)
. 7!
T,(w;g.s) = 4[2+£r+€r ]

For £, =9 then T} =9/25 =0.36. So while T, has been improved at the Brewster angle, 7}, has been diminished

somewhat.
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9. Concluding Remarks

Hopefully this compilation of simple scattering formulae and combination of these with antenna
characteristics will prove useful in estimating signal strengths for detection of various scatterers both in the air and
buried. One could add various other canonical scatterers, but this should help one bound the problem. The antennas
are of the IRA variety with their wideband ratio, and for which the formulae in time domain simplify somewhat.
Alternately one can deconvolve the response of other types of antennas (if they have sufficient bandwidth) to obtain

similar results.
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