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Abstract

A perfectly conducting angular sector is a canonical shape for scattering calculations. A previous paper has
calculated the axial backscatter from a thin angular sector, obtaining an asymptotic result in the limit of ¥ — 0
where ¥ is the half angle of the angular sector. Using a completely different technique the present paper calculates

the axial backscatter for a wide angular sector, asymptotic in the limitas ¥ — /2.

This work was sponsored in part by the Air Force Office of Scientific Research, and in part by the Air Force
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1. Introduction

In testing the physical-optics (PO) approximation for axial backscattering from cones it has been observed
that for a circular perfectly conducting cone the PO result is quite good, at least asymptotically for small (near zero)
and wide (ncar 772) cone angles [3, 10]. However, for noncircular cones the disagreement can be large as shown for
the thin angular sector (perfectly conducting), and more generally for the thin elliptic cone (perfectly conducting) (3,

4]. The present paper considers the wide angular scctor as in Fig. 1.1 for ¥ near w2 (W’ near 0). The angular

sector lics on the xz plane (y = 0) with the z axis as the sector bisector (symmetry axis).

The incident fields are
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While the waveform f{1) is quite general we can specialize it (e.g., as a step function) at our convenience.



Fig. 1.1 Wide Perfectly Conducting Angular Sector
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2. Backscattering Formulation

To calculate the backscattering let us fist express the far scattered field in terms of the surface current

density (sheet current) as [3]
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Since J s can have no y component the above reduces to
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leaving only an x component to contribute to the integral.

A general form for the backscattered far field is
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Ap(1z,t) o = backscattering dyadic operator

> = convolution with respect to time

Ab(1z,t) = Ap(1z,t) = scattering dyadic impulse response
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Using our previous definition [3]

o o o
Ap (1z,0) = I Ab(14,t'ydt’ = scattering dyadic step response

0_
we can specialize the incident waveform as
f@) = u()
to correspond to the results in Appendix A which uses a step-function incident wave. Then we have
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where J Sy is now in response to a step incident wave of strength E(. This also implies
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As a general result for cones (dilation symmetry [11]) we have
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It is this constant dyadic K that we wish to calculate for small y’. From (2.7) we have
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3. Backscattering Dyadic

The half-plane solution is developed in Appendix A. Let us use this as an approximation for small positive

w’'. For y"— 0 the surface current density goes to the exact half-plane solution. Note now that the wave first

reaches the edge at
o = 2 = lﬁltan(y/') >0 (3.1
c c

The surface current density is then delayed as a function of |r] . The wavefront is still at z; = cr. Accordingly the

parameter 7 in Appendix A needs to be a function of le[ as
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This approximation is asymptotic as ' — 0 .

Noting that the maximum |x5[ with surface current density at time ¢ >0 is where t =1y, giving the

integration limit
|xs| = ct cot(y”) (3.4)
then (2.9) becomes
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with a factor of 2 accounting for the symmetry with respect to X .




Since ¢ and zg are not functions of zg, let us consider that integral first. Substituting
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Using integral tables [9] we have
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Substituting

t'=t—2x—5tan(l//') . dxs=—§cot(l//')dt' (3.10)
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in the usual two-dimensional form (x,y or A,v coordinates) for backscattering.



4, Concluding Remarks

The solution here has some interesting properties. Note the proportionality to cot(i”) in (3.12). This can
be contrasted to the cotz(l//') dependence for the wide circular cone [3, 10]. The difference between these two can
be ascribed to the fact that the angular sector has an integral over the surface current density using only one
transverse coordinate, while the circular cone has an integral over two transverse coordinates. As an alternate view

_”2‘ while

consider that for ¥’ — 0 the angular sector tends to a half plane which scatters field proportional to r
the circular cone tends to a plane which scatters field proportional to r° [11] (which requires a more singular

behavior of the r~! term as v —0).

So now we have solutions for the axial backscattering from both thin [4] and wide perfectly conducting
angular sectors. This leaves the intermediate angles y/to be solved. There exists a solution in terms of an infinite
series of eigenfunctions [6-8]. However, this does not give simple analytic insights. Further development of

“exact” analytical and numerical results would be helpful.



Appendix A.  Surface Current Density for a Step-Function Plane Wave Incident on

a Half Plane Parallel to the Half Plane and Perpendicular to the Edge

As an intermediate step in the backscattering calculation let us consider the canonical problem in which a
step-function wave is normally incident on the edge of a perfectly conducting half planc as indicated in Fig. A 1.
The direction of incidence is in the plane of the half plane. The coordinates in this appendix are chosen to

correspond those in the article [5] on which the solution is based.

Figure A.2 shows the situation before and after the wave reaches the half plane. As indicated in Fig. A.2B
there is a circular cylinder of radius ¢r containing both incident and scattered fields. The incident field takes the

form
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The incident plus scattered field (total field) takes the form using cylindrical (W, ¢, z) coordinates
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The combination ¥ /cr expresses the dilation symmetry of this geometry [11].

Since there is only a z” component of the electric field, the problem basically scalarizes and involves only

two dimensions. As indicated in Fig. A.2B the function f(z,(p) has boundary values 1 on ¥ =¢t and 0 (zero
ct

tangential electric field) on the x” axis for 0<x < cr. The single electric-field component satisfies a scalar wave

equation
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Fig. A.1 Interaction of Step-Function Plane Wave with Perfectly Conducting Half Plane
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Fig. A.2 Two-Dimensional Scattering Problem for Incident Step-Function Wave



Following [1, 2, 5] define two new coordinates as
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However, f must be a function of only W /ct and ¢, giving
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This is the Laplace equation in equivalent cylindrical (£,¢) coordinates. So we substitute
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for solution by conformal transformation.
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The general solution for the perfectly conducting wedge is given in [5]. Specializing this to the present

case we have

_ -[1-¢] 1 1-¢
f = —arctan 1 - ﬂarctan ——l———~ (A.10)
2§zsin(§j 262 sin(g)
0<¢ < 0<s¢<2rm

where the arctan functions are each evaluated between 0 and 7. Noting that the first arctan varies from 72 to 7 we

can replace this by 7 - arctan reversing the sign of the argument, giving

f =1 — —arctan Sl S 3 (A1)
T ]
2E2 g ¢
£ sm( J

with the arctan ranging between 0 and 7272. There are other forms this solution can take [2], but for our special case

the above is relatively simple.

We can find the magnetic field from the Maxwell equation
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Note the factor of two accounting for the magnetic field both above (¢ =0,) and below (¢ =0_) the half plane.

From (A.11) we find
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where this applies for ¢z > V.

For convenience define
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Then we integrate
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recognizing that for 7 <1 the surface current density is zero. This has the expected singularity near the edge

(x* =0, 7). Near the wavefront (x" = ct) this goes to zero as expected.
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