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Abstract

This paper extends previous results by reducing the diagonalization of a 2N x2N matrx to that of
diagonalizing an Nx /¥ propagation mairtix. A simple direct product extends this to the 2N x2N case. In
addition, a judicious choice of average per-unit-length impedance and admittance matrices can improve the accuracy
of the perturbation result accounting for the nonuniform character of the transmission line.
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1. Introduction

A recent paper [6] infroduces a simple interpolation technique for cvaluating the product integral
representing the propagation of waves on a nonuaniform multiconductor transmission line (NMTL). For a given (say
£th) section of the line (for z; < z < z,;) the technique involves defining an average value of the impedance-
per-unit-length and adwmittance-per-unit-length matrices. This allows one to decompose the propagation supermatrix
into a relatively large constant supermatrix plus a relatively small varying supermatrix (function of z). The product
integral of the first is analytically exactly solvable. Using the sum rule the product integral including the second is
approximately solvable by a perturbation involving the usual sum integral. An important aspect is the fact that only
one supermatrix, the constant one, needs 1o be diagonalized, this being done only once for the entire interval.

Summarizing from [6] we have the supermatrizant differential equation

o)~ (n, ) (Cunem,)

= (On,m) (z;?,m (Z’S)) ‘ (fn,m (S))
[(rn,m ( ? ))u,u') (Z~ nm (s)) (f,; mn (S)) (On,m)

= propagation supermatrix

((an) ©nm))

(((jn, " (ZO,ZO;S))D’ u’) = ((ln,m )v,v') (gn ,m) (ln,m)

(boundary condition)

(Z" nn (s)) = (I’n’m (s))_l = normalizing impedance matrix (syimmetric, positive real)
10 be chosen at our convenience

(f nm (2, s)) = (Z,’, m(z, s))T = longitudinal impedance-per-unit-length matrix

(17,; m (z,s)) = (17,’, m (z,s))T = transverse admittance-per-unit-length matrix (L1

~ = two-sided Laplace transform over time ¢

§ = Q + jo = Laplace-transform variable or complex frequency

While this is quite general, we first observe that this will be applied to each of the sections (Jabeled by £) of the line.
The normalizing impedance matrix will be separately chosen for each section. With solutions for all sections the
matrizants for each section are multiplied by a supermatrix involving the norma]iziﬁg impedance matrices for
adjacent sections [6 ((4.8))] which need not concern us bere. .



2. Solution for a Section of Transmission Line

For the £th section of the NMTL set
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The constant (with respect to z) term has
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The sum rule of the product integral then gives
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At this point one can proceed as in [6] to diagonalize the constant supermatrix. However, let us delve more

deeply into this to simplify the results,



3. Diagonalization of ([fgﬂﬂ) (S)J 'J

First we need to appropriately define this constant matrix. Previously this was done via

(24579(9) = H(Gam(een) + G5

(3.1
’ £ 1 {re 2
[Y ( Q'Vg)( )J = 5[(Ynm (Z£+I,S)) + (Yn,m (Z_E,S)):I
For present purposes let us introduce another definition
( ) ) Ze4]
s Lavg { 51 '
Z = e Z ,5))dz
(2590 = o | (Bm(e)
“ (3.2)
(E ) . Ze41
I'FJ' SaVE = fl dz [
( i (S)J IR/ (i (5))
Z

If the original per-umit-length matrices are of the form a constant matrix plus z times a constant matrix, these two
definitions reduce 1o the same thing. Note also that the both forms of average give symmetric (reciprocity) positive
real (p.r.) matrices. With this we have for the constant part of the propagation mattix

(( o) J ) (Onm) (259 9)- ()

B ={£ =d L,
(Zﬁ,lz (s))-[YnSn‘“’g) (s)) (Onm) (3.3)
0 A0 @) = (7, )
FAYA ()| =1 Zim(s)]| = (Yn,m (s))
- = pormalizing impedance matrix for Zth section
Note that all the impedance and admittance matrices are N X N. The sapermatrices are then 2N X 2N.
The form of this propagation supermatrix is exactly the form for a uniform MTL. Using the results of [1] -

we then use the form of the normalizing impedance matrix as the characteristic impedance matrix which separates
the propagation into left- and right-propagating waves. So we form



(420 - [(iro0)- ()]

(N X N, p.r. square root)
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X
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{See [5 (Appendix A)] for conventions nsed concerning the direct (or Kronecker) product and other supermairix

operations.} From this we have

(3.5)

Instead of directly diagonalizing the 2N x 2N matrices, consider the N X N mairices. From [1] we have the
eigenvalne/eigenvector equations (N X N)
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0 (2647 of800),

Defining ?g) (s} by the p.r. square root we then summarize '

(3.6)
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we have the similarity transformation
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This is precisely the form of the propagation supermatrix for separation of the right-going (+z) waves (upper left
block) from the left-going (-z) waves (lower right block) [1]. '

It is now rather straightforward to diagonalize this last form using the eigenvectors of (y (s)) [5

{Appendix A)] as

[DERET

= ?(E)(S)( )()] ( 2) (3.10)

g==1

r-) @[]

The 2N cigenvalues are just the —qu) (s). Similarly we have

[(fn(f)(s)) ﬂ®é(av)qi| ) [—(753: (s))ﬁ@[é ?1]] = - ~g) (s) ® q(il‘IZL | (3.11)
So we can write
( (e)j ( ] Z Z‘f’ (5)9[( (s )} ®(ay) ][( i (s))ﬂ ®(au)q] |
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- [[\-fgf) (S))ﬁ [,;gf) (S))ﬁ] ® [(av)q (av)q]
> [(vﬁff) ©) ﬁ@(au)q][[aﬁ” (s))ﬁmav)q} -

g=%x]
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(biorthonormal)
This exhibits the-eigenvalues and eigensupervectors.

The above results can be applied to the product integral as well. As a special case of the similarity rale we
have various forms as

[[G(w (z.2¢; )JU’U'J
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=((Qn,m)u,dj © e{rn’m(S))@) [0 _J[z—Ze] yol ((Qn,rn)u,v']
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This has the eigenveciors as in (3.12). Carrying out the ¢ multiplication gives

((G?(fn?) (2.2 ;S)l),o'J
= i Z e_?:(ﬁe )(S)q[z_ZE] Ii(f’gf) (S))ﬂ ® (bu )q} ':(;lge) (S)]ﬁ & (by )q ]

(3.15)
=l g=%1
This has the eigenvectors as in (3.13).
Summarizing this section we have the first product integral completely diagonalized in terms of the N pairs

of eigenvectors of an N x N matrix. Extension to those of the 2N x 2N supermatrices is done in closed analytic

form.



4. Solution for ((G(e’l) {z, zE;s)) ’J
. v,

Returning to (2.1) and (3.3) we now have

{ﬁﬁ%@LJ=Hﬂmm&;}H$§®LJ
| (Oun) (52.0) - (5799)
m&”o)( ) :.) Om)

(4.1)
(829)) = (Eam ) - (259)
(478 z.5)) = (fam @) - (557 60)
_For later use note that the definition of average in (3.2) implies
T (Az”,,(ﬂ (z, s)] & = (0, M) , ZTI(AIF,;(;) (z,s))dz = (Onm) (4.2)
Zg z )

Another form(4.1) takes is
[[f‘gf,l) e S)) J _ (Onm) [é; nn (S)Scc[,vgfm(s))}

(f,ﬁf;), (z,s)] - (Az;,(j;,) (z,s)] : [z‘;,(j;;“"g) (s))—I | 43)

which has the correction matrices normalized by the average matrices, these normalized matrices assumed small
(compared to the identity), ' '

. Now we can compute
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(8 oe9) |
- {(Gp(zif)(z,ze;s)Juﬂ]_l ([ (&) o (2, S)) ] o} ((G(QO) (z,ze;S)]D’U,]

using the constant (z independent) ¢igenvectors from Section 3, we still have a variable 2N X 2N matrix in (4.4) with

4.4

the various elements having in general different variation with z.

In the spirit of [6], one approach is to approximate the correction matrices as constant matrices tirnes scalar
functions of z. So we approximate as in [6 {Section 3)]

(#e) ]- Pe(dho) ]
A9 (60), ] =[(Hheen), | {(R0), ] 49
A (b)) - (#heen), | {(009), ]

(@50),, )= [0 - 0] | (heens) ) ((8h0e), |
(( {£0) (S)) J [ 79 (ze1) - f (€) (Zg):l_l {f ) (Z£+1)[[fi(n?n (ze >S))U,U,J_f “ (Zz)((fgi)" (ZHISS))D,U' H

The choice of

A zp) = % . ANz) = “% (4.6)

is a special case corresponding to the definition of average in (3.1). This still leaves the choice of £{) (z) subject
to the above boundary conditions. In [6] this is

f(e) (2) = 2z —zpy1 -2 .7

21— 2

However, vanous other choices are possible, including the more accurate approximation discussed in [7]. Note that
with smooth f (z) there are no step discountinuifies at the ends of the interval where the approxxmahon of the
propagation supermatrix becomes exact,

1



At this point we can evaluate [[ & nn (z 245 S)J ] in (4.4) using (3.13) (with the constant eigenvectors)
D, v
and the approximation in {(4.7). Integrating over f {¢ )(z) and the exponentlal eigenvalues (as in [6 (Section 4)]
gives a perturbation result for [( ,(Im (z.2¢; s)] J vatid for small [( 5) (s)) ] using the first two texms
v o

in the matrizant series [4] as

[[G,(fi) (Z’zf;s)]u,uj
((1,,,,,,)050,}} A (z')((é,(,fg, (z',Zg;S)) J [(C(‘f (s)) } ([ () (2. 22: s))w}b' 49

+ O[Iargest eigenvalue of ([é,(,i?,, (S)J 'JT@[(@(}Q! (S )) ,}]

Note now that

It

Y & [ A oy T
- 2 Z Z"'[yﬁ G )][ ]Dﬁ,q;ﬁ’,q’ (s) (‘"’gf) (s))ﬂ®(bu)q] (ESE) (s))ﬂy@(b,,)ql}(zw)

q
)(S))ﬁ ®(by )q} ® ((é,,,,,, (s))u,u,J o _[i}i(f) (s))ﬁ' ®(bv)q_

(4-index scalars)

In tun this gives

e
( o w) ¥ izzz “f(z )e[”ﬁ P —ze]dzv} RGN

=l g=1] =l g'=+1

B @ [069) @ ) ]|[#060), 0 )|
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}

Depending on one’s choice for f(z"), the integration over z' is readily performed. The choice in (4.7) is

considered in {6].

Looking at the combination ;7}(3'2) (s)—fg) {s) we can see by expanding the exponential a first order

correction for low frequencies.

13



5. Case of Lossless NMTLs

Let the per-unit-length matrices have the typical inductive and capacitive character of lossless NMTLs as

Gan(0) = s (@) . (Gum(2) = (a0 (z)) (k)
(i) = 5(Gn ) ) = (620 - ()

5.1

Then we also have

(5.2) .

(49) -
(s

This removes the frequency dependence of the eigenvectors as

(2 - (), - 47 (),

we- (4] - 7149,

2
The g}(;) are all real, nonnegative allowing the gg) to be defined by the positive square root. Then we have

(5.3)

;7(;’) (s) = Sg/(;) | | 5.4)

and all other parameters in Sections 3 and 4 similarly simplify.

14



In particutar we have

{Gum () = [ALH(Q (z)} [Lr (L.avg )
(o) () - st

(5.5)

Farthermore the two definitions of average in (3.1) and (3.2) also carry over directly to the frequency-independent

forms,

Applying the results of Sections 3 and 4 to the lossless case we have

(2 wﬂwl
Z > 5 ”ﬁ[[ (f)) ®(ty) ][( ) ®(bu)q]

__] q—+1

(5.6)

Note that most of the terms are frequency independent allowing easy conversion to time domain as simple delays.
Similarly (4.9) and (4.10) simplify showing the first-order correction proportional to s.
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6. Case of Equal Modal Speeds

For further insight into the solution technique consider the case of equal modal speeds which occurs when
.(17,; m (z,s)rl is proportional to (f nm [z,s)) . One physical condition which gives this is that of perfecily
conducting wires (varying in cross-section and spacing) in a uniform dielectric medivm. In this case we have [2, 3]
for the £th section as in (3.4)

(7)) = 70 m) = 5(e8))

A8 (s) = Lﬂ) | ©1
(o) = ~f )

This simplifies things considerably since we do not need to be concerned with diagonatizing the identity.

Observe now that

(426, )= +0tme(
[[e*,(,z;,?) ) ] _ AN n) @ [ oJt-sd
| = cosh(?(f»’) (s}[z~2 ]J (tnm)® [; (1)) _Siﬂh(f ) () [z-2 ]) (ln’m ) ° (2 (1)]

(@90) ] - )0 (] oJimsd
=cosh(77(f) (s)[= ‘zf])(ln,ﬂl)®[(13 (1)]+Sinh(f(ﬂ) ) [Z—Zg])(ln,m) ® ((1) (IJ
_ (0n) (fr(:ga (Zss)]
ge,l) ns J TR
wﬁ(ﬂw y“[ﬂ@ﬂ (0n.m) .
([(0e9), Jro0]@eae; Jodea)el ) e

This, in turn, gives

16



-1

(#0eac),, )« () | o[(0e), o [(#e0),
A ) o (O a)s Oam(Ot-s)] )
o {0 2] o eItz [ I RICTt) W
A (E ) @ Hmh (RIS ) R CTOTE)
o} o° [cosh ) (5) - g][ }+smh(f(g)(s)[z_z£])(2 (I,m

=) E =)

o cosh (;7 (4) (s)[z—2 ]) smh( (s)[z—z ]) cosh? ( (S) [z~2z ])
—san? (7)) [z =] ae IS G
A9 6)( ) z) | |
. —cosh( (5){z—2z ]) sinh(;?(f) (s)[z—2z ]) —sinh? ( A2 (s)[z-= E])
cosh? ( () (s){z-2z ]) cosh( 4) (8)[z-= e])smh( ( )z —ZE]]

cosn () ()21 oo A9 () 2] (2801 ) )- (8 )|
c:cashz(~ ) (s}[z- zg](~ f;,,( S)D sinhz(' (4) (s) [2—281(57(191(15)]]
smhz[ B ()[z- ( ) 2, S)D+cosh2( A9 ()[z- zE][ e s)])

o _cosh[y (S)[Z_Zﬂ) (,, )(s)[z—zE]]I:( 4¥A (z,s))—[égil (z,s))]

Furthermore, let us consider the lossless assumption as in Section 5. Then {6.3) can be expanded for low

=79 (s)

frequencies as
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(#fhez9),
Ozl (1~ [ekhte) - (652

(5e) + o Fote—aa J(h)-(E)]) | wm
() « 0[(7(3)(8)[2—213])2][(éﬁf%(Z))—(é(f% )] |
| —ff(*’)(s)[z—zf][l+o[(f(”(s)[z—ze1)2]][(:,Ef,%(z))—(r:i,il,(z))]

\

Using the perturbation approach and extending the integral over the entire £ th section we have

[(G,(fnl,) (Zz+I,ZE§S)JU’U,J = ((I'U” )u,v')

j ]| (40 ) (5 ) | (Onm)
_;;(9)2 ()| * :

241

(Onm) - I [2'—@3]{(? yAE )) (cfn,m (' ))] 6.5)

2y

( Yz -2]) 4] o{(f(‘) (s)[zm—zg]ﬂ
( )(S)[zm Ze] 3} 0[(1’(‘9) (S)[Ze+1—Ze])4J

as 7 (s)]ze1 - 2] >0

Note that the leading off-diagonal blocks have integrated to zero provided we have uscd the definition of average as
in (3.2) giving (4.2) applied to (4.3). This result gives some justification for use of this definition of average.

The dominant remaining term is

2541

() - -7 ) j 2-a)[[5) - (@)

- ((y )(S)[Zm—z.e])z) s A0 @laen -] >0

(6.6)
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Integrating by parts we have an alternate expression as

[ﬁﬂz (s)] = ;7(2)2 (S)ZTI j K ;’,@z (z’)) - [gl(ﬂz (ZJ)H e 67

Zg 2

again using the fact that the average makes the first integral zero. One can continue the matrizant series to higher

order perturbations, but as long as the first order term is small the successive terms are progressively smaller.

Qur correction term is now second order in frequency and block diagonal, so we can write

)= [0am) + (9] @ [0um) - (£200)
- o{(ff(ﬂ) (s)[zm-z,g]ﬂ as 7D (s)[zg1 ~2¢] >0

(CELT==)

US

(6.8)

This also redunces the problem to the evaluation of a single N X N mattix.

Further insight can be gained for the losskess case by choosing frequencies on the jo axis, for which

5= Jjo 7(£) (s) = jIE(E)(jaJ) (iE Ieal) .
cosh[f(f) (s)[z—Zg]) = cos( (jo)[z-2]) | 6.9)
smh(,;(f) ()22 ]] = jsin(k(jo)z-z))

These sine and cosine terms are bounded in magnitude by 1.0. As @ increases, @ times these terms, when integrated
over z, remain of this order. So the matrizant series is well approximated by the zeroth- and first-order terms as long
as [é‘ ,g,f;,), (z)J and (f,(gf;z, (z)] are small. Tn this case one needs to integrate the terms in (6.3) over z for cach @ to
obtain the first-order correction. : | .
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7. Caseof N=1

The case of a single conductor plus reference is a special case of equal modal speeds, since there is only
one such speed. The problem involves 2 X 2 matrices, but the eigenvectors are only the (a, )q or (b, )q discussed
in Section 4. The N x N matrices in Section 6 all reduce to scalars.

20



8. Conchiding Remarks

We now have simplified the matrix diagonalization problem from a 2N x 2N problem to an N X N problem
such as used previously for uniform multiconductor fransmission lines, The perturbation analysis for the line
nomumiformity is also improved by the judicious averaging of the per-unit-length impedance and admitiance

matrices.
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