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Abstract

The Perfectly-Matched-Layer (PML) method is used to absorb outgoing electromagnetic waves in Finite-
Difference-Time-Domain (FDTD) numerical simulations to create the notion of infinity within the finite
numerical volume. Starting with the unsplit-field, uniaxial PML formulation, a three-dimensional, second-
order FDTD/PML algorithm is obtained for the first time using the piecewise-linear approximation for
nonlinear dispersive media. In the absence of the PML interface, the FDTD/PML algorithm reduces to the
usual nonlinear, dispersive FDTD/nonPML algorithm. For numerical validation a “one-dimensional
FDTD/PML demonstration is catried out for an ultra-short clectromagnetic pulse propagating inside a
nonlinear Raman scattering medium with the PML absorbmg boundary condltlon 0 show the efficient
absorption of outgomg Waves.
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L INTRODUCTION

With the advent of high power computers that provide fast execution times and great quantities of
computer memory, we are at the stage where we can perform direct numerical calculations of Maxwell’s

" equations in nonlinear dispersive materials. Out of many numerical techniques available in the

computational electromagnetics community, one that has shown great promise in the time domain is the
well-known finite-difference-time-domain (FDTD) method.! It is based on using a simple staggered
differencing scheme in both time and space to calculate the transient behavior of electromagnetic field
quantities.. One of the greatest challenges of the FDTD methods has been the efficient and accurate
formulation of electromagnetic wave interactions in unbounded regions. For those problems, an absorbing
boundary condition must be introduced at the outer layer boundary to simulate the extension of the lattice
to infinity. One approach that has given great promise in realizing such an absorbing outer boundary inside

_ the finite volume computational domam is the well-known perfectly-matched-layer (PML) algorithm that
* was first introduced by J. P. Berenger” in 1994 for the free s pace boundary. S ince that time Chew and

Weedon® came up with the modified PML algorithm that is based on complex coordinate stretchmg, which

- is shown to be equivalent to the anisotropic PML medium approach introduced by Sacks et alt

In this paper, we explore the formulation of a three-dimensional PML algorithm used to describe the
behavior of electromagnetic quantities in outer absorbing boundary layers of a nonlinear dispersive medium
that serves to absorb all outgeing waves within a finite computational volume. We consider the case where
the electromagnetic wave propagates outwardly from a nonlinear dispersive medium to a nonlinear

. dispersive- PML medium through a reflectionless PML interface. We start the analysis based on the

extension of the unsplit-field, uniaxial PML formulation*® of Maxwell's equations that are obtained in the
frequency domain inside the nonlinear dispersive PML medium. We perform the inverse Fourier transform

- of these equations from the frequency domain to the time domain in order to obtain a set of first-order

differential equations. Then, these equations are finite differenced in both time and space using the usual
staggered Yee FDTD scheme' while expanding the eleciric and magnetic field vectors in time using a -
Taylor series about the current time step to evaluate next time step values of the electromagnetic field -
quantities. Depending on the number of terms kept in the Taylor series expansion, we can numerically
update the field values to any desired accuracy in time. In Section II, we use the piecewise-linear
approximation, which is equivalent to keeping only the first-order, time—dependent term of a Taylor series,
to show the process involved in obtaining a second-order accurate FDTD/PML algorithm. To obtain
higher-order accurate FDTD/PMIL algorithms in time, we simply need to include higher-order,
time-dependent terms of the Taylor series expansion and follow the same procedure outlined in Section II
In the absence of the PML interface, the FDTD/PML algorithm is shown to reduce to the known FDTD
algorithm for nonlinear dispersive media.” In Section ITI, we show the actual one-dimensional numerical

demonstration of our FDTD/PML algorithm for an ultra-short electromagnetic pulse propagating inside a -

nonlinear Raman scattering medium with the nonlinear PML absorbing boundary condition to show the
efficient absorption of outgoing waves. Finally, Section IV gives concluding remarks.

II. PML FORMULATION FOR NONLINEAR DISPERSIVE MEDIA

For a wave propagating into anisotropic, uniaxial nonlinear dlsper'sive PML media, the modified
Maxwell equations under the unsplit-field, uniaxial anisotropic PML formulation* can be expressed in the
frequency domain as (e"” conventmn)

UxEox) =-jo § @epuiien, EEE @1)

v x fi(o;x) = - jo 8™ (@) e Dlosx), | . ] 22)

with |
' Py © Pmax ’ : . . A

B(o; x)—soeRE(w N+ed By@x) v By @x), R )

p=1 p=1



By = {Phen | = [arXba-0Emn | =Xb@ Ewy), @4)

B, (@ =F{ B0 R0} =F{Ben [ Xt -0 BmneEEml}, @s)

where E(m;_}g) is the complex electric field vector, E(co;g) is the complex magnetic ficld vector, f)_(m;g{_)
is the complex displacement field vector, EE(");K) is the complex linear (first-order) electric polarization

~NL . . . . L ~PML .
vector, P (@;x) is the complex nonlinear (third-order) electric polarization vector, S+ (w) is the

complex uniaxial anisotropic PML matrix, &, is the free space electric permittivity, s is the relative
permittivity of a medium at infinite frequency, W is the free-space’ permeability, pg is the relative
permeability, X;‘ (t) and Xf;”“ (t) are the pLh terms of the collection consisting of P, time-dependent linear
and nonlinear electric susceptibility functions, where pp., is the maximum number of terms which we
choose to consider for a particular'fonnulation of (2.3). In(2.5) Rg"“ {t:x) is introduced to isolate the part of

=NL Co. : L . S .
P, {w;x) that is represented by a convolution function. In the above equations, we use notations ¢ and

&F1{} to denote, respectively, a vector dot product and the Fourier transform operation, We also use symbol
~ above functions to d enote @ -dependence in o rder to d 1st1ngulsh them from time- dependem funcnons

Elements of the uniaxial amsotroplc PML matrix, S (m) are glven by®

LS = ding Sy(f_ﬂ) Sz<¢°)’f”s'z(f§) §x(m),3x(f> Sy(w), | s
- S, (@) 5, () S, (@)

where “diag” is .used to tepresent diagonal terms of a matrix, and_gx(m) . gy(m) and gz(m) are

w-dependent functions that satisfy the impedance matching condition at the interface of the non-PML
medium and the PML medium. It is a common practlce in the computational electromagnetlcs community

to choose S L (@), S ,(®) and S (@) as

5 (0)) =14+ with &5 = Sx . L (2.7-2.8)
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where oy , oy and o, are PML electric conductivities, and o} , oy and g are PML magnetic

conductivities with subscripts x, y and z denoting the directions in which PML conductivities are assigned”.
These PML ¢ onductivities are introduced for the p urpose of p ropcrly h andhng the i mpedance matching
condmon at the nonPML/PML interface. .

We first eliminate D(@;x) in favor of expressing Maxwell‘s equations in terms of E(w;x), P o (@:X)

and P (0;x) by substituting (2.3) into (2.2). Then, taking the inverse Fourier transforms of (2 1), (2.2),

2.4) and {2.5) directly based on the delayed axial ficld convolution technique'® with expressmns shown in
2.7 through (2.12), we obtain the following time- depcndcnt equatmns
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In the above, H>*®(tx), E™™(t;x), P,">™(t;x) and P,N">®(t;x) are introduced to handle the delayed
time-response behavior of H(t;x), E(t;x), P, (t;x) and [E(;x)R, " (t;x)], respectively. These functions follow
naturally from taking the inverse Fourier transforms of convolution functions [1/(jml+é)] E(m;{) .

/(o l+A)] E(m;z) » MGwI+A)] E::(m;_z) and [1/(jo I+A)] E:L(m;g) by realizing the fact that the

inverse Fourier transform of [1/jowI+A)] which transforms back to the time domain is simply given by
exp(-A t) where ] is the identity matrix and A is a time independent d1agona1 matnx expressed as

dlag{(cx /8,), (O'y"ao) (0'2/80)}

To solve {2.13) through (2.20), we need-to specify expressions for linear and nonhnear electric
susceptibility functions. In this paper we consider the general case in which both the linear and nonlinear
electric susceptibility functions are expressed as complex functions that contain complcx coefficients and
exhibit exponential behavior in the time domain as follows:

X%(t)=Re {ofexp[-rptl} UQ), o | | o (224
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where Rf:{ }is used to represent the real part of a complex function, U(t) is the unit step function, and
ab Vg s 0 “and y“are complex coefficients. We need to point out that by making the proper choices of
complex coefficients and performing the Fourier transforms of (2.24) and (2.25), one can obtam the
familiar forms of the complex penniﬂivity in the frequency domain for the constant conductivity [i.e., by
setting oy to be a reai number yp =0, ap =0 and ym‘— 0], the Debye model [ie., by setting o, y:;,

| ap™ and y to be alI real numbers] and the Lorentz model [i.e., by setting ap and (;(,Nl to be both

imaginary numbers, and yp and yO" o to be both complex numbers].-

Upon substltutmg (2.24) and (2.25) into (2.15) and (2.16), we obtain the followmg expressions for
P, Y(t;x) and RP Mx):

t ' . .
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where complex functions; Qp (t;x) and QpNL (t;x), are introduced in the above equations such that the real
parts of these complex functions result in P (t x) and R,,Ni‘(t ), respectwely

"To derive FDTD expressions based on the staggered Yee scheme,' (2. 13) (2.14), (2.25), (2,26) and
(2.17) through (2.20) have to be solved numerically for H(tx), B(tx), Q.1 (t:x), Qp -(tx), H™™(tx),
EP'™(tx), P,"P(6x) and P, N]'D‘]a”(t x) at each time step by comectly carrying out the numerical
integration of convolution integrals Q," (%), Qo (6:X), H™®(t;x), E™(t;x), P.">™(t;x) and P, NLD“W(t x).
Therefore, the whole solution rests on the question of how to carry out the numerical integration of Qp (t;x),

NL(t %), H®(t;x), BP™(t;x), P,""™(t;x) and P, LDelY(4.x} at each time step. For that reason, the rest of
this s ection is devoted to the numerical formulation that treats Q,"(t;x), QPNL(t,x) H"(1:x), EP(; _)
P,"**(t;x) and P, FPeRY(-x) into the overall FDTD scheme based on the recursive convolution approach.”

We first convert the convolution integrals Q,"(t;x), Qq (t:x), TP™(tx), E>™(tx), P LD"l""(’t x) and
P NLDela”(’r x) into the following equlvalent first- order differential equatlons
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‘where complex functions Q,"*™ (t;x) and Q"% (1;x) are introduced in (2.32) and (2.33) such that the
real parts of these complex functions result in P,"**®(t;x) and P,"""(t;x), respectively.
. To show how we can use (2.13), (2.14) and (2.28) through (2.33) to come up with a three-dimensional
FDTD/PML algorithm for nonlinear dispersive PML media, we integrate (2.13) and (2.30) from t=(n-'2)At
to t=(nt+'%)At, and (2.14), (2.28), (2.29) and (2.31) through (2.33) from t=nAt to t=(n+1)At. Then (2.28)
through (2.33) are solved exactly using the integrating factor technique for a given dlscrete time interval to
- go forward in time by At,
(%At (m+ti)At
I HEy) | papsZoe ot Hwx)
‘ (n-)At ot (n-¥5)At
(n+%)At ) (n+4%)At .
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To obtain second-order accuracy in time from a finite differencing technique, H(t;x) and E(t;x) are taken
‘to be piecewise-linear continuous functions over the entire temporal integration range such that H(t;x) and
E(t;x) change linearly with respect to time over given discrete time step intervals. It is equivalent to saying
that we use only the first-order, time-dependent term of the Taylor series expansion for H(t;x) and E(tx),
respectively, that are expanded in time about the current time step .of t=(n-%)At for H(t;x) and the current
time step of t=nAt.for E(t;x). Mathematically, we can express H{t;x) and E(t;x) in the following forms in
terms of (H)y™, (B, (E)y and (E)y™" where superscripts n-%, n, n+% and n+1 are used to denote
discrete time steps at t=(n-'4)At, t=nAt, t=(n+¥%)At and t=(n+1)At, respectively. Subscripts are used to
denote discrete spatial locations, x=[iAx, jAy, kAz] for E(t;x) and x=[(i-1)Ax, (j-¥%)Ay, (k-Y:)Az] for H(t;x)
- with Ax, Ay and Az being the spatial grid sizes in the x, y and z directions, respectively.

ro- I H !-!+‘/2 _ n-% . X )
(HIZI_)Ek/z + Dy " t(—)uk ] ft— (n %) At] + higher order terms,
H(t;x) = , - for 0<(n-WAt<t<(n-+%)At - (242)
kOA: : ' © 0 ffor t<0
E)&H —(B)%
E)ix + w (t- nAt) + higher order terms
- E®®) =, o . for 0<nAt<t<(n+1)At o (243)
_0: . - o fOf t<0



Although we are not going to investigate higher than second-order accuracy in time in this paper, it is
possible to obtain higher-order accurate FDTD algorithms by simply including more terms beyond the
first-order, time-dependent term in the above Taylor series expansion. :
Now, substituting (2.42) and (2.43) into (2.34) through (2.41) by keeping only the first-order, time
-dependent term of the above Taylor series expansion, and then performing the time integration from
t=(n-Y)At to t=(n+}4)At for field values that depend on the magnetic field [i.e., H(t;x) and HDEE‘“’(t x)], and
from t=nAt to t=(n+1)At for ficld values that depend on the electric field [i.e., B(t;x), Qp (t;x), QpNL(t,gc_)
EP(5x), Q"™ (t;x) and QNP (;x)], (2.34) through (2.41) can be manipulated and cast into the

- following cubic algebraic forms. These expressions are used to update (H)y™”, (_),Jk“”, Q™"

(QPNL)IJkn+1: (EDelay)lj n+l (I_Il:halay)J ntyy (_QpLDday)u ntl and (QpNLDEIay):Jan at each time st ep

Qo+ (D" +2, -(H):};" +Q, e @E 48g =0, I (244)
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:+Re{2r c1e uuk[(E)uk-(E)URHRe{Z MYy B [ B+ )]
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where Sg and SH are given by
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(ﬁ )ik and (!i Yik tllat appear in the first and second terms of (2.45) are updéted at each time step with

the updated value of (QL\TL){J'k in order to include the effect of tl1e nonlinear response. Other coefficients

ol 2 oL, oMt ol s
NL N NL

693’90391392=Q3!Q4’QS:Qﬁ’rposrp{) =rp1 :rpilt‘arp:’. :r;lq}.’rps >Hp0’1_‘[

and matrices that appear in (2.44) through (2. 51) are represented by @L 0.0 @

p.2> p,0

p.l

p2=

evaluated at the beginning of the FDTD/PML sirﬁulation since they depend only on material properties and
At. The material properties that are required for the evaluation of these coefficients and matrices are (115,

7;, o, Y:f L, ox , oy and g, which are known quantities since they are assigned for a specific

FDTD/PML simulation problem. Shown in Appendix are the explicit expressions of these coefficients and
matrices found in (2.44) through (2.51). '

Using the above FDTD/PML algorithm the computer simulation can be performed for electromagnetic
waves that propagate inside nonlinear dispersive PML media by simply going through the following steps:

(1 Flrst as part of the initial condition, time-invariant coefficients G)po, ®pl s ®p2 R ®90 s ®p1 ,
62 and @L‘"g, and time-invariant matrices QO , QI s Qz . (23 , 04 , Qs . QG , 1";‘0 , I‘;\B‘ ,

NL NI NL L NL
For s rp?- : rp3 » Lo s Tps s I, le s sz =Hp0 s le 3 sz ’ Hp3 ’ HM : HPS :

Hl};ng and IT -,- are all calculated at the begmmng of simulation for given values of | ap , yp s a,rfL )

}'p ; G’.IF; » Ox s O'y . 0. and At. These values are stored in computer memory and used in calculating
the updated field values at each time step. L

(2) Using (2.44), (H)3"™ is updated based on the known values of (H);"* and (H™*™);"% and (E)y" -

(3) Using (2.48), (H™™);™* is updated based on the known values of (HPY™); i ", (H),Jk”l'y2 and
(—)Uk Va A . ..

(4 Using (A.8) and (A. 12), (AO)uk and (A )k ik are updated based on the known values of (Qp )uk .

(5) Using (2.45), (E)g""' is updated based on the known' values of (E)uk, EP" ", QoD

Q. Py and (H)y"™. Because (2 45) represents the coupled cubic, algebraic equation, the
nonlinear Newton-Raphson method'’ is used to solve for (E)s"" by finding the zero of (2.45) with
the previous time step value of (E);" as the injtial guess. R : :
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(6) Using (2 46), (2.47), (2. 49) (2.50) and (2. 51), Q" (QpNL)s_]ans (B>, (mee]“”)g ™! and
(Q NP2 are updated based on the known values of (E)Uk"”, B’ (Qp Vi (QPNL)IJR
(_Delay)u , (QpLDElay)Uk and @pNLDelay)u .

(7) Increment the time step by At. Go back to step (2) and repeat the whole process again until the end
of simulation. :

Shown in Figure 1 is the flow chart of numerical steps reqmred to update field values as described above.

Flow Chart

Calculate (_H__);_ikn+ .

_ C alculate (ﬂDe]ay)i_ikn+

Calculate Coefficients.
(Aﬂ)ijkn and (Al)i'kn

Calculate (E)ip""
by solving coupled
cubic equations

Increment to the
nexttime step

&

Calculate Q"
Q™M )™, (P!
(Q_pLDI:Ef;)iljkn-i-l’ ?Pd

(Qe™ 7 )i

Reached the

maximum time
o .

Yes (end of simulation)
. Figure 1. Flow chart of the nonlinear dispessive FDTD/PML algorithm

In the absence of the PML interface, o4, oyand g, can be set to zeroes. It results in reducing the

nonlinear dlsperswe FDTD/PML a}gorlthm to the usual nonlinear dlsperswe FDTD algorithm for the
nonPML. case.’
-Now, if we happen to set the material coefficient (1 to" zero, the nonlinear dlsperswe FDTD/PML

aigorlthm reduces to the linear dispersive FDTD/PML algorithm reported before.'? Furthermore, if both
a}; and o EL are set to zeroes, it reduces to the case of the simple free space FDTD/PML algorithm..m

IIL. ONE- DIMENSIONAL FDTD/PML NUMERICAL DEMONSTRATION
' FOR NONLINEAR RAMAN SCATTERING MEDIA

To demonstrate the validity of the FDTD/PML algorithun, we consider-the formation of a temporal
soliton in one-dimensional space inside a nonlinear dispersive medium. We simulate an ultra-short optical
pulse propagating into a half-space, nonlinear Raman Scattermg medium, which results in the nonlinear
feedback of the delayed time response to the propagating wave.” First, we launch an optical pulse in free
space and propagate it from left to right in the positive x-direction. After traveling a short distance, the
optical pulse is incident on an infinite half-space, nonlinear Raman Scattering medium that is characterized

by a single first-order. (linear) susceptibility function, le;zl (t), and a single third-order (nonlinear)

11



: susceptlblhty function, X 1 (). We cons1der the case where Xp 1 () and X (t) are expressed in the

13, 14

following Lorentz forms [i.e., set pmax =1 in (2.3) for a single species]:

o (85~ €x)

X% (1= exp (-51) sin(yJ02 -5 1), o @,
(!)2—82 S
0

XNL(t) X (‘E +1 )/1 T ]exp( t/t )sm(t/'r L _ (2.55)_.

where w, is the resonant frequency, & is relative permittivity of a medium at DC, er is the refative
permittivity of a medium at infinite frequency, & is the first-order susceptibility damping constant, xl,fl]‘ is

the Raman Scattering strength, 1/1, is the optical phonon frequency, and 1; is the optical phonon lifetime.
Comparing (2.54) and (2. 55) with (2 24) and (2 25), respectively, we can relate the above coefﬁments to

the complex coefficients, ap s 'yp . ap andy , as follows:

I} (ss —£r)

aby < j—— and yp <= (3+jol-8%), : (2.56-2.57)
1lm -2 :
o = A (2 +12) x <21 and M 1C(—+J——-) (2.58-2.59)
2 1

where j is the imaginary unit,

We consider the incident optical pulse to have a sinusoidal-carrier electric field frequency, @, of
8. 61x10" radians/sec enveloped inside a hyperbolic secant function that has a width constant, T,,, of 3.50
femtoseconds, The following mathematical form descnbes the time-dependent incident optical pulse that
we use in our one-dimensional FDTD simulation: . ‘

Incident Optical Pulse () =A cos[a_ (t = taesey)] sECh[( t.= taeny )/ Tw], N 60)

where A is the amplitude of the electric field and ty,y is the delay time for the incident 0pt1cal pulse to
reach its peak value. We arbitrarily assign A to take the value of 1.0 volt/meter and tgelay to take the value of
41.70 femtoseconds.
We select the total number of simulation cells to be 60,000, ranging from x =0 to x = 60,000, with the
free-space/nonlinear-dispersive-material interface located at x = 10,000. The right- -hand side of x=10,000 is
represented by free space and the left-hand side of x=10,000 by the nonlinear dispersive material. We
launch an optical pulse into free space at 20 cells away from the leftmost edge (at x = 20) traveling in the
positive x-direction. We use the free space PML absorbing boundary condition in the left and the nonlinear
PML absorbing boundary condition in the right to terminate the computational space. At both outer
absorbing boundary regions, we use 10 PML cells to absorb all waves that propagate out of the
computational space.. Listed below are important numerical parameters and matenal propertles that Wwe use
to perform one-dimensicnal FDTD/PML s1mulat1on calculatlons
- Basic FDTD parameters: '
Uniform cell size {Ax) = 5 nanometers,
Total simulation distance (Ax times the total number of cel]s) 0.1 centimeter,
Time step (At = Ax/2¢) = 0.00834 femtosecond, where ¢ is the speed of light,
Total number of time steps = 400,000 (total simulation time = 3336 femtoseconds),
Quadratic increase in PML conductivities inside the PML cells.

- Linear dispersive material properties:
& =5.25, gr =2.25, ®, = 8.0x10"* radians/second, and 8 = 4. 0x109 (sec)

- Nonlmear dlsperswe material properties:

=122 femtoseconds 1, =32.0 femtoseconds ‘and ADr = 2 0 (volts/meter)

12



By choosmg 5 nanometers for Ax, we estimate the free space numerical phase velocity error'® to be around
5%107 'which is about the same order of accuracy as the single precision calculation of our SPARC 60
UNIX workstatlon
To update the electric field value for the next time step, we use the simple Newton-Raphson iterative
method’! by making use of the current-time-step electric field value as the initial guess to solve the cubic
‘equation. For all calcuIatlons we performed the convergence criterion of 10" is satisfied with at most three
iterations,
Figure 2 shows the tlme evolution of spatial electric field profiles of a delayed time response sohtary
‘wave inside the nonlinear Raman Scattering medium taken at five different time steps of 100,000At,
200,000At, 300,000At, 400,000At and 500,000At, As seen in this figure, at the beginning the solitary wave
packet is imbedded inside the linear dispersive wave packet and it is lagged slightly behind the linear
- dispersive wave packet due to the nonlinear response of the Raman Scattering medium. As the wave
propagates deeper into the medium, the solitary wave packet gets gradually isolated from the linear
dispersive wave packet due to the slower speed of the moving solitary wave packet. By the time it reaches
the time step of 300,000At, the solitary wave packet clearly forms its distinct solitary shape and propagates
at constant amplitude while maintaining its shape. However, the shape of the solitary wave packet is
uniquely different from the well-known secant function shaped wave packet that is obtained for the
instantaneous time response Kerr-type case. Basically, the solitary wave packet inside the Raman
Scattering medium appears retarded in time behind the linear dispersive wave packet due to the result of the
nonlinear delayed time response of the medium. Details of these differences for Kerr and Raman Scattering
media are discussed in Yakura ef ol.” Also shown Figure 2 is the efficient absorption properties of the -
nonlinear PML located at the rightmost edge of the computational domain. As seen in the spatial electric
field profile at the time step of 500,000At, there is no observable reflection coming off the PML boundary.

Interface of free space and nonlinear
Raman Scattering medium

i nterface of nonlinear Ramaﬁ
- Scattering medium and PML

Frep Space Nonlineasr Raman Sc¢attering Medinm

rrel PML
nak — — ,
T=100,0004t  E, ° MWW
e B 3 r
) p2F T T !
T-z00000s E, 4— Wﬁiﬂfﬁﬁi‘ﬂ%ﬂﬁ A
. 02} | L : L
2 E] 4 )

T=300,0004t Ey, 9

2 3. 4
ozf T T !

T=400.000At E_,'r ]
02 L o 1
: 2 a3 4
02F T T T

T=500,000A¢ Ey [
~02% . . .

1 2 3 4 5 €

Grid Location
~ lexpressed in number of Ax cell points)

F:gure 2. Companson of spatial electric field profiles that propagate inside the nonlmear Raman

. _ Scattering medium at various time steps. The right-hand side edge is terminated by 10 cells
- of the nonlinear PML sbsorbing boundary (with At=8,34x10™"* second and Ax=5x10" meter),
.. The x-axis (erid location) ranscs from 0 to 60.000Ax..
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~To show the extent of reflection coming off the PML based on the nonlinear PML technlque we -

performed additional FDTD calculations using the Liao absorbing boundary condition.'® These FDTD
calculations are compared with the reference case where the interface of the absorbing boundary is :
extended to the right by additional 60,000 grid cells so that reflection is not important around the region of
the absorbing boundary for the simulation times of interest. Figure 3 shows the comparison of the electric -
field profiles obtained from reference, PML absorbing boundary condition, and Liao boundary condition.
As seen in Figure 3, the PML absorbing boundary condition gives good agreement with the reference case
“and it reveals a much better absorption property as compared to the Liao absorbing boundary condition.

- The maximum reflection off the nonlinear PML absorbing boundary turns out to be 19 dB as compared to -
-9.dB for the Liao absorbmg boundary case. :

o2

FDTD/PML Compultatidhél Domain Reference Region
' - with additional cells

0.15} - * Reference {equivalent to the non-FMIL
ceee where the PML interface hes been
moved to the right by 60,000 callsi?)

* With Liso absorbing boundaiyi?!

© 045} 2 PML region (10 grid paints) /J

© 58,000 ' 59,000 60.000 - . 81,000

Grid Location

Figure 3 Comparing the spatial profiles of propagating waves at the instantaneous fime
step of T=450,000t for three different absorbing boundary conditions:
[1] Terminated the right- hand 51de by 10 celis of the nonlinear PML absorbing
boundary,
[2] Terminated the right-hand side by the Liao absorbing boundary condition, and
[3] Extended the absorbing boundary to the right by additional 60,000 cells
" (The reference case with no effect of reflection).

To assure ourselves of the computational correctness of the results that we obtained from FDTD/PML
algorithm, we repeated the same FDTD calculations using one-half the cell size and one-half the time step
increment. These higher spatial and temporal resolution calculations resulted in a relative difference of less

“than 10 for the electric field value at the end of the simulation run. Since this relative difference is on the
order of the single precision calculation error, we concluded that we are indeed calculating the correct
electric field value. This procedure also served to validate the use of the piecewise-linear approximation.

IV. CONCLUSIONS

We present in this paper the formulation of a three-dimensional FDTD/PML algorithm inside nonlinear
dispersive PML media that is used to absorb outgoing electromagnetic waves within a finite simulation
volume to create the notion of infinity at the outer layer boundary of the computational volume. Because of
the use of the piecewise-linear approximation, the FDTD/PML algorithm provides second-order accuracy
in time - for the calculation of electromagnetic field quantities. The resulting forms of the FDTD/PML .
algorithm tell us that we need to solve coupled cubic equations for the three components of the electric
field vector at each time step due to the nonlinear behavior of the third-order electric susceptibility function.
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In the absence of the nonlinear contribution, the electric field components are no longer coupled and each
- component of the electric field vector can be updated indépendently of the other two components.

For numerical validation of the FDTD/PML algorithm presented in this paper, we performed
one-dimensional FDTD/PML calculations to demonstrate the efficient absorption of outgoing waves for an
_ultra-short optical pulse propagatmg inside a nonlinear Raman scattenng medium with the PML absorbmg
boundary condition, :

APPENDIX
This appendix gives the explicit expressions for coefficients and matrices used in- (2.44) through (2.51).

To simplify complex forms of these expressions, we first mtroduce the following notatlons in order to
express them in terms of these four notations:

O PO, . S (A1)

_ oA 2 . : '

a)wmuomdsﬁhfl]ﬂox D | (A.2)

At - a, . r\A2 R B .

G)T[ﬂh)%iﬂr)%]—jﬁh& ﬂljfuo[ij £,(1), o (A3)
Attt " a'3 -

m%ﬁmo%mooﬁwwﬂ—ﬁﬁmHW[)fm{ )e({ Jowm (A4)
000 .

where f;( ) and a; with i=1, 2, 3 are arbitrarily defined functions and constants, respectlvely,

"Also, we define the followmg three functions to be used as arguments of the above functions in which
they appear frequently in representing a required form

(1) B =exprkD), o 49
@) By (1) = GXP(_—Yp ), ' o ' | - (A)
(3) xy(0) = exp(—%'lr) with n=x,y,andz. ' ' (A7)

in terms of notations and functions introduced above in (A.1) through (A.7), coefficients and matrices

that are found in (2.44) through (2.51) {i.e., ®p0, ®pl, ®p2, G)po, ®p1 . ®p2, @213‘, (Ao)i}k, (Al)gk,'

NL NL
QO=‘Ql=Qz’Q3=Q4:QS’QGsrL ’rpOarpl’rpzﬁ_paar4srp5:nposnpl’

p2 ,Hf:"u‘ , sz , 1'[?%, I]p4 ) Hps and l'I ]canbe expressed as follows

pl’
@k,o:‘l"’[e'“(-c)l o B S (AR
@2;1—“" {965 ()01 - %16} ®1, N
ok, = “w[e (1], S P - (A10)-
Ops =P [GNL(T)] | : (A.11)
opt = % (9B (1)) - 2% EBNL(T)1]+‘1’[9NL(1)2]} ._ e
@“ff=—"{\P‘{em(r),u—‘P‘[GEL(T);]}, | o | (A13)
@Eﬁ%—“" ey (x),2], . o | (A14)

(Ao)uk diag {[(Ao)uk]m (Ao)ij L2 [(Ao ik ]33} with the first dlagonal element expressed by.  (A.15)
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[(Ao)uk]u*1+[(—)+( z) — ")] +[(— y) (% x)][( z) = ")] ‘i’z[K (’0)0K ( 11

+ —Re {Z eL EACAOIR [9,1.5(1),1] }
+-»[< y) X 2) (C5)Re {ZeL w2165 (1),0:07 (- 'r’),I]}
'+—[( =R - (*)1Re{ze [k (D051, (7Y (00,05 (=) 01}
| +;—Re {ZP}P 63 (1)) Q™) }
. 1_0C n
+—I)+ (5 - ()IRe {g SR GRIORICRYKY
1 v n
+= [(‘:—j) - (Z—;)][(i—j) ~(C1Re {;\Pz[eﬁL @06 CONQMY, {A-.l 6)
(Ar)ij = diag {[(A)ix ]na[(Al)gk]zz (A )i Jaa} with the first diagonal element expresse.d'by (A17)
DRI =1+ (2 - (S S
+[(—") ( *)][( )~ (O I, (D05, 0] = P (D05 r)l]}
| +-»Re {Zeg PO (O] {105 (1),0 - ' [OL ()11} }
+;“e—f)+(?§) .—(8—:)1 Re {ije:; {¥2[65 (1).0,85 (=7),0] — ¥[8 (1,005 ()T}
13 - (291%2) - ()] Re {3 ok {970, (6). 0516, (~) 65 (60,85 ()]
gr . Eo Eo Eo Eo o _ . )
— Pk (1,031, (=1) 05 (1,085 (~1") 1} }
——Re {Z(Qp ):_]k | |
+ ;:{(-;-) .+ (8—3) - («;’ﬁ)] Re {g{ wHop" (x),0] - ¥ [e-f:?‘(r),l]} gqﬁf)z}k j

[y - (oS - (S |
£€r €o £o o Eo _ .
‘Re (w20} (1).0;05"(—),00 - L2 [0 (),0:65- (—t)I1H QR 1}, (A18)
- _

' Q, = diag {(Qoh1s ((_20)22,(90)33} with the first diagonal elerﬁent given by ' C (A.IQ)

(Qe)u=l+[(3”—)+(c—z)—(c—")] +[(—* y) = ")]{( z) = ")]‘P [ (05, (T)1),  (A20)
Q, = diag {(©,);1,(Q, )22,(91)33}w1th the ﬁrst dlagonal element glvenby L _' (A:21)
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(91)11~—1+[( y)+( z) (—= ")]

+[(—) ( ")][( Z) (= ")]{‘P [xx (T)O,Kx(-T)OJ W2, (1,055, (- T),1]}
: Q= = 1ag{(Qz),1 (Qz)zz,(92)33} with the first d1ag0na1 element glvenby

Q) = [(—) & = DI z) ( 2 )] ¥k, (1), 0]
&— gdlag {(Qz)_us(gz)zza(ﬂ )33} )
Q, = diag {¥°[x, (1)), ¥ [k, (1),0} ¥°[x, (O]} , _
Q= diag {(Qs)u +(Q5)72,(€25),3 } with the first diagonal element given by

l (QS )l] = \Pl {Kx (1)50] - ‘P] [Kx (T):l} ’
Q¢ = diag {¥' [0, (1,11 ¥ [, (1], W'k, (9,11},

I = diag {(I0)i1,(Tr0 )22, (Do )3a } With the first diagonal element givenby
(Tgodu =1+ P OFO1+1 2D +(2) - (29 (8} ()]
- -2 ‘P?[nx(r) 05, ()85 (10,01,

NL
1“NL = OLLdiag {(1"NL )y ,(I"NL)n,(F 0 )23 3 with the ﬁrst dlagonal element given by

r”“)u—[(—) +(=2 Z) ( *)]{LP e”L(r)oeNL(—r)oz 3 [e“(r)oe“( ~t),1]
+ 3 [eNL(«c)o eNL(—T)z] v (1 )oeNL( -1,31}

+{(— ") — ")][( z) ( ")]

| .(A.22)
(A.23)
(A.24)
| (A25)
| (A.26)

(A27)

(A28)
(A.29)

(A.30)

(A.31)

(A32)

It [Kx(T),O,KX(*T)BEL(f 0,085 (=1"),01-2 ¥k, (1,03, (-T) GEJL(t),O;GEL(—T”),I]

R, (1,051, (T8 (1,085 (10,21 = [, (1), 05, (1) 0 ()16

[IJ\IL (_:T”):O]

—2‘?3[1( (1), o;xx(—-c’)e;“(f)1-9‘“(-1") 11+ ¥k, (1),0;x (—T')eNL(r')1-eNL(—T*'),2]}_,‘(A.33)

TNL = -—d1ag {(1"’\”‘)11 (T, )22,(I‘NL)33} with the ﬁrst chagonal element given by

( )11—[(—)+( Z) (— ")]

(A34)

{2\}12[9“&(1)09“( —t"}1]- 4?2[91“(1)0 (17,214 292[6,7 (1),0,80 (-7).3]}

+2[(—) ( ")][( z) ( x)]

{‘Pj[x,;(ﬂ,o,xx_(—r )eifL_(r ) 0505 (), 1] ¥ T, (055, )e‘“(r ),0:05T (1721 |
—‘P3[K (1),0;% (-—_‘E')GNL(T'},I,GNL(—'E"),I]-§-‘Ps]:Kx(T),O,Kx(—T ney ),1,e§L(-T"),2_]} (A.35)

CNL
Lo =

dlag {511,153 )20, (135 Va3 } with the first diagonal element given by
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(T, )”—[(—) ( z) (== ")] _ . _
{\y [k, (1)0 i, (-1) 80" (1),0;60" (-1), 11- 3k, (1).0; Kx(—T)GNL(T)O,GNL( 1") A
+ [(——) - (—_i)] 22y - (2 , _
] €o €o o : . :
G (0,05, (T (), 08 (=131 = F 1y (2,05, (=T B ()10 (-T),21} ,(A37)
_r;f3L=°‘ELMdiag{(rN’-)”,( 3 )22:(T55 a3} with the first diagonal element given by ' (A.38)
(I = OIe (] {¥ [GNL(T) 0]-2¥ [9”’“(':) ]+¥ [GNL(T) 21}
(—)+( z) (= ")]
{qﬂ[eNL(r)o eNL(-r) 11- 2% [eNL(-c) 0; em(mr)2]+tp [8p" (1),0;85 - (-1).31}
[(—) ( ")1[( E:_) (8: )] _ o |
[ (1,05, (=)0 (T),158)T (<1),01 - 2 W, (1,03 k6, (<) O (1,136 (1), 1]
+T3[K (‘E)O KX(—T)BNL(‘I)I ML1™,2]), _ o (A.39)

TNL——dlag {T 4)“,(1*‘”~)22,(1‘“)33}wuh the first diagonal element givenby | (A:40)

| (r”")ndzllf” Op IO @II-V B @21 |
+2[ (2 Y)+( -k *)]{‘P (65" ()0 eNL(—r)zl wz[e‘“(r)o 6N ()31}
+2 (= ") ( *)][( Z) ( *)] |
AP [k, (1,0, (~1) eg’L ().l e};m(—x"),l] =¥k, (1),0; K, (-) 05 (1),1;05(=1"),2] } (A.41)

NL : : _
% =mdiag{(rgf}),,,(rg%)zz,(rgf})ﬁ}with the first diagonal element givenby ~ (A42)

1y s)u—\P"[eNL(r)]*P[e (r);z_}%[(C;—j)f‘(%)—(%)e(v;“)]TZ[GEL(£>;0;6§L(—¢'_),3]

+ [(%) = (CNED) - (2] ‘iﬂhc_x(1),o;r<_x(—r’)eﬁ:’F(r'),l;e;"L_(—r">,2_] NS
% =%§diag {5 )y, @k )5, (5 )53} with the first diago.nal.element given by o (A4d)
T =PI5@0, S a4
H;‘,,: d1ag {le)ll,(ﬂpl)zz,(ﬂp1533} with the first diagonal element given by - (AA46)
( p,l)_u = ¥2[k, (~0)0; (1,005 (-1),0] - F*[k, (=G (005 -T)), (A4
1'1=F’;,2 =Z—fdiag {nggg),,,(n;;,z)'ﬂ,(H‘,;,-z)”} with the first diagonal e]emcnt-given by - (A48)
L Lz)niqﬂ'( (—r)BL(T)O'GL(—'c')l] ' - T _ B (A.49)
Hpo——dlag{(ﬂgnu‘)“,(l'l )22,(1'1 MLy.5} with the first diagonal element glvenby - (A.50) e
RS SENCOLR ORI B SENCOLA ORI RIS - (A1)
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IINL = —dlag{(l'_[p,] )11,(Hp,1 )22, (I1; )33} with the first d1agona1 element g1ven by | “{A.52).

(H )11 =¥k, (-0 6 (@)1, _ : ' (A.53) -

' HNL_—dlag{(HE}i 1(TI05 )20, (T135 )55} with the first diagonal element givenby L (ASH)

Ty = 21, (-8 (2,005 (~),0] = 2 ¥, (1) (1,056} (~¥))1]
7, (1) ) (1,000 ()21 - ¥ [, (1) O3 (1).1; 05 (—'),0]

| +2\P2[x'x(-r)_9m(-:) 16T (—t), 1] - W2 [ie, (—1) 0 (1), 1;80 (-1),2], | .(A.SS)
n‘%:ﬁgidiag {1 ) ()5 )22,( o5 )as} with the first diagoﬁal element givenI by (A.56) |
_(le 1 =P, (-1)8E(0),0;0% (-1), 1.].—'2 W[ L85 (), O'GL(—i’) 2] o
—2y? [« (-1, (1),1;05™ )+ x(—T)GNL(t)l 05 (-1).21, (A.57)
H_g%_——dlag{(ﬂ D (TG )22,(1'Ip,4)33} with the first diagonal element glvenby o (A.SS)
(T )1, =¥k, (—T)GNL(T)I oML (~1),0] ~ [, (uc)eNL(m eNL(wr)z] o (AS9)
ﬂ—— —dlag{(l'Ips (s )22,(1'Ip5 53 with the first diagonal element given by (A.60)
mp,s)“ =W2[K, (-1) 0, (1).1;05" (—T'),0]—2LPZ[K,;(—r)e;“L(r),lse?L(—%'),ll -
+ ¥, (08 ()10 (-1),21, : (A.61)
I ——dlag {(np,ﬁ)”,(n t)22,(TThg )53} with the first diagonal element given by (A.62)
(1] ),,—2{L1ﬂ[v< (-0 85 (D180 (=T )] - Wk, (-0 0 (D185 (-17,21}, (A63)
_nN‘* % dmg{(npn)“,(n“f';)n, T1}5)5} with the first diagonal element given by i (A.64)
(Hp7 n =¥k, (-1)8," (0.1 eNL( 1,2]. : (A.65)

For all the above matrices, the second diagonal element is obtained _simply by replacing the indices as
follows: {x~»y, y—z, and z—x]. Similarly, the third diagonal element is obtained simply by replacing the
indices as follows: [x->z, y—x, and z—V].

As noted before, the above coefficients and matrices can be evaluated explicitly in terms of the known

values Af, a:; , y:;, a;"‘ , ygl‘ » Ox» Oy and g, before the start of simulation.
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