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A useful way to describe a wall of non-zero thickness is the boundary-connection supermatrix (BCS)
relating the tangential components of the electromagnetic fields on the two surfaces of the wall. This paper develops
the BCS for uniform isotropic walls. This is applied to the canonical problem of the spherical shell (shield). A

delay corrected BCS is also introduced to give the wall an equivalent zero thickness.
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1. Introduction

In the 1970's, discussion began on a subject to become known as the boundary connection supermatrix. In
this regard, I was fortunate o have colleagues Dr. Kendall F. Casey, who was applying this to composite materials
[4], and Dr. (later Prof.) Korada Umashankar (deceased) who was applying this to wire cages [1]. We exchanged
numercus ideas and I outlined some possible papers. In 1978, Prof. James R. Wail (deceased) suggested that [ write
a book on the theory of electromagnetic shielding, of which a chapter in my outline would have covered this subject.

I have also suggested on various occasions that Dr. Kelvin S. H. Lee should write a book on EM shielding.

So, resurrecting my old notes and extending them, the present paper has resulted. After defining the
general concept of the BCS and the delay-corrected BCS, these are computed for a uniform isotropic wall (of
thickness A). Noting the differences for E and H waves, conditions are developed under which the BCS and delay-
corrected BCS are approximately independent of the details of the electromagnetic fields outside the wall, relying
ony on the tangential components of the electric and magnetic fields on both surfaces. This is then applied to the

canonical problem of the spherical shell and compared to the exact soluticn contained in the appendices.



2. Boundary Connection Supermatrix

The basic idea of a BCS is to relate the tangential components of both electric and magnetic fields on two
nearty surfaces (locally parallel) where some structure (to which we refer as a wall) is located between these two

surfaces. In mathematical terms we are looking for a BCS defined by

=(2) - (1)
P 5 . P art
Iy« E (729 & 1t « E (719
= (B“_v(2,l;s)) 0]
) 5 5 (—) 5 5
Zyly = H (r2,s Zy Ly« H (r1.9)

L d
{ B (2,1;5)) =boundary connection supermatrix {(BCS)

~ =two-sided Laplace transform over time ¢ 2.1)

s =  + jw =Laplace-ransform variable or complex frequency

The ] and 2 indices refer to surfaces S; and Sq in Fig. 2.1 separated by a distance A (lypically small).
These surfaces are locally approximately planar, i.e., have radii of curvature large compared to A. If the spacing A is

allowed to vary, it should do so slowfy so as to retain a constant A as an approximate local condition.

Notc that 71 (on 31) and 7}2 {on 35) are assumed t0 be corresponding positions separated by A, i.e., at
points of closest approach. The two wave impedances Z; and Z; refer to the two media on opposite sides of the
wall. Often they both correspond to free space with

2
Zy = {—:, = wave impedance of free space
21

1
¢ = {gpeo] 2 = propagation speed in free space

s : .
Yo = — = propagation constant in free space
c

Hp = permeability of free space 2.2)

£ = permittivity of free space

In the simplest case, the tangential fields are slowly varying along each S,,. This assumes that radian
wavelengths A in the two media external to the wall are large compared to A, and that the wall is uniform, i.e., not

varying in its properties in directions farallel to the S,,. (It may be layered, i.e, varying in the direction
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Fig. 2.1 Locally Flat, Parallel, Closely Spaced Boundary Surfaces.



-
perpendicular to the S,, i.e., the unit surface normals [s, .) However, some kinds of walls have significant

transverse variation, e.g, wire mesh, rebars, etc. In this case, & should be large compared to the ransverse periods
{iwo transverse directions) of the wall variation. In this case, the tangental fields (including incident, scattered, and
transmitted (from other-side components) are not locally uniform. In such a case, the tangential fields need to be

reinterpreted as appropriate averages.

Since we are dealing with transverse components on the S, , we can regard the veclors as having two
components. The supervectors then have four components and the BCS is 4 X 4. In this case we have the BCS

inverse

o “ 1
(Buv(2,1;8)) = (Buv(2,1s) 2.3

In some cases one can successively dot multiply BCSs for a sequence of walls to obtain a composite BCS for the set
of walls. The BCS is a kind of chain matrix (or matrizant) in these cases. However, transversely (perpendicular to
-

ls, ) varying walls have nonuniform tangential fields, which can upset this chain-matrix property. Such cases

require special consideration.

One can also define a delay-corrected BCS to account for the transit time (or phase shift) of an

electromagnetic wave through the wall thickness A in the absence of the wall. This allows, as an approximation, one
to refer the tangential fields (o surfaces S|, and S, which in the limit are the same surface Sy somewhere
between S| and S; as indicated in Fig. 2.2. This can be convenient in some computations. Formally we can
construct such a delay corrected BCS as

E(d & & =
(B (2_.14s) = (B(2-,25)) © (B(Z,5) O (B(L1y;s) (2.4)

That this is an approximation will be clearer when we consider the effects of angle of incidence of the wave(s)
outside the wall. Note that the outer two supermatrices in the product refer to a hypothetical wall with properties on

the 2 or | sides of the original wall.



Fig. 2.2 Reference Surface for Delay-Corrected BCS.



3. Boundary Connection Supermatrix for Uniform Isotropic Wall

The simplest wall is a uniform 1sotropic one described by

l

2
Zy = [LJ = wave impedance
G+ _5E

1
¥ = [3/12 [G+s£2]:|5 = propagalion constant

My = 22 - relative permeability
)

Z

L., %

Zy 72

(3.1}

As indicated in Fig. 3.1 we have a set of Cartesian coordinates for this section with z perpendicular to the

wall, occupying g < z<zp . The plane of incidence is taken as the yz plane. This gives the usual radar (h, v)

coordinates with

_)
1 = — 14 % 1y = direction of incidence

- - — —
h=—-1x L

’

The angle of incidence &; is measured with respect to the z axis with

- -5 o - = - - —
Iy = 1y ].y + l.z lz|« 14 = Iysm(G,) + IZCOS(Q,-)
028 < z
2
- - - - = - - -
lv = ly ly +1z1z) Llv = lycos(8‘-) - lzsin(G,-)

The wall thickness is

A=z -2

with the choice of z (or zp ) taken at our convenience.

(3.2

(3.3)

(3.4)



Fig. 3.1 Uniform Isotropic Wall.
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3.1 H-wave

The incident wave in volume 1 iy an H (or TE) wave as

;)(inc;h) N - -
E (_r),s) = Iz E{gh)e_yo Lier 55)
~ (incih) -5 '
_) .
ZoH (_r).s)=—lvE((}h)e_701"r . z2<
The scattered wave in volume 1 is
= (ineih) 5 - -
E COERY El("‘)e‘TO Losr
- (sc3k) (sc} S o
= —
ZoH (7,5) = ly El(h)e_y0 lLo-r
— - - - 5 — - - (3.6)
Io=|lyly = lzlg|« 1i= tysin(§) - 1zcos(8;)
_ylsc g — g Y - -
lv =|1yly =1zl ly = lycos(§) + 1.sin(6;)
The tangential fields on §) are then
S{LA) - 7 _(h) —ro[ysin(95)+zl cos(9,~):| 2 (h) —ro[ysin(el-)—zlcos(a,-)]
Et ()= 1z | 1rE; (s)e + 14 E (s)e
- . — . A
T s ) 0
(LA} . {s¢c) ,

- - - . - 8; gy| -V _ - 8) - 8,
ZoH: ()= lg » l:_ . vE(()h)(S)e ro[ysm< 1) + 2, cos{ ,)]+ 1, El(h)(.f)e To[ysm( i) = 2, cos( ,)]
—3 . _ . - X

= -1y cos(ﬂi)e_rﬂysmw")[ﬁ'éh)(s)e 703 cosl) _ El(h)(s)erozl cos(@,)jl
(3.7)

-
y |y = transverse (toz) identity

Note the common term ¢ 70YSI™6) yhjch expresses the variation transverse to z. All our subsequent fields will be

constrained to have this variation to match boundary conditions on the §,, .

10



The transmitied field in volume 2 is also an H wave of the form

200 T Y
E  (r.s)= 1pkyleg?0 00 .
—_‘)(f‘h) - - (h) —y T.—:
ZoH  (r.s)y = —1vE 70 s
The tangential fields on §, are then
- (LR .
P < - = &; 9
Er (s)= 1, lhEgh)(s)e Yo[ysm( 1)+ 2, cos( ,)]
= - _l)x Egh) (S)e—}’oysin(ef)e—}’ozz cos(8;)
(A 3.9)
P I ~¥o| ysin(8; P
ZoHr (s5)=-1g> 1vE§h)(s)e 70[)'5"1( i)+ 2, cos( ,)]

- . e y
= -1 ycos(@j)Egh)(S)e_mysm(e') g 0% cos(@)

Inside the wall we need the parameters in (3.1) in two waves (right and left propagating) with the same
transverse propagation as above. The waves here are more complicated due to the complex directions (unit vectors

and associated angles). We have the generalized plane waves

Slimh) N -

- 5 _
E (r’s)=in (S)e'?’zlt-r =2Ei (5)3 yyy:FyzZ
* .

AT ) N ENG) =2 - 5

H (r,s)=2Hi (s)e_yzli" =ZH1 (5)3_7)')’4:7;;’3
o T
N =) )] R N o
l+ x Ex (s)=ZoHt () . Etx (s) =~Zp 1+ x Ht (s)

(k) S o5W

-
1+ « E+ (s)=0=221¢-H¢ (s)
upper sign = right-propagating wave (3.10)

lower sign = left-propagating wave

Constraining the polarization (H wave) gives

5(h) oo o
Ex (s) = 1nEM(s) = - 1 EW(s)
5 5o BRI IR

11



I Il Il el Il | P17 :
== Tyl laelg|=1g| Txelz|[ES(s) (3.11)

Matching transverse propagation (y direction) to the exterior waves gives

- RN
1i-l)=1;-1y*sm(8) (3.12)

Set

72 [sin (8 )y £ cos (6, )2 ] (3.13)
Yy y £ ¥z 2

_—)
where &, (generally complex) is the propagation angle (direction 14 ) in the wall. We then have

Yy = vasin(€) = yosin(6y)
. 4 .
sin(8;,) = 7;— = ;_251“(9!)

1
1 5 > (3.14)
cos (G, ) = [l—sinz(em)]z = l—|:1Q-J sin? (6;,)
2
Y: = yOCOS(an)

Note that for large ¥ /¥y (an important case) &;, =0 which will be useful for later approximations.

The tangential fields on §; are then

5(1A) {ink) (k)

— (=]

Ey (s)= 1, F (r1 §) = z v E+ (s)e “¥yy¥¥zil
+

— _ - -
S Yyyz Eih)(.s‘) PR EL

12



(in,h) (h)

_-)(]Jl) o

= -
ZoH () =2y 1, H (r\s)—Zzzlz-H+ (5)e Ty
3.1%)
— _ - _
= — 1y cos(By)e }’y)'z + Eg')(s) et7zd
+
On §5 we have
Y DY) ~8)
Ei ()= 1z« E (723 = zlz . Ex (s)e /¥FTR
_) — — -
=-1xce }’y)'z Eg!)(.s)e”zz2
(2.1) ) 0 e
Syl o S S _
ZoH (=21, H  (Fos = 222 .+ Hi (s5)e 7¥F722
+
_) —_— -~
= -1y cos(;, e n'yz + E£ )(s) evVzi2
These can be manipulated into matrix form as
- —¥z4 Y22 -
B 5y |, ez y . ez o B (5
-~ -7 —reil z -
ZoA M (s) ?(;‘COS (63 )e —Z—OCOS (Gin e E gy
2 (CRY))
;o -77_22 ¥ 2 -
E£2,h)(s) e—}/yy . € ) Z e’z ) E_E_h)(s)
N = - “Yz 22 4 -
ZoH P (s) “Deos(Gp)e  ~Z%cos(Gn)e EW(5)
Y Z Z
Invert the first of these as
Zqelzl
Y2 et
. _ e -
EM] 2005 (6n ) EXM (s) .
-~ - ! — l,h .
EN (s) 2 v _ BT ZoH M (s)

Zycos ()

Then we can construct a BCS for H waves as

13



] - (1,
EXM () 5" o )) B
- (2. By om s (1.k)
zoH PP (s) /| ZoHy
] %2 Ginh(v.A
cosh(y,4) Zgcos (6; )Sm ()
[ (h m(2Ls) | = !
-2
_ZO_C“’ZEEL)smh (v,4) cosh (7,4)
2
l 0 i
h(y,A) -sinh(r,A
= ZO cos (efn) . {CO.S h((yz A) blnh (yZA))] ) _2_2__
0 ——Z-;—— —sinh(y,4) cosh(y, Zycos(6y,)
h
[( JE m (2 1 S)J} = 1
(n !
[B,(L,,Z (1,2;:)] = [ 5" 0.2 5)]
1 0 ! °
cosh(y,A) sinh(y,A)
= Zocos(6y,) | * [ . ' S M-
0 = | Lsinh(r:8) cosh(r28) 20005 (6 )

Z .
h(y,A ——< _ _sinh(y,A
cos (Vz ) Zpcos (9in )Sm (VZ ) (3.19)

Z 6;
—cﬁozs—(i) sinh (¥,4) cosh (7,4}

Ideally, we would like the BCS to be independent of 8;.which is contained in 8;, and y,. From (3.14) we

have

¥, = y2c0s(6;)
1

2 B 2 4
cos (8;,) = 1—[%} sin? (8;)| = 1- 2[:—2} sin?/(6;) + O [:ﬂ (3.20)
as ,72_)0
72

Showing that small yg /7o makes cos(8;,) =1 and, hence, independent of §;. The exponential terms are

2 47
All ¥ .2 )
$~}%- }’—0 sin“(6;) + O Py
eﬁrza — gina ¢ 2 2

3.21)
A 2 27 A 2
And |z 28110 sinZ(BI-) + 0| A n as 122170 g
2 | n Y2 2 | n

14



This indicates that the wall need not be electrically thin provided y; /¥y is large enough (e.g., a highly conducting

wall).

With thesc approximations we have

Z
cosh(724)  —ZLsinh(4)
[é,(,fl,,), (2,!;5)] = ZO

Zy .
——=sinh{y;A cosh(y24
7, i (r28) (728) 3.22)
1 0 |
B . cosh(y;4) —sinh(y4) ZO
0 E% -sinh{yA) cosh(ypA) Z—z-

For application to more general boundary-value problems we need to keep the approximations in mind, as they may

limit the range of validity of Lhe results.

3.2 E-wave

The incident wave in volume 1 is an E (or TM) wave as

;)(ERC,E) - - _'( ) )
E  (r.s)= 1yEy/(s)eTr0 i
(3.23)

— -
=(n — P e
lhE(())(s)e}’ol' "<y

- -
r

;)(r'nc,h) -

Zo H (r,5) =

The scattered wave in volume | is

Slsce) _y(56) - -
E (r.,5) = 1y El(e)(s)e_m Lier
S (3.24)

Sy - -
Z0H  (r9) = — LhED ()70 lior

The tangential fields on S| are



(Le) ; S(s¢) .
- o . _ _ . ) B N .
Er (s)=1g- |:1v E(()e) (s)e ?’{][)’Sm(ﬂ;)+zlcos(6;)]+ 1y El(e) (s)e Yol sin(8;)-z cos(6;)]

_1>y cos (8; )e—}’oysin(é?f ) [Eée) (5)3_702:1 cos(6) ) +E[(e) (5)e70% cos(8; )}

(Le) (3.25)
le
-t & - _ g 1= L _ ea . ,
Zo H: A l: L E(gh)(s)e Yol sin(6;)+z cos(&,)]_ L El(h)(s)e Yoy sin(8;)-z  cos(6,)]
= _Tx e‘?’OYSi“(f’f)[Eéh) (s)e” 708 005(‘9{)_51(8)(5)87021 COS(‘-":‘)]
The transmitted field in volume 2 is an E wave of the form
-(1.€) - =
S5 - ‘
E (r,5) = lvEge)(s)e_m Lier (3.26)
=(0e) 5 - - '
ZoH  (7.5) = 1hE£e)(5)e—}’0 Lier 252
The tangential fields on §; are
~ (1)
5 Py Y A g N
Er () = Ly - lvEge)e }fo[ysm(ﬂ, )+z2cos(8,):|
= Ty cos (6; )gjge) (S)e-}’oysiﬂ(af)e-}’ozz cos(6;)
=(te) I T A _— .
ZoH: ()= 17+ 1hESe ol ysin(6; Jrzzos(6))] -

- ?x Ege) (5)6—70ysin(6,- )8_7022505(0")

Insite the wall we have two E waves as

(e)

;,(t'n,e) - iy A ;’(e)
E (r,s) = ZEi (5)3_721i'r — in (S)e—}’yyirzz
+ +
Slinel _, =(e) - o (e)
H (r,)= Y Ht (s)erls o S Hs (s)e Yyy Yot
= +
- 5l =(e) =(e) o e
lex Ex (s) = ZgHx (s) ., Ex (s)=-Zy lxx Ht (5)
S ) o sl

l++ E+ (s)=0=2p lx+ Hx (s5)
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upper sign => righl-propagating wave

lower sign = left-propagating wave

Constraining the polarization (E wave) gives

L)(") - -
He (5)= 1w A () =~ 80 ()
= (e) — — - (e) — — (e)
Ex (s)= Zylax 1 Hy (s) = Zp lex| Lyx1g|Hy (s)
- [— — = - (e)
=Zy| ty| e« lg|=1g| Lae1x||Hs (s5)
Note that (3.12) through (3.14) carry over directly.
The tangential fields on S are
5(Le) “ Sline) NG -
Er (s)= 17+ E (r1,s)=2130 Ex (s5)e 7Y/He4
+
- _ - _
= lycos{6;)e ?’yJ’ZZzHg‘?)(J)e+nzl
*
- (Le) - (in.€) 5(¢)
= — = - = -
H (s)=1,;-H (ri,s) = Z 1« Ht (5e Tyyer
*
- _ . _
=—1,e 7yyz Hi(re)(s)eJ“hz
+
On S5 we have
(2e) o Slne e sl
Er (s)=1z+E (ra5) =3 Lz« Ex (s)e 7722
+
% —_— el
= 1ycos{g)e yyy222H£e)(s)e¢7Z‘32
*
~{l,e) ~ {in,e) - (e)
5 — o - e S _
He (s)= 1z H (ns)= 3 Iz Hy (e 7722

+

_'_]_)x e"?’y)’z [_}gf)(s)e¢}’z?:2
+ :

17
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In matrix form we have

) | o[ T cos@n)er (0
- - 2 _O_ —7531 __0 ¥4 ~
—ZOHQ'e)(:) ez ¢ 2 i 22H£8J(1‘)
E(Z,e)( ) | ey Cosz(ﬁ,-ﬂ)e-hzz cos(zﬁ,-,,,)e':'73Z2 Zzl-?(e) (s)
- L0 72 _“0 72
_ZOH (s) Z, ¢t Zs ¢ ZzH (S)

Invert the first of these as

Y222 Z
7 (e) Yyy - el =(1.e)
A sy | _ e | cos@in)  Zo | BTG
AL (s) 2| T ~Z2 —Zoﬁg'e)(s)
COS(G,-H) Zy

The BCS for E waves is then

"0 gy )| B0

-—Zoﬁ,gz'e)(f) —Zogtg'e)(.s‘)
cosh(y,4) - Zz%s,(ﬁ,-,,_)smh (7.8)
(B(‘?) (2.1 s)) = . '
0 .
\_msxnh (7.8) cosh (y,4)
= l zO L[ cosh(rzAa) =sinh(r;8)) l
L(_) ZgTO(Bi,,). —sinh{y,A) cosh(y,A) 0

1

det[(f},(f,)n (2.1 s))]
(Bioh (12:5))

B (2 5)

. cosh{y,A) sinh(y,4) ) 1
22003(9 sinh(y,8) cosh(y,8) 0

18

0

Zpcos(6;y, )

Zy

0

23 cos (6,)

Zg

(3.32)

(3.33)



Z h{&;
cosh(y,A) —ﬁ%o(izsinh(yz:ﬁ)
= (3.34)
Zy .
————siph A sh A
chosh(e,-,,)sm (7:2) cosh (7;4)

Note the similarity to the H-wave case. In the terms (other than ¥, cos(g,,) has been replaced by cos™! (G .

As before. we would like the BCS to be indcpendent of &;. Than we can treat y, and cos(8;,) as in

(3.20) and (3.21) with the same results, leading to

cosh{y,A) -—%sinh(yzA)

[éﬁil (2,1;3)) = ° = [Br(ﬂr); (2'1;3)] (3.35)

—?sinh (y,8)  cosh{y,A)
2

If you were wondering why a minus sign was used on the left side of (3.32) (both equations), this should now be

clear.
3.3 Combined BCS for E- and H-waves

Now we can define

cosh(y,4) -—%sinh (r,4)

(B,,,m (2, 1;5))

—go—sinh (r.4)  cosh(y,A)
2

_ : ZO cosh(y,A) —sinh(y,A)} bo
=l oz || =|. z (3.36)

0 sinh{y,A) cosh(y,A) 0 Z

0

- (e l:s)] - [éﬁf‘,% @ ns)]

using the approximations previously discussed. The previous results can then be combined in supermatrix form as

19



[ () J ( £ (s) J
7{2h) 7 (14)
ZoHy™ (s) _ [(5’(:,;)(2'1;5)) ] o ZoHy " ()

£
_Zoﬁgl,f!)
([8("‘?)(21-:)} :{(émm(z*“)) (Onin) ]

Jiv (Onm) (Bam (2.1:5))

= (En‘m (2,1;5)) & (lu,v)

N

N

(( nm(lzs) ]

1

(Bum (.2:5)) (Onm)
( nm(215) ] [ (On,m) (gn,m(m;s))]
(Bum (125)) ® (L)

cosh(p4) -——i—zsinh (y24)

(én,m (1»2;5)) = (én,m (1,2;5))_l =

—Esinh(yzﬂ) cosh (y,4)
22
1 0 1
cosh (¥24) sinh(y24) 0
“lo & sinh(y2A)  cosh(,4) “lo &
2> : Zy

This is a very convenient form since it is block diagonal.

(3.37)

In Section 2 the BCS is defined with a different ordering of the tangential field components, which in the

o [5(2)(5 } | ( {Eg)(s)}
S () () A1)
£ () || (BTl (B (219), ) © 56

ZO Hy (.S')

() 283 (s) | 280 )
20157 (¢) 201} ()

present context takes the form

20



0 —é—sinh(yzA)

[cosh(}sz) 0 J A
0 cosh(y24) %"Lsinh(yzm 0
~ 0
((Bn.m (2, I: S))n'.v ) = ( Z (3.38)
0 —=sinh(ypA)
Z5 (COSh(}’zA} 0 J
h{y>A
~Z0 Ginh(y,) 0 0 cosh{y24)
Z3

The determinant is still 1, and the inverse is found by reversing the signs on all the sinh terms, as can be verified by

multiplying (dot product) the two supermatrices [5].
3.4 Delay corrected BCS

In Section 2 the concepl of a delay-corrected BCS is introduced, so as to be able to reference fields in

volumes 1 and 2 to a common surface Sg. For present purposes, we can take this surface as z=zy with zg
somewhere inside the wall (Fig. 3.1). Following (2.4) we need BCSs to extend the external fields from §; and §,

[{8] 50.

Using the results already obtained for a uniform isotropic wall we can take the special case that this

medium is free space now with substitutions

ra—=v0, Z2—Zy, 66, y;~r, ws(6) (3.39)

From (3.19) we then form

MM () £ s)

2o (s)

(h)
Br (1 biis ) Zoggh,h) (5)

sioh (¥ cos (6 )[20 — 21
cos (6;)

cosh (6; )smh v c0s(6; )zo ~ 2 ]) cosh (}'0 cos (6; )[zp - u ])

(B
(2_.h) _(2,h)
( X s
ZoEH(L.h) () )] = (Bl (2-200)) E~ e
) (

cosh }’0 cos(6;)[z0 -zt D

(B“‘) (L. 1+.s)) =

(3.40)

20H§,1+'h) (S)

sinh (70 cos(6; )[z2 -z ])
cos (6;)

cosh (6; )smh ¥p cos (6 )[zz ~7) ]) COSh(}’O cos (6; )22 -« ])

cosh 0 cos(8; )[z2 — 20 D

[ (2-.2;5)

2]



For the special case of

A
20—21=32—Zo=5 340

we have
A sinh{yo cos (6; )%]
[é,(,?,l (1,1+;5)J = [éﬁ”,}, (2_,2;5)] = COSh(m cos (% )EJ cosh(6;) (3.42)

cosh{(6; )sinh [yo cos (6; )%J cosh[yo cos (6; )%]

Note that in the above A/2 can be replaced by Ay and Aj with
Al + Ay = A (3.43)
if one wishes to take Sy as some surface other than z=0.

While similar to (3.19), we have the dependence on &; to consider. Unlike cos(8;,) in (3.12} this does not

£o to unity as in the wall which we can take as highly conducting. For small ygcos(8;)A we can write

1 = 2
0 A
2 ko [70 cos? (6; )—2 :l

[éﬁf’% (u+:s)j - [ES’.',% (z_.z;s)J -
¥ cos (a,-)% I (3.44)

= (1n,m) + C)(yocos2 (B,-)A) as ypcos(6;)aA—>0

This says that for sufficiently low freque_ncies. (oA << 1) we can neglect this term, the BCS and delay-corrected
BCS being substantially the same. However, for y3A of order unity this correction can be significant, and it is

unfortunately a function of &; .

Similarly for E waves from (3.34) we have
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(1e) (o)
5O g anm) .| PO

~2o1")(s)
cosh (¥pcos (6;)[z0— 2]} cos(6; )sinh {¥o cos (820 -2 1)

(ér(fr)n (114 ;5)) = | sinh{ygcos(8; )20 -2 ])

cosh (67) cosh (¥ cos{6; )z~ 21 ])

ey A(26)
Ey 2 () 1 _ (3,(1‘,?,)” (2_,2;5_)) _ Ey~ 2( )

o -20(*)()
cosh (o cos(6; )22 ~20]} cos{8; )sinh (¥ cos(6; )22 -2 )

sinh (g cos (6 )[z2 - 1 ])
cosh{&;)

(é,(,e; (2_.2;5))

cosh (7o cos (6; )[z2 - 21])

For the special case of S centered in the wall this is

(‘ér(:r)n (L 1+?S))

(B3 (2. 25)

cosh(}fo cos (; )—g—] cos (6, )sinh(}’o cos (6 )—%]
N

sinﬂ}’o COS(@;)%J A
cosh [70 cos{6; )?J

cosh{6;)

This is the transpose of the matrix in (3.42). The same small ¥pA restrictions apply.

(3.45)

{(3.46)

As in Section 3.3, these maltrices can be combined to give supermatrices which can be combined with the

supermatrices in (3.37) and (3.38) to give delay-corrected supermatrices. Noting that the matrices introduced here

reduce 1o identities (under restrictions of small ypA for independence from 6;), this is only a formal correction.
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4, Application of BCS to Spherical Shell

Appendix A lreats the exact solution of the fields inside a uniform isotropic spherical shell due to an
incident plane wave. Figure A.2 gives the dimensions (inner radius a, outer radius b, thickness A). The constitutive
parameters of the shell are the same as those for the wall in Section 3. In the present section, let us consider the

spherical shell using the BCS.

As in Appendix A we have the same incident wave as in {A.18) and Fig. A.1 expanded in spherical vector
wave functions with coefficients a,(li},,”,) and b,(,{zn’p in (A.14). The internal ftelds (region 1) are as in {A.20) with
coefficients a,(,l},,lp and bg}n'p for 0<r<a. The external fields (region 3) are as in (A.22) with coefficients
a,(sz,,),p and b,(,“f,ft).[, for & < r. In the spherical shell (region 2) we use the BCS (o account (approximately) for the

fields for a < r < b with thickness A= b—a.

To connect the fields in regions [ and 3, there are various ways to use the BCS. In Section 3 the BCS is
— -
developed for the transverse Carlesian coordinates x and y, or directions [ r and 1y. For the spherical-shield
— —
problem thesc are replaced by directions 1g and 1g. In addition, the longitudinal coordinate z is replaced by r.

One can match the tangentiela fields in this form, if desired.

The concept of £ waves and H waves carries over to the spherical vector wave functions. E-waves have an
electric field expanded in Kf) functions with the b, ,, , coefficients, while H-waves have an electric field expanded
in AT; functions with the a,  p coefficients. In Section 3 the BCS is developed for £- and H-waves including the
incidence angle §; as a parameter. Now we have spherical vector wave functions, making this angle problematical.
Fortunately, for large wall conductivity, the dependence on this angle is removed giving a common approximate

BCS for both types of waves.

The spherical vector wave functions form an orthogonal set for tangential components on any constant-r

sphere. The approximate BCS is independent of & and ¢ giving complete Q4 symmetry. Each term in the
‘ = -

expansion has the tangential components of £ and H mutually perpendicular. Thus this BCS can be applied

termwise, In equation form we have

£+ 8590

2o )0+ 8]

&)

Zy Hqgl)

r=b

r=a

= (E-in,m (b,a;s)) .

r=b r=a
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[Eéinc)(5)+ E(,ESC) (8)] - E_él)(‘J -
] - 'r=b = (Bn,m (b,a‘,s)) . ~(l)f’—a
2o[ )+ 1f7] "y
cosh (724) -éo—sinh (y24)
2

(B,,)m (b,a; s)) =

Z

~Z0.ginh (y24)  cosh(ya4)
22

Applying this to the individual terms we have

{ (rob)alh o+ (ob)alsd

[robin Go8)] @ [r0bkn (705)] 2L
= _}’Ob ~ n.m,p Yob fm, p

1 Yobin (70b) Yobky (7’05) ] [agir)ﬂ.p }

- ﬁ —[yobz',, (}’ob)]’ *[?’Obkn (YOb)]’ ar(zflii),P
in (70‘7)‘1-’(??"”0

= B Ca)) | [yopi (r0a)] 0

Yoa n.m,p
~ voaiy (a) al)
= (Bn,m (b,a;j‘)) L] !2 , an,m,p
\"[70% (roa)] | 0@
Dobin Go2)] ) - [100ka (02)] (o
Yob e Yob n.m,p
Hobia (Y00 by = 0bka (100

- _1_([?’0'-"‘}: (?’o_b)]' [ obks (70)] -(br(t‘:r)n,p |
YOP| ~yobin (¥0b)  ~Yobka (Y00)
[v0aix (v0a)] bﬂ,),,, p
)

~ip (700) n,m, p

= (én m (baa;S)) . [Yoain (700)]’ brgr)n,p
, —Yopaiy, (yoa) o4

25

= (é,,,m (b,a;s)) .

(4.1)

(4.2)



Using one of the Wronskians in (A.6) we have the inverse matrices

Yobin (¥0b) yobks (v0b) Y | L 7otkn (rob)]  ~¥obks (vob) (det =1)
"[?’Ob"n (70b:|:|’ "I:}’Obkn (rob )I I:yobin (YOb)]’ Yobin (}’Ob) 1)
[7obin (r0b)]  [#08kn (706)] 3 _ | robkn (rod)  [robke (ro6)] (det = 1)
~Yobin (Yob)  —Yobks (Yob) ~Yobin (Yob) [ ¥obia (ob)]
S0 we now have
af(:;r)n.p _o| =70t (r0b)] ~Yobka (r0b) (B (b.55) [ Yoain (Yoa) ] 0
=— ; * Bnm\0GS)) - . o [Anm,p
ﬂ,(,‘_fﬁ;)'p a [J’Obfn (}’Ob )] Yobin (YOb) ~|:y0mn (}’Oa)]
_b ‘I:J’Obkn (3’05)]' ~Yobkn (rob)
4 [robin (r0b)] ¥obin (70b)
. Y0ain (?’oa)cosh(?’oﬂ)+%[7’oain (r0a)] sinh(y24) 0
Zo ‘ . . , nm,p
-Z—Z- Yoai, (¥Yoa)sinh (72A)—[}’0at,, (70a):| cosh (y24)
b,(;':,)n,p _ b Yobka (r00) [70t%s (r00)] « (o (i) - [[yoain (r00)] Jbﬁl,)n )
brgf;r),p a k_YOb‘in (’,Vob) —[yobin (yob)]’ —~Y08in (700)
_ b| obkn (o) [ 7ok, (y00)]
a —Yobin (70'5) "[n)bin (Yob)]’J
[yoain (roa )]’ cosh (yzA)+§—2[y0ain (}'Oa)]’ sinh (7,4)
. 0 b e

Z ¢ H .
_TZ%[?OM" (}’oﬂ)I sinh (y24)— ypai, (Ypa)cosh(9,4)

We now solve for the coefficients for the internal fields as
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0

nm.p

(t)

An,m, p

= [[?’Obkn {70 ):I Yoain (Yoa) X1 + vobk, (}’ob)[‘}foai,, (YOa)] X2

-1
z , z _— ’
+z_(7_} Yobk, (v0b) voai, (Yoa) X3 + Eoz—ﬂrobkn (voa) | [7oain (voa)] X 4}

KO

nm.p

(1)

Anam, p

= [[Vobkn (706)] Yoain (¥0a) X1 + ¥obkn (706 )| Yoais (oa )]’ X2

-1
Z . Z ] . 7
+E;—y0bkn (vob)roai, (vga) X3 + Z—g[mbkn (70.b):| [?’Oaln (7’0“)] X4:)
X|=-X, =-cosh (}QA)%

. a
X3 =-X4 = —sinh ('}’zﬂ)g 4.5)

The coefficients for the incident field are given in (A.14).

The results are expressed in this form for direct comparison to the exact results for the X, in Appendix B
((B.1), (B.2), and (B.11)). For large ysa (allowing even not-too-small y»A) the exact X, are approximated in
(B.4). For a/b near 1.0 the results in (4.5) are in close agreement. For small y,a the exact X, are approximated in
(B.8). For a/b near 1.0 the results for X; and X, in (4.5) (cosh(y»A) — 1) are in close agreement. Similarly, the
result for Xy (~sinh(y2A) — -y9A) is in close agreement. However, the result for X3 is very much in

disagreement. Thus, at least for the X, , the BCS is not a good approximation for low frequencies.
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3. Application of Delay-Corrected BCS to Spherical Shell

With (4.5) let us rearrange the results for the internal-field coefficients as

()

Gnm,p

(V)

Anm.p

= %H}’obkn (}’01!9)|:}’oai,z (Yoa)]’ _ [Yobkn (yob)]' Yoaiy, (}’oa)}cosh (r28)

1
[z_ Yobkn (Yob ) voain (Yoo )= "—[Yobk (r06)] [70ain (¥0a)] Jsmh (7’26)]
(5.1

= ;H: Yobkn (?’Ob)[}’oai,, (?’OG)I _[}’obkn {(rob ):r Yodin (}’Oa)] cosh(y,4)

-1
[z— Yobkn (Yob ) ¥oain (Yoa)h—[robk (rob)] [ 700 (Yoa)]’}sinh (Yzﬂ)]

So the results are becoming more compact.

For the next step we note that the delay-corrected BCS changes the BCS by factors (pre and post) which are

approximately identities for small A (as in (3.44)). Within this restriction the modified Bessel functions in (5.1)
can be reduced to a common argument (say ypa ), the difference between b and ypa being just ygA. The

various functions are approximated as

flrob) = flroa+rd) = f(va) + f{ra)rd + 0([70A]2) as ¥pA —0 (5.2)

where, as usual a prime denotes a derivative with respect to the argument. Applying this to the collection of terms

multiplying cosh{ypA) in (5.1) gives

Yobkn (Y00 ) Yoain (vob)] [ obkn (100)] ¥odin (v0)

Yoaky (v0a) 70ain (Y0a)] ~[ voak, (voa)] voai, (Yoa) + O(rob) (5.3)
1 + O(ypa) as yp6—0

using the Wronskian (A.6). Applying this to (5.1), making similar approximations in the other Bessel functions and

noting b/a =1, we have
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20

G p = cosh(}fza]
()

Anon.p

-1
+ [% roak, (¥oa) voain (}'oa)—g—g[}'oakn (?’0“)][?’0% (yoa)I}sinh(yzA)}

(5.4)
N0
?‘;" P cosh(}fza]
b,, mp
-1
I:—- Yoaky (Yoa) Yoaiy (}foa)——[;foak (}'oa)] [}'Oaz,, (}'Oa)] ]Slﬂh(}’gé)}
Here a can be interpreted as the inner or outer radius of the spherical shell, or something in between.
From (3.1) we have
z a
Z o, Y0
Zg r2a
aglr)n Iy
i S [ na 22— ypakn (voa) vpain (Yoa)
a8 ) Hy Yoa
yaa B
- ,u,ﬁ[yoakn (r0a)] [70ai, (r0a)] ]mh (yOA)} sech(724) (5.5)
o Yoa
O & |:1 + |i,urﬁQ_700kn (¥0a)roaiy (Y0a)
by hp Y2a

-1
- Yo [yoak (ma)_['[}foazn (}’Oa):r}tanh(yza)] sech (¥4)

In this form let us look for further approximations.

Noting that

28 = Jsuplog +s8,] = Jsmpo (5.6)
let s be in the right half plane, including the jw axis. Then
]

Re[rpa] 2 [ﬂgﬁ}z for Re[s] 2 0

128 _ A
8723 + e_yZA

5.7

tanh(yp4) = = 1 for large y;A in RHP
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For highly conducting spherical shells then (5.5) further simplifies. Noting that for yga of order one (resonance

region) we have

124 (5.9)

Yoa

»> ]

then (5.5) simplifies to

It

() -1
An.m, 1 a .
nmp {1 + — he Yoaky (Yoa ) voain (}foa)} sech(yoa)
a(') Hr Youa

nm.p

1) -1
b( 1 a -7 s

PP 1 - = 22Tk, (r0a)| [Yoain (roa)] | sech(r24) (5.9)
) Yoa

n,m,p

sech(ppA) = 2¢772% (small in RHP including j@ axis)

Here we can identify the internal resonances as the zeroes of the i, (ypa) for H (TE) modes and of the [¥,i, (¥g2)]
for E (TM) modes. The above approximations also show the amplitudes of the resonances, and can be used to

estimate the small shifts of the resonances (pole locations) to the left of the jw axis.
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6. Concluding Remarks

The BCS is a suitable approximation for a uniform isotropic wall under restricted conditions. Basically the
propagation through the wall should be perpendicular to its surfaces. This applies under conditions of high
conductivity and/or permeability provided that the frequency is not 100 low. Under static conditions, for example,
the magnetic field passes through a conducting spherical shell of permeability t as though it were not there. In
such a case there is a large radial (longitudinal) component of the magnetic field, comparable Lo the transverse
components. For such low frequencies other kinds of approximaticns, such as an equivalent sheet impedance, can

be more useful [2].
One can go a step further and construct a delay-corrected BCS if the frequency is not too high. Basically

the radian wavelengths outside the wall need to be large compared to the wall thickness. This gives the wall an

equivalent zero thickness for convenience in analysis.
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Appendix A. The Spherical Shell

The fields penetrating into a spherical shell from an incident plane wave is a classical electromagnetic

boundary-value problem [3]. Here we revisit this problem and carry the resutts further,

Al Electromagnetic fields in spherical coordinates
Summarizing from various previous papers, such as [2], we have solutions expressed in terms of the

complex-frequency or two-sided Laplace-transtorm variable s = Q + jw. We have spherical harmonics

cos (me )}

(m)
Y ., ( o
"-m»o( » = o (cos( )){sm (mo)

_}
Pnm,p (9'1) = Yn.m.p (91¢') 1 r

— 5 R
Qiinp (8:9) = Vst p (0.0) Lr X Ruum,p (6.9)

5 ©.9) = T M cos (m¢) LT dPn(m)(cos(B)) —sin(mg) (A1)
nm§ (0 9) = de sin(mg) sin@ " eos (me)

— - -
Rn,m,p (9‘¢) = V-Y X P“-m:P (9'¢) = _‘1 rox Qn,m.p (€’¢)

- Pn(m)(cos(a))m{—sin(mqb)} —1’¢dP (cos(B)) {cos(mgb)}

e d
Rnmf (8, =
mo (6:9) sin(&) cos(me) de sin (m@)

with the Legendre functions given by

A @) = (=g —,,,P ©)
f (A.2)
P = A0 = =2
2" 0! dE

These are used in constructing the spherical wave functions

20,07 = M ee) . r =17

Zam.p
—)(P) / - (F) -
Ln,m,p(?’_’?) = 'i"‘ Ejf)np(y?) = fn(g) (rr) Prm,p (9’¢) + Jn (7 ) nmp(g 9)
N(S NG )
Mn,m.p(?’_")) =V x ’: =h r)n (7_")):, =—-yr X Ln,m,p(?’?) = —%Vx;n,m,p(?’_’})

- (1) R (6.9)
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NG

0
Nouam,p(r )

—Vx Mn,m.p(}’7)

Y
00 [rrfn(e)(}'r)]’_, o
= n(n+l)T Prmp(0,0) + =———0p  ,(6.0)

The spherical Bessel functions (modified) are denoted by

ey =ity FP ) = k) (A4)
with

() = %é %[—ZH"’ + (! e;; ﬂizog[!?:ﬂ],[ﬂﬁ

kn (£) = e_; ﬁé() B[!E: :8)2;!]!(24’ y# (A.5)

(@) = [P GO - k(0]

A prime is used 1o indicate a derivative with respect to the argument of a Bessel function. We have the Wronskjan

relations

W (i (O kn (0)) = in (OO (€) = i (Ohn (§) = =¢ 2

, (A.6)
W (Cin (€88 (©)) = Cin [ Cha (O] = [§30 (O] E4a(§) = -1
The propagation constant is
y = [sp(o + se)]”z
# = permeability
o = conductivity ) (A7)

£ = permittivity

For later use we have particular Bessel-function representations
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0= e - 7 e+ 7]
= ¢ Veosh(¢) ~ {72 sinh ()
5[1 + o(( )] as £ =0
L) =t e o
- {‘2[1 + o(gl‘)] as {50

. (A.B)
(i @)] = 5[ r- ¢+ ¢ 2] e ie ¢t e 2]
=[1+ ¢ ]sinn(¢) - ¢ eosn(¢)
2
- Eé’[l + o(gz)} as 0
[ca@)] = -C[ie ¢ e 7]
= —g"z‘:l + O({z)] as —0
Associated particular Legendre-function representations are
PO@ =6 (os(6)) = 0s(6) »
1/2 :
ey =r-]" . D(os(@) = ~sin(o)
Particular spherical harmonics are
EI,O,Z = ——l)gsin(ﬂ){l}
o2 fes@)] 2 [~singg)
i“-ﬁ ” :9 Sm(a){s’"("’)} 1[‘3‘“5(4”)} (A.10)
R108 = - 1¢sin(6){ }
S s [sin(g) cos (9)
fiks = '“'“(‘9)% s(«»)} H)Lin(«»)}
A Plane Waves in Spherical Coordinales

Define a set of orthogonal (right-handed) unit vectors by
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_1)1 = sin (6 )cos (& )_l)r + sin (6 )sin(.;bl)_l)y + cos(@l)_l)z
Tz = —cos (8 )eos (@ )T; - cos(@l)sin((fq)_l)y + sin(@I)Tz (A.11)
_1)3 = sin(ﬁ)_l)x - cos(c)l)?y

— — -
Here 1 is the direction of propagation and 17 and [ 3 are mutually orthogonal unit vectors, each orthogonal to

_1)1 to indicate the polarization of the electromagnetic fields in the incident plane wave. As indicated in Fig. A.l,
& isthe angle of _1’1 with respect 1o the z axis and ¢ is the angle of its projection on the x, y plane with respect to
the x axis. For convenience Tz is chosen in a plane parallel to _1)1 and the z axis (E or TM polarization if the
electric field is parallel to Tz) while _1)3 is then parallel to the x, y plane (H or TE polarization if the electric fietd

—
is parallel to [3). In (A.11) we can use therelations between Cartesian and spherical coordinates

x = r sin(@)cos(g)
y = r sin(@)sin(g)
z = r cos(@)
Tx = sin(@)cos(gﬁ)?r + cos(ﬁ)cos(qﬁ)?g - sin(;b)_l)g (A.12)
e - — -
Iy =sin(@)sin(¢) 1, + cos(@)sin(@)1g + cos(g)} 1y
- - -
1z =cos(@)1r —sin(8)1¢g

to express the incident-wave unit vectors in terms of (&, ¢4 ) and (8,9 ).

Next we have the result for a dyadic plane wave [2]

Cer T 5SS S [2-toml T a2
n=0 m=0 p=e0 [n+m]! )
- —)(1) -
— Pn.m,p (9[,¢] ) LH,”I,P(?’O ?‘) (A13)

- - -
+ At 1) Rnm,p (61»¢1)Mn,m,£’(7’0 r) — Qn,m,p (91,¢1)Nn,m,£(70 r}
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]
where for n = 0 the sumnmation does not extend over the identically zero Q. R, M. and N functions. For vector

— - -
plane waves we have the set of orthogonal unit vectors {11, 12, 13}. In free space, eiectromagnetic plane
— — —
waves have both electric and magnetic fields orthogonal to || (as well as to each other). Thus only 12 and 13
-
arc of concern. This removes Lhe presence of the I functions in the expansion (since plane waves have zero-

=
divergence fields). Taking dot products of Tz and 13 with (A 12) gives

s e e oo 20 o =0
12(3_70 1 r=2 E Ay m, M,,mp(yo r)+bnmpNn,m,p(J’o r)
n=l m=0 p=e0 1
- T - e Y (z) —)(I) - ( —)(l) — ]
1370 Ller s 3. bpimp Mrmp(Yo r) = anm p Nnmp(ro r)
n=l m=0 p=e0 (A.14)
)
0 _r,_ ol 2n+] [n-m]! (cos (8 )) [sin (mey )
an.m.f; [2 lO.m:I[ ! nf{n+1] [n+m].m sin(&; ) cos (mg )
(m
O -, oy 2n+1 [n-m] dF, (cos(8)) [cos (mey )
bn,m,f, _[2 IO"":I[ 1 nin+l1| [n+m]. 46, sin (m¢y )

The superscript i here refers to the incident wave. Particular coefficients of interest are

10,5

0 _ 38 s @) {—sin(«m )} 3 {—sm(«m )}

a'(i) =0

g 2 sin(g) cos(¢) cos(¢y)
(A.15)
g0 2@ 3 !
105 2 de, 0
b'(i) _ 3 dP( )(cos (61)) [cos (q)l) os(8) cos ()
e 2 ae, sin(g)[ 2° sine (@ )
Al Boundary-Value Problem
The geometry is shown in Fig. A.2. There are three regions. Regions I and 3 are free space with
Yo = § [,uo.eo]_l = % = propagation constant
{A.16)

Zy = [6&} = wave impedance
0
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Fig. A.2 The Spherical Shell
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Region 2 is the spherical homogeneous, isotropic shell with

y2 = [sea[o2+s6) 17"

s 12 (A17)
Z, =[ o }
g2+ 57

For convenience we can choose our incident plane wave as an E (or TM) wave, giving

- (inc} - =

5 -

E  (rus)= Eglae ol

Sybinc) o - 5 (A 18)
H o (P =2 1ze70lter

Zy

Due 10 the symmetry of the problem { O, all rotations and reflections in three dimensions) the above applies to H

(or TE) waves of well by a redefinition of the coordinates. Furthermore, one can choose polarization and direction
of incidence at our convenience, e.g.,

— —

ll=lz R 6‘1=O

-

la2 =1y , ¢ == A19)
- —

I3 = ly

Having the incident wave we need to similarly expand the rest of the fields. The internal shielded region
(region 1, r <a)has

(1) o n N{Y) ¢
E (7o) =B Y S |donpMampto7) + 8 p Nump o 7)
n=1 m=1 p=¢,0
0 0 0) 20
S5 F — -3
H (?,3) = —Q 2 E b,(ll,g-;,p Mn,m‘p(yo 7)) - a,,,m’p Nn,m,p(}’o _r})
0 n=1 m=1 p=e.0

_)
Note the use of only ¢ =1 wave functions for non-singular fields at the origin (? = 0 ). Within the shell or shield

wall itself (region 2, a < r <b) we need both types of wave functions giving
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—")(2) @ 1 —)(1) > _>(2) 5
E (?.5) = EOZ z a,g,m,p Mn,m.p(72 7) + an,m.pMﬂ,m,p(YZ r)
n=l m=1 p=e0
T R
+ i Noanp(Y2 1) + b p Namp(yra 1)
) 0) ) 20
(2 En &= & - . -
2 2 —
H (7.5 = —Q“Z > br(z,n)1.p Mnm.p(¥z T+ br(a,m,p Mamply: 7)
2 p=l m=l p=e0
O P

—
~ am,p Namp(ya r) - annt,p Nomp(ra r)

In region 3 we have the incident field, but also need the scattered field (superscript s¢) which we expand in terms of

only outgoing (£ =2 ) wave functions as

() ~ & ~(@) ()
E =83 Y S a5 Mumpto7) + 655 Namp (o 7)

() @ @ .
Sisc En 2 & - -
H (7.9 = EP DD ) Mampro 7y = aSS N (o 7)
0 n=1 m=1 p=e,0
Malching tangential electric and magnetic fields across the r = a boundary gives
1 . 2 . 2
Ao p i (708) = @l p i (122) + i) p b (12)
) [rogin (0] _ zo| 1) [naia(na)] (@) [k (r29)]
%,m, p =~ | Gam,p * Gnm,p
Yoa 4 ra ra
, , , (A.23)
) [nax(ra)] () [nai.(ra)] @) [rak(ra)]
bn,m,p___ = bn,m.p—__ + bn,m.p—__~
Yoa ) Yaa Y24
. Z 2) 2
b (02) = 220630 i (120) + 8552 ki 103)]

Similarly matching the tangential fields across the r = b boundary gives
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ar(lzle pin (rat) + ar(1 m, pkn (}'Zb) an m pin (rob) + a(SC)k (}’Ob)
2) [ rabin (Yzb)] ) [ 72bkn (726)]
— =t aym

P Yab ' y2b
() [robin(rob)] - (se) [robkn (rob)]
Anmp-—— 5, t@ampT—
Yob Yob
L@ [rabin ()] @) [1abk (20)] A2
nmp—_—’ nm,p T (A24)
Yab Yab
@ [7obin o0)] (s} [70Pka (200)]
= br:,m.p__— + bn,m,p_—_
Yob Yob

br(lmpn(}”’b) + br(am)pk (72[7)

ZO [ r(!yn P in (YOb) + br(i m)pk (70b)]

There are five ay coefficients with one known (the incident one) and four equations to solve for the four

unknown ones, and similarly for the b,,,m,p coefficients.

First reduce (A.23) by eliminating the coefficients with 2’ superscripts, giving

[rzak (?’2“)] 2y [100in (r09)]

k
Z Y0a 1 (}’20)

I(Ill)n plin (roa )

[nak, (r2a)] _ [12ain (r2a)]

= anm P In (Y ya ¥oa kn (72‘2)
Rt
7 : (A25)

ay | [ 7oain (r0a) Ny [rzak (ra)]
bn,. Yoa k(”:) ZO’n(  a

NG [roain (ro0a)] » [720kn (r22)]

= bym.p Yod kn (72“) in (Yoa) ¥oa

- @) !

= bn mp - 5

p [12a)*

where the Wronskian (A.6) is used to remove half of the Bessel functions. Next in (A.23) remove the coefficients

with 2 superscripts giving
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|, I:}’vafn (}’zﬂ)] _Z [ Y0ain (70‘1)]’ ;
Aum,p | in (voa vya Z Yoa n (¥2a)
@ [r2ain (r2a)]  [r29kn (720)]
= Gnon,p kn (}‘2&) ¥oa Yaa (}’ a)
&) !
n Jap 2
(724] (A.26)
o0, [70ain (r0a)] o () )_ n(r )[725“;: (r20)]
Ypa
k I { I
= bf(tzm).v [yza - (yza)] Iy (}’ZG)_kn (}’Za)[yzan(yza)]
¥2a ha
2y -1
= bnm
7 el
Turning now to {A.24) let us eliminate the coefficients with s¢ superscripts giving
@) |, ¢ py[705kn (rob)] 2 [7abin (125)]
S, p i (726) Yob Zy Yoa kn (¥ob)
(@) [robka (r02)] 2o [726kn (r28)]
+anmpk(7b) Yob Z, yab kn (vob)
_ L0 s g [r0Pn 08)] [(r08)in (r05)]
Qnm,p n(?‘ob; Yob 7ob kn (7ob)
(t -1
o [0y 20 0P 0]
Yaa
v 52, [ 726k, (b}’zb)] b (ob) - o 2 b)[}‘obkn (rob)]
Y2 Yob
i Yobin (Yob Yob )k, (Yob
=b£)w o o) 2 (70 ) _ [ )yb( )\ o)
0 - (A.27)
= bnfm. —
" [rob
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We now can solve for the | superscripted coefficients by substituting from {A.25) and (A.26} into (A.27) to

give

1
ar(z f)np

()

A m.p

- T2 b2 0 ) P 00020 [0 O]y
\[72'-’3"}, (:’2‘3)] ;_3[70“i;()(§00)] kn (1a)

in (7

[robkn (r00)]  2g [72bkn (726)] kn (7ob)

— k }/ b\
—1
i (y )[72‘7‘1'1 (}’2a):|’ zz [yoaln (yoa):l (y a)
n ZO yoa n
|
o\ s
A
[ 72bin (r0a)] [ vobkn (70b)]

B 2 -2
= [y2a] * [ob] Yy kn (7 b) Z, 0 i, (r2b) vob

[yoai,;(ZOa)Ik r a) 22 (% )[72ak (Yza):r
0 (A28)

[?’Zbkn (72b):| K ( 0b)- Ok (5 b)[yobkn (VOb)]

72b }’05
[”0“';(70“)] i (7 a) i (0 )[Yoafn(:w)]

These results for the region—1 field coefficients are basically the same as [3] except that the numerator Bessel

functions have been replaced by [rza]_z[yob]_z, a significant simplification. The Bessel functions in the

denominator involve mixtures with arguments involving all of yga, ¥pb, ¥2a, and y3b. An aliernate form of

(A28} is
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¥O)
nan, p
()

am.p

Qa

= Hrzbr'n (¥20)[ ¥obk, (3ob)] - i—g [2bin (¥02)] ¥obkn (rob)]
[ Yoin (v0a)| ¥28kn (¥20)] ~ ;—; [voain (v0a)] 720k, (720)}

- [VObkn (726)] Y0bka (rob)] - %2— [ 72bkn (720)] 720k (Vob)]

47!
[ 70ain (¥0a)| 72ain (2a)] - ;—; [voai, (v0a)] 72ain (Tza)ﬂ

KO

n.m,p

KO

nn,p

= H[nbiﬂ (v2b)] vobkn (vob) - ;—g ¥2bin (720) Yobkn (¥ob )]’]

[[J’oafn (r0a)] raakn (r2a) - —% 70ain (Yoa ) 728kn (724 )ﬂ

- [[nbkn (726)] 70bkn (706 ) - % ¥abkn (y2b)[ Yobkn (7ob)ﬂ
’ . -1 (A.29)
[[ voain (70a)| 724y (v2a)- Z? Yoain (ra)[ 72aiy (r2a)] H

In this form the Bessel functions are all mutiplied by their arguments so we need only consider functions
£y ¢y and {ky ({), these being called Riccati-Bessel functions [7].
At this point we can note that only n = | terms contribute to fields at the center of region 1, the coordinate

-
origin 7 =0. In this case the only nonzero coefficients in (A.15) for the special incidence and polarization

conditions in {A.19) are

@ .3 0

3
“lo T3 0 e T3 (A.30)

ﬁ
Considering the description of the incident fields in (A.2) we find from (A.3) that it is the N functions for N=1

which are nonzero at the origin. The field coefficients for the origin are
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XY (1)

E (0.s) Bl

= - 1y
Ej b(')
1,le

(A.31)

205 0

ZoH (0.5) _ “le _1’

Ep a(f) Y
I.le

Note, however, that as one goes away from the origin other terms become significant. In particular, the electric field

has a term which circulates around the y axis {(maximum near the spherical shell at low frequencies) and is related to
. . i (l) —)(1) — i . . .

the magnetic field in (A.31), i.e., to |, Mum,p(¥y r). Itisthis term that dominates the low-frequency electric

field [6].
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Appendix B: Approximation of the Terms Involving ypa and ¥ab

The basic result in (A.29) can be further manipulated to obtain more insight into the form that the shielding

takes.
() :
B.1 n,m,p coefficients
The first part of (A.29) can be manipulated into the form

(1

Anm,p
o,
= [[YObkn (r0b)] ¥oain (02) X1 + Yobk, (vob)[ 70ain (oa)] X2 (B.1)

-1
0 R Z - . ’
+ }Z% Yobkn (¥ob) Yoain (Yoa) X3 + Z—é[}’obkn (r08)] [r0ain (voa)] X 4]

where the X, contain all terms involving Bessel functions of ypa and y2b (only), noting that ¥, involves the

shell parameters with | 5 |>>13y |. Writing out these terms and writing the i, functions in terms of &, functions

(A.5) gives

X| = nbi, (}'Zb)[ylakn (72“)]’ — Yobky (hb)[hmn (72“)]’

= [ vabka (120) = 12k (—120) | [ 12040 (120)]
— yobky, (725)%[[—1]" * yaak, (12a) - [-raak, (—720)]’]
= %[[_V?.bkn (-720)][ 122k (120)] + [2bhn (720)] [~720k, (‘720)]]

Xy = [Vzbkn.(?’zb)] Y28k, (122) = [12bky (126)] 12ai, (720)

= %[[_1]’41 [yzbkn (72b)I - [—yzbk,, (—yzb)j]hakn (rpa)
_ [yzbk,, (}’2b)] %,:[—1]"“ Yaak, (yoa) + [—72akn (_720)]]

= 2| [-72bkn (126)] [120ka (120)] + [ 120n (28] [~20k (‘?’2“)]]
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X3 = [y20ky (720)] [728in (120)] = [#2bin (r20)] [20kn (720)]
= [725"‘:: (725)]’%[[[_1]”1 [72“’9: (72‘9)] - [—?’Zakn (_72“)]/]]
- %[[—1]"” [yabk, (r2b)] - [ =720k, (—Yzb)ﬂ[?zﬂkn (r20)]

= %[["72!7[‘:4 (-r20)] [720kn (720)] + [¥2bkn (726)] [~720ks (_ha)]’}
X4 = 12bk, ()’25)72ain (72‘1) - yabiy, (72b)72dkn (yza)

= yabky (7219)%[[—1]"” yaaky (y2a) — raak, (—rza)]
- %[[—1]’”1 Yabky (12b) — yabkn (—720)]

- “%[[—nbkn (-726)][72akn (720)] = [¥2bkn (726)] [-Y28kn (=724)]]

Consider first large y3a and y;b . For this purpose we have
ey =4 5 Bl s
hn (§) Z = B[ ﬁ][;]_

_ e—c,’[ [n+l]¢,_1 O(¢—2)} as ¢ oo

_ oat & [+B] p-t
[¢ha($)] = =Ckn(§) ~ 2Be 2,6[ ﬂ],[ﬂ_

_ s e BY B, p-1
[ 1 ﬁz=1 e ﬁ]![[zqr 28[2¢T ]}

:—e_g[]+i2+—-l—]{_l+ o(g‘z)} as § es

Substituting in the X, we have

=gl olpr il ofpr?)
[ 20 o0 o

- _cosh(yza)—sinh(yza)"[";l][—[yza]"+[yzb]"] + O(f (r2a,72b))

nln+1] A
2 pab O{f (r2a.72b))

= —cosh(ypA)—sinh(y24)
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2 = 2o 1L ofpag?)[ 122 ofrs)
+e 128 ‘:H%;;L] + 0([7#?”&—%% + 0([)’2"’]_2 )H

= cosh(yp4)- smh(}ng) nlnt [[?’ a]_ [7251_1] + O(f (7’2'9»}’25))

n[n+l] A,
2 yaab

= cosh (y24)+sinh (¥24) O(f (r28.72b))

= —Xl + O(f(}’za,}’zb))

=1 ol B2 - ol

2y2b 2ysa

22 ofpar -2 ofpar?)

= 51nh(y2A)+cosh(y2A) nln+ ][[y a]_ [r26] ] O(f (raa.72b))
[ +1]_a

yaab

Xy = L[_eyga[l_i[”_”l + o([yzb]‘z)][H%[ﬁ—l] + 0([?’257]2)]

2 2y2b Yaa

1ol s ofpr? [ o)

" el -l + 0 (aran)

n[n+l] A
}’2ab

= sinh(¥2A)+cosh ()ng) O(f (r2a.72b))

= —sinh(y24)—cosh (72A)

= —Slnh(}sz)—COSh ¥2 A) O(f (7247,725))

= -X3 + O(f(}’za,}’zb))

The order symbol for large ypa (and hence large 7,5 ) can be understood as

ehd

[O([yza]'z) + O([}Qb]_2 )] [larger of

O[[yzarz e|Re(y7_A] ] as yra— oo

e—)’zﬂﬂ

O(f (n2a. r2b))

5

1]

B4

B.5)

In each of the four above cases this order is dominated by both cosh and sinh terms. Note that | p5Al << I ¥4l by

hypothesis, so the arguments of cosh and sinh may be small while the approximation is still valid. Note for X| and

X4 the cosh term dominates the sinh term, except that as n becomes large, this breaks down (nonuniformly
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asymptotic with respect to n). At the center of the sphere only the r = | term is presenl and near the center only the
first few n are significant. For X and X, the sinh term dominates for large ypa with the same caution regarding

n.

For small arguments we use (frorm (A.5))

f4, (€)= [1-¢+0(¢? )_l[ e T+ [[2,, lﬁ],[ir"*‘ (_mﬂ
=[2"]![2§] [ §+o(¢2)”1+§+o(42]|]

= f2n-1]11¢ [1+O (2)] as £ >0
[Cha (O] =—nl2n-1]n¢ ™ 1[1+o(§2)] as ¢ =0

(B.6)

and from [7] we have

$inl$) = [gn:][l + 0(¢?)] a5 ¢ oo
(B.7)

(¢ (0] = "”]Hgﬂ[ +0(¢2)] a5 ¢ =

Applying these to (B.2) we have

[2n+1]0

T ol ol
- _QHIH{R [1+%T+l ¥ [n+1]|:1+%]_n} [1 +O([y2b]2)]
b{”o“gfH[Ho(wf)} s 72080

+1
x {M” o=yt -{an b el h”o(b’z”]z)]
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2 = | et o sl o 0T T2 10 (frs
il 2] o [2 [ofor)]

s rifig ] ] [rolour]
ot -t

]..[rzbr ofon- 1T [0

X3 = [ -n2n-1]u[yp] "

L Ti onleal + [2n
A L ool
- 2[:::]},;{_{ } +[1+a]n} 1+o yzbl ”

=n[n+l]72 [HOH ] H[Ho [yzb] } as yzb——:'O

+1 +1
[[ZH—I]”[Vzb]'” [raal __[yobT [2"—1]!![7’20]_"}[HO([?’zb]z)]

n+l
[2 +1

S
P
il

[Zn+1]t [2n+1]0

- 2 [sT- (T oot
=2n+l|:[ } [ ]HHMHO([Vzb]ZH
= - rzA[HO[%H[HO([Vzb]ZH

Reviewing the above we see that the high frequency representation for X; (and —X,) goes to the low

(B.8)

frequency representation {with even y7A small}). From (B.4) we have

+1] A%
X = -1+ nlirl]a® 1A =0 (B.9)
2 ab :

which is close to -1 as in (B.10). So we might use
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sinh (724 ) nfn+ I]H"’ (B.10)

= — X5 = - h A) +
X 2 cosh(r,4) - > 12

for both high and low frequencies for n and A/a both small. For X3 the high-frequency approximation has a

factor n[n+1]/2 which disagrees with the factor n{n+1] in the low-frequency approximation. For X4, as the

high-frequency approximation is taken to low frequency it is proportional to [yzA]_l, as compared to the low-

frequency approximation being proportional to ¥,A , which is quite a difference.

B.2 b,(,llzn_p coefficients
The second part of (A.29) can be manipulated into the form

0]

nn,p

10

nm,p

= [[ Yobkn (70b )]l Yoain (Yoa) X1 + yobkn (v0b)[ 70 (0a)] X2 (B.11)

—1
z _ z _
+Z—;70bkn (vob)voais (oa) X3 + _Z%[?’Obkn (r0b)] [70ain (v0a)] X 4]

Here we note that the same terms appear here as for the a,(ll.‘z,,,P coefficients in (B.1), albeit rearranged. The first

two terms above correspond exactly, but the third and fourth terms have the roles of Zg/Zy and Z5/Z

interchanged in their combinations with the Bessel functions. Hence, we need nol compulte the terms a second time,

but just use the terms previously computed and combine them in the new way. The high- and low-frequency forms

of the X,, have already been treated.
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