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Abstract — This paper presents a new technique for estimating parameters of damped
sinusoids utilizing both early and late time transient scattering responses. Transient
scattering responses are composed of damped sinusoids at late times and impulse-like
components at early times. Due to the impulse-like components, it is difficult to extract
meaningful damped sinusoids when analyzing the complete data set. In this paper, the entire
time domain response is used to extract the signal parameters of interest utilizing both the
early and late times. The fractional Fourier transform (FrFT), especially the half Fourier
transform (HFT) is used to analyze the data for parameter identification. Impulse or
Gaussian-like pulses can be easily separated from the damped exponentials in the HFT
domain, as they have similar functional representations. Results from several examples.show
that the new technique is applicable for signals that are composed of damped exponentials
and short pulse-like components.
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1. Introduction

1.1, Problem Statement

In order to characterize an unknown object by remote sensing, certain electrical
properties of the object may be used. In particular the impulse response, ramp response, and
the natural resonant frequencies of the object have been proposed [1-4]. To identify an
object accurately, one must illuminate it with a band of frequencies whose wavelengths must
at least contain components which are approximately the same dimensions as the overall
length of the object. Since, in general, the size of an object is not known beforehand, it is
necessary to illuminate the object by a broadband signal such as a waveform which is an

“approximation to an impulse. The transmitted pulse induces electrical currents on the object
and these currents reradiate the incidental energy. The goal here is to obtain the electrical
properties of the object from the transmitted and received time domain waveforms. Because
the complex poles are aspect independent, they are suitable for target
identification/classification. The resonant frequencies of a conducting object can be used as
a signature for that object to discriminate it from others for the purpose of target

identification.

1.2. Theory
The singularity expansion method (SEM) proposed by Baum [5] has been applied to

express electromagnetic response in an expansion of complex resonances of the system {6].
It has been shown that the dominant complex natural resonances of a system are a minimal
set of parameters that define the overall physical properties of the system [7]. So, a transient
scattering response is analyzed in terms of the damped oscillations corresponding to the
complex resonant frequency of the scatterer or target. In general, the signal model of the
observed late time of an electromagnetic-energy-scattered response from an object can be
written as |

M
() =x(t)+n(t) = ZR," exp(s, ) +n(t); 0<r<T, ' [¢Y)

ni=1 .

where y(f) = observed time domain response,

n(t) = noise in the system,



x(¢). = signal,

R,, =residues or complex amplitudes,

Sﬂl = —am + jwﬂl 2
a, = damping factors,
w, = angular frequencies (®,, =21 f,).

After sampling, the time variable, 7 is replaced by k7, where T is the sampling period.

The original continuous time sequence can be rewritten as

M
y(kT,) = x(kT,) + n(kT,) = >R, zh +n(kT,) fork=0, ..., N-1, 2

m<
=1

z =g =gUmHel for m=1,2, ..., M. 3)

Since the resonance describe global wave fields that encompass the scattering'object asa
whole, the SEM series representation encounters convergence difficulties at early times
when portions of the objects are not yet excited. Early time response is strongly dependent
on the nature of the source, the location of the source, and the location of the observer.
Usually the early time response shows impulse-like characteristics. Because of this
difficulty, most previous techniques used just late time signals only.

The most well-known pole retrieval method is Prony’s method [7-11], which was
appliéd first by Van Blaricum and Mittra [8, 10], to the electromagnetic transient problem.
This method has also received a gfeat deal of attention in the signal processing community.
Study of this method has resulted in its improved and generalized versions {11} and
understanding of their noise perturbation properties [12, 13]. Prony’s method has been
applied with success where analyzing measured impulse responses with high signal-to-noise
ratio. However it is difficult to extend Prony’s method to arbitrary input and afbitrary output
waveforms because Prony’s method can be very sensitive to noise and requires an a priori
selection of the model order. Also the SEM representation does not account for the
impulsive portion of the early time system responses behavior. Another well-known method
for pole extraction is the pencil-of function method [12-15] whose application to radar
. transient waveform identification was presented' iliitially by Sarkar et al. [14]. Recent
applications of the pencil-of-functions method have been found in improved and generalizéd

forms [15, 16]. A generalized pencil-of function method, termed as the Matrix Pencil |



Method (MPM), overcomes the disadvantages of the Prony’s method. It is robust to noise
and does not require an a priori knowledge of the model order. But, since it is hard to know
a-priori where the early time response ends and late time starts, it is not easy to apply either
the Prony’s method or the Matrix pencil method.

Deficiencies in the representation of the early time signal, can be repaired by inclusion
of an ‘entire function’ in the complex frequency domain or in the choice of the ‘coupling
coefficients’. The use of time-dependent coupling coefficients has been proposed as a means
of describing the early time scattering response [17, 18]. The approach used by Morgan {18]
was to separate the solution from the magnetic field integral equation (MFIE) into its
physical optics and natural mode terms. It was shown that the transient quantities could be
described as a sum of physical optics components along with the modal expansion terms.

| Although several authors have invéstigated the various coupling coefficients in analytical
developments and in the calculation of currents on the scatterer, their results for scattered
fields have been limited {19, 20]. And Felsen argues that the method is formally correct
[21], because it is necessary to include entire functions rather than coupling coefficients to
describe early time respbnse. Baum developed a method for bounding the extent of the
entire function (which has no singularities in the entire s plane, i.e., the Laplace transform
plane) [22] in its temporal form. A Gaussian pulse is one such example of the entire
functions. Another technique that has been suggested for the computation of the entire
function is that of the geometrical theory of diffraction (GTD) [23]. This method yields a
high-frequency approximation to the solution of Maxwell’s equations [24]. Furthermore,
after the ray tracing is performed, all pertinent distances between the source and 'target are
known, so time gating can be used to enforce causality. As the scattering process progresses
in time, the ray tracing associated with multiple bounce diffraction becomes very
complicated, and therefore places a bound on the time interval beyond which the method
may be employed. Also in the late times the coupling tends to be associated with lower
spectral content, for which the GTD was never intended. _

In this paper, the transient electromagnetic response is considered in the time domain

and in the fractional Fourier Transform (FrFT) domain consisting of the entire data set.
‘Fractional Fourier transform (FrFT) is a generalized Fourier transform. Using the FiI'T it is

possible to discriminate an impulse or a Gaussian pulse from the other components of the



signals. Because of this property, impulse-like early time components can be separated from
the damped exponentials. To describe the early time response a Gaussian pulse is- selected.
A Gaussian pulse is an entire function [22] and is quite adequate to describe pulse-like
components in early time. Complex exponentials are used to describe the late time signals.
The concept of a ‘“Turn-on time’ [25] is utilized to consider a time when the fully excited
resonance can be used, formally. In this study a Quasi-Newton approach augmented by a
model trust strategy is used to optimize the parameters. Initial guess for the damped
exponentials were determined by the Matrix iaencil method (MPM).

In section II, the definition and some properties of a fractional Fourier transform (FrFT)
are presented. Half Fourier transform (HFT) is introduced as a special case of FrFT and also
FrFT and HFT of some functions are tabulated. Fractional Fourier transform of a causal
damped exponential is derived. Method for obtaining the FrFT of an arbitrary input signal is
introduced in section III. Optimization technique that is chosen in this research is briefly
discussed in section IV. Some examples are given in section V and concluding remarks are

followed.

2. Fractional Fourier Transform (FrFT)

Victor Namias proposed a fractional order Fourier transform using Hermite polynomials

in 1980, which is called a Fractional Fourier transform (FrFT) [20].
2 . 2 '
Fo{ e 2,00 = e 2, @

where F, is a Fourier transform operator, & is a continuous transformation parameter and
H (x) are the Hermite polynomials of order n. It can be shown that the Hermite
polynomials are eigenfunctions of the Fourier transform operator F, and its eigenvalues are

e . (Actually, Namias used the mathematical definition of the Fourier transform rather
than the engineering definition. But in this research we will use the engineering definition of
Fourier transform as presented in Equation 4.) Later A. C. McBride and F. H. Kerr made
Victor Namias® definition more clear and rigorous [26]. Luis B. Almeida used the

engineering convention of Fourier transform to define FIFT and represented FrFT as a



rotation in the time-frequency plane [27}. Almeida’s convention for FrFT and FT are used in

this paper, so that, a Fourier transform pair of a x(¢) is defined as,

Fepa {x(0))(®) = X(0) = ﬁ [ xneio a (5-1)
Py X @)0) = 20) = = [7, K@)/ ae (5-2)

Figure 1. Description of the Time-Frequency plane and a set of coordinates (u,v) rotated by
an angle o relative to the original coordinates (t,m).

The Fourier Transform of a signal can be interpreted as a m/2 angular rotation of the
signal in the Time-Frequency plane. The FrFT is then developed and interpreted as the
rotation of a signal to any angle o with the time axis in the time-frequency plane as shown in

Figure 1 [27]. It is known that the operation F_,, and F__,, are complex conjugates of each

other and they satisfy the relations F,,,F__,, = F__,,F,,, =1. Also note that,

Fx(1) = X(w) G
Ex(t)y=F_,X(@)=x(-1) (6-2)
By (6 = B, (1) = X (-0) (63)
Fox(t) = F 1, X (~@) = x(t) G

Generally, the additivity property of a fractional Fourier transform operator holds, that is,
F,+F,=F,,. o 9l



The FrFT is a linear transform defined by means of the transformation kernel as [27],

2 2
1-jcota S cota—jut csea . . .
1}-——-—--"——]2 e 2 if o is not a multiple of &
V1

S(t—u) if o is not a multiple of 2n ®

K, (1) =

o(t+u) if o+ is not a multiple of 2n

where j=+-1 and o is the rotation angle of a transformed signal . The kernel has the

following properties,

K, (t0) =K, (u.1) ) ©)
Ko (t,u) = K, (t,) | (10)
K, (~t,u) = K, (t,~u) (11
[‘; K, (t.;)K ; (u,2)du = K, (,2) (12)
[ K, K, (u)dt = 5 -u) ’ (13)

The forward and backward FrFTs are defined as

(Fy0)) = X, () = [ 3OK, (udde (14-1)

(F O =x(0) = [ X, @K_,(tu)du. (14-2)

* 8o, if & is not a multiple of 7z, the FrFT is defined as,

] ‘ﬁcna 'icoa .
Xa(u)=1/1—”;j:~t-‘3‘—ejz T e’ T et a5)

Thus the computation of the FrFT can be understood from the following steps: 1) multiply
the signal by a chirp, 2) take the Fourier transform with its argument scaled by cscar, 3)
then another product is taken with a chirp, 4) this product is scaled by a complex amplitude

factor. From Equation (14-2), the FrFT consists of expressing x(f) using a basis formed by
the set of functions K__(u,#) (with u acting as a parameter for spanning the set of basis

functions). The basis functions are chirps, i.e. cbmpiex exponentials with linear frequency
modulation and they are orthonormal, according to equation (13). A number of important

properties of the FrFT and their proofs can be found in [27]. Those propetties are extensions



~of the corresponding properties of the Fourier transform. Table 1 gives the half Fourier
transform of a number of special functions. The half Fourier transform is a special case of

FrFT when o = /4.

Table 1. Half Fourier Transform (HFT) of some special functions (Here,n =0, L, 2,..., an
integer, u is the HFT domain variable, ¢ is a constant, and (1} is the n™ order Hermite
polynomial).

Eqn. No. Signal HFT, a=n/4
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In this paper, the Half Fourier transform is used for parameter optimization. There
are many impulse-like components at an early time of a scattered transient response. It is
very difficult to separate each impulse-like component in the time domain. But it is possible
to tell when those pulses occur in the half Fourier transform domain because HFT of an
impulse and a Gaussian pulse, equation (17) and (24), have much more information about

time when they first appear.



Figure 2 shows the Fourier transform and the half Fourier transform of a shifted
impulse 5(f —2). Figure 3 shows the same for a shifted Gaussian pulse. It is clear that HFT
of those pulses have the information about time history when they first appear. That is,

around the pulse position in the HFT domain (u = 2 and 5), the linear phase property breaks

down.
FT of shifted Impulse = 2 HFT of shifted mpulser = 2
1.5~ : . . 18 T v T v -
1 1l
g g
05+ ] 05k
ot N L , . L , o L L . L . ' . : .
3 2 -1 c 1 2 3 -10 8 Bl -4 2 0 2 4 8 3 10
4 : . : ‘ - : 4
2t ™~ - | at
D
g ol \ \ : g0
T i
21 . ’ ] 2!
S
- A 4 L 2 2 1 L -4 L L L 1 L 4 L 1 s
s 6 4 2 o 2 4 8 8 0w 8 £ 4 =2 ©0 2 4 8 8 1
‘ w Y] , !
(a) Fourier transform (FT) (b) Half Fourier transform (HFT)

Figure 2. FT and HFT of a shifted impulse &(f -2).

Components such as an impulse or a Gaussian pulse can be used to characterize the early
time representations and the complex exponentials to approximate late time responses. But
their functional representations are almost the same in the half Fourier transform domain. It
~is clear from (17) and (19) that the HFT of the shifted impulse and that of the damped
exponential have similar functional representation, except that the coefficient and the sign of
the power of the exponent. So it is possible to separate the impulse-like component in the

half Fourier transform domain quite easily.



FT of shitted Gaussian Pulse z= 5

MET of shifted Gaussian Pulse t=5
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(a) Fourier transform (FT)

Figure 3. FT and HFT of a shifted Gaussian pulse e

Usually signals that we encounter in real life are causal, that is, x(#) =0 if

. initial time as to

component. So it

u

(b) Half Fourier transform (HFT)
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ift <0. And the

when a resonant component starts is different from component {0

is possible to assume that cach resonant component has a different “turn-on

time’. In this study the phrase ‘turn-on time’ is the time when each resonant component can

be used formally to represent the temporal data. To apply FrFT to those causal

sent some formulas in Table 2. The detailed derivation of the FIFT of

pre

described in shown next.

Table 2. HFT of some causal functions for t > 0. (Here v is
the fractional Fourier transform domain,

function, u is a variable in

signals we
a function (26)

compléx u(f) is a unit step
B=j/2, and

@(z)z \/_12_; Ee'f”dﬁ, andt>0,a>0.)
Eqn Signal . “HFT, o=n/4
@) | eMu@) —I——Q_—Le%ﬂ exp{— L (y—2vf }[1 —oly Bl v= A2 -v)
@6 | eu(t—7) @—e; g exp{——( J—v)z}[l CD('y J—)] Y = ](fu -v- 1)
@ ejv(t—'r)u(t —7) '\/1‘2:} e—jrve%vl exp{— %(u - -\/—2_11)2 }[1 - (D('Y'ﬁ)],
= ]( 2u—v— ‘c) B
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For the signal x(f) = e™u(t —7), we have u(t —7) is a unit step function and 7 is a

“Turn-on time’. By using the definition of the fractional Fourier transform (15), we obtain

—_7 Jl-uzc:nc:: j
)i'w(zt)=1/-1-——J—1—c—o—t—o"—e2 t fx(t)exp 12 cota — jutcscex pdt ‘
27T =° 2
1— jcot it cot j @8
—jeota ¥t j s
= |—f——e expl—| ——cota t” — jlucsca—v dt
L [ool--4 [ 4

J cota, (so ﬂz—Jz—tana), and y=j(ucsca—v),

We set —-1— = —= 29)
4p 2

then

1- jcot iuzwa tz . .
) = L fexp{_ﬁ-ﬂ}dt 60)

We now make the change of variable y =¢—7, 1o yield

’1 — jcota Lweta 7° : T
- X, (u)= —-iz—j-r-———e2 exp{——@- ~ yr} f exp{—i’—ﬂ——-(y +-2—E} y}a’y (31

= j(ucsco—v—Tcota), (32)

T ' T
Set v =v+— = j{ucsco—v)+
Y=y o G ) Tan

then , | :
1— jootor Znete 7 i |
X (u)= ’__.___._ 2 T _Y _wwlg
o) o € eXP{ m 'YT} f exp{ 4p Yy @y (33)

From the integral in Tables [33], Eq. 3.322.2 (p307), we get

fexp{—-;%—w}wm S | (34)

where ®(z) is a complex error function. ‘By using (32),(34), one obtains

M+ 142 cotor 2. ] :
yitjtane t exp{— 'EE - }’T} exp_{—;-tana(ﬁ{ + '2%] }[1 - CD(Y'\/E)]

Xo(u)= 5

(335)

Qubstitute B and y from (29) into (35) then, after some manipulations, we get

11



X o (u)= —————‘M;aml exp{— é— [(u2 + }:2 )tan o — 2uvsec u]}[l — CD(y’\/E )] (36)

where v=w + j& , ¥ = j(ucsco—v—1cota), Jii =étancx,a>0. 37

3. Calculation of the FrFT of an arbitrary input signal

Namias [20] defined the generalized Fourier Transform operator Fq by,
2 . 2 .
Fa{ e /2 Hn(x)} —e M2 (x) (38)

where o is variable parameter, — 7 < @ £ 7, with negative values of a corresponding to the

inverse transform and H,(t) is the n" order Hermite polynomial. Therefore, the usual

Fourier Transform operator can be written as F,,, to denote the eigenvalue ™"

associated with the orthogonal Hermite functions e~ 2H (x). The associate Hermite

_(AH) polynomials 74,(#,4) are defined in terms of the Hermite polynomials H,(#,4). [28]

1 ¢ £
B (t,A) = ———==H,| — |exp| === | nz0 39
4 2" w7 A [ﬂ») p( 2/12] 7

where A is a scaling factor. The Hermite polynomials are generated recursiveiy through

e \f /2)

2
_2te ) (40)

h(f) = [J‘ thy () = N1 lyy ®),  fornz2

The AH polynomlals are orthogonal to each other and form a complete set of basis in the

interval [ o0 oo] If x(f) is a piecewise smooth function in every finite interval [ D, p] and

:fme"’zxz(t)dt < o, | | (4D

' then x(t) can be expanded using the AH series as

12



x(t) =S ah ), for —m<t<o® (42)

n=0
with _ :
a, = [_x(t)h,(t)dt (43)
‘Applying (38) to (42) with (43), we can get

Fx()(u) = X a,e " h, (). (44)
4]

HFT can be obtained by substituting o with z/4.

4. Optimization

In this section, a brief explanation of the optimization scheme is presented. First
modeling of the backward scattered field is shown and then the scheme for the initial guess
for the complex exponentials ~ total least square matrix pencil method (TLS-MPM)- is
presented. Initial guesses for the Gaussian pulses are induced from the shape of the time
domain function and the structure of the object. The search for optirnum parameters

proceeds using a quasi-Newton approach, augmented by a model trust strategy.

4.1. Modeling
The backward scattered field of an object or target can be described by the _su.mmations

of complex exponentials and entire functions. To represent pulse-like early time component,
"an entire function is needed. Entire functions are a subset of analytic functions that do not
have any singularities in the complex plane. In this study a Gaussian pulse is used for early
time description. Gaussian pulse is an entire function and time limited [17]. So, it is
appropriate to represent superimposed impulse-like signals at garly times of a scattered
response. Complex natural frequencies occur in complex conjugate pairs and they lie in the
left half plane with nonzero real part. To represent real signalé we treat two conjugaté poles
together. So, the scattered field can be represented by equation (45),

x() = % Az/i f’” ot Lj(wmt+¢ml) + e*.j(wmtw,,;)}‘(t - Tm)'*‘ g_l 4, exp {_ C, (f - gn)z}
| “5)

13



where t20,71>0, «,>0. ¢,’s and ¢, s are the amplitudes and the phases, respectively.
«, s and @, ’s are the damping factors and the frequencies. 4, ’s and B,’s are amplitudes
and time shift of the Gaussian pulses. C, ’s are coefficients which represent the pulse width.

M is the number of sinusoidal signals and N is the number of pulses.
To apply a parameter identification algorithm, the set of variables defined by
p=lodcan oy by oy oy Ty B 4 C By 4y Cyl (46)

needs to be solved for. The residual vector or equivalently the error to be minimized is
- defined by

1= — 2 :
r = =[G -Gu@.p; S @47
where G (1) is the HFT of the measured signal , and G,, (&, p) is the HFT of the damped
sinusoidal model including pulses. The 2-norm | e |, is the usual £? norm. From Table I,
Eqn. (24) and Table II, Eqn. (26), @M (u, p) is constructed as

J 2 :

M 1+ i = ¥ml j ] '
s cm__z_j{eJ¢me2 exp{u%(u—\[ivml)z}_l—Q(]’ml\[ﬁ)]

-

ivzz .
+e /Ime2 " exp{—%(u - ﬁvmzy}[l—@(}’ézzﬁ)]

P

, 2 |2 2 52
N _ -
+ 24, ! J_exp - g” - [u———BJ expl L C’; l(u____BJ +—B —~2uB
n=l YCn—J Ci+1\ 2 2 crvIv V2 2

(48)

'

where v, =b+ ja, vyp =—b+ja, v, = j(«,ﬁu—vml —':m) and 7, =j(«,/_2—u—~vm2 —'rm)

4.2. Initial guess using the Total Least Square Matrix Pencil Method

To increase the speed of convergence and to avoid convergence of the optimization
method to an undesirable local minimum, good initial guesses for the parameters of interest
are important. In this | paper, the TLS-MPM is used for computing the parameters of the

complex exponentials as initial guesses. The TLS-MPM approach is the most efficient and

14



robust technique to fit a noisy data with a sum of complex exponentials [29, 30]. To

implement TLS-MPM, one forms the data matrix [Y] with input data y as

(©0) ) o (L)
1 2 L+1
¥]= yf) y(: ) A :+ ) 49)
_y(N“L_l) y(N_L) y(N_'l) dN-Dyx(L+D)

where N is number of data and L is pencil parameter. For efficient noise filtering L is chosen
between N/3 to N/2. Then singular value decomposition (SVD) of the matrix [Y] is
calculated from

[Y1=[UzIV 7 1. 60

Here, [U] and [V] are unitai'y matrices, composed of the eigenvectors of [Y] [Y]? and
[Y]H[Y], respectively, and [Z] is a diagonal matrix containing the singular values of [Y]. At
this stage, the number of exponentials is determined by the ratio of the singular values to the

largest one. Consider the singular value o, such that

o,

~1077, | (51)

O-max

where p is the number of signiﬁcant decimal digit in the data. For example, if theé data is

accurate up to 3 significant digits, then the singular values for which the ratio in above

equation is below 107 are essentially noise singular values, and they should not be used.
Next, consider the “filtered’ matrix, [V'], constructed so that it contains only M dominant

right singular vectors of [V},

V1= vy, vy0 sV, ] B ' (52)

The right singular vectors from M+1 to L, corresponding to the small singular values, are

discarded. Therefore,

¥ 1= U= (53-1)

[ 1=WIE;1" (53-2)

where [V] is obtained from [V"'] with the last row of [''] deleted, [V;] is obtained by

{ removing the first row of [F'], and [Z’]‘ is obtained from the M columns of [X]

15



corresponding to the M dominant singular values. The poles of the signals are given by the

non-zero eigenvalues of

s | (s4)
which are the same as the eigenvalues of
s\ | | | (55)

Once M and the poles [z, = exp(—a + jb)T,] are known, the residues, R;, are solved from

the following least square problem,

[ 1(0) ] 1 1 . 1 [R

SO I C
YN-D| |7 2 2Ry

S. Examples

In this section, two examples are presented to validate the above technique. One is a wire
scatterer and other is a conducting sphere. Analytical values of the poles have been

presented by other researchers and are compared with the results of the proposed technique.

5.1 Wire scatterer

The first example is a thin wire scattering element of length L and diameter d which is
excited by an incident pulse of electromagnetic radiation. As shown in Figure 4, L, the
length of the wire scatterer is 50mm and the aspect ratio (d/L) is 0.01. The incident field is
coming from 45 degree from the wire axis and is polarized with respect to the theta
direction. |

'The backward scattered field, shown in Figure 5, has been computed using the
electromagnetic analysis code WIPL-D [31], in the frequency domain. The frequency range
covered is from 0.2 to 100 GHz. A Gaussian window in the time domain is applied to limit
the maximum frequency content of the excitation to prevent numerical aliasing in the
'_ computation of the response. The shape of the Gaussian window and its frequency
characteristics are shown on Figure 6. Figure 7 shows the backward scattered field of the

- wire after windowing the transient response. The time-domain response due to the backward

16



scattered field is obtained by evaluating an inverse Fourier transform (FFT) of the Gaussian
windowed frequency domain data, which is the solid line of Figure 8. The sampling
frequency used is 4 times the highest frequency of interest. The expansion coefficients of the
associate Hermite polynomials used to fit the transient data in Figure 8 is obtained by using
Equation (21). They are displayed in Figure 9. The order of the associate Hermite
polynomial expansion is determined By the time-bandwidth product (2BT+1) rule, where B
is the one-sided bandwidth in the frequency domain and T is the time duration of the signal.
- This implies that to approximate the waveform of duration T and which is practically band
limited to B, by using an orthonormal set of basis functions in the time domain, at least
(2BT+1) pieces of basis are necessary from a mathematical point of view. In this example
the frequency band B is 100 GHz and the total time duration T is 5 nsec. Therefore, to
achieve this time-bandwidth product for the backward scattered field one needs
approximately N = (2 x 100 x 5 + 1) = 1001 coefficients of the Hermite expansion as shown
in Figure 9 are necessary to approximate the wavefdlrm in either in the time or in the

frequency domain.

<———> Incident and d_irectlj reﬂectgd wave
> Creeping wave

Figure 4. A wire scatterer radiated by an incident wave from the broadside direction.
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Gaussian Windowing of Scatlered Field
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Figure 7. The back scattered fields obtained after windowing the transient response.
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reconstructed signal using the optnmzed parameters).
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Figure 9. Expansion coefficients of the Associate Hermite functions approximating the time
-domain function.

In order to start the optimization process to estimate the parameters of interest a good
initial guesses of the complex exbonents related to the poles are obtained by applying the
matrix pencil method on the late time data, which covers from the 5.5% to 99% of the data
set, shown in Figure 8. The number of poles is obtained from the singular valﬁe
decomposition of the data as required in the Matrix Pencil method. A threshold is applied to
the relatlve magnitudes of the singular values as shown in Figure 10 to separate the signal
poles from the noise ones. The y- axis of Figure 10 is in dB scale and the straight line

represents a threshold to distinguish the signal poles from the noise ones. From the
| application of the thréshold only fourteen large singular values are chosen which
corresponds to seven poles. '

The half Fourier transform of the time domain signal is calculated using (44) by using
the associate Hermite expansion coefficients of Figure 9, which is shown by the solid line in
Figure 11. By using the backward scattered field and the HFT of the signal, one can now

optimize the set of parameters related to the Gaussian pulse-like functions and the complex
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exponentials. The reconstructed time domain and HFT domain signal are shown by dots in

the Figures 8 and 11.
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Figure 11. Plot of the signals in the half Fourier transform (HFT) domain.
(Dots are the reconstructed signals with the optimized parameters).
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To represent the early time part, S Gaussian-shaped- pulses are used, that are shown by -
an asterisk (*) in the insert of Figure 8. The number of pulses is less than the possible
number of creeping waves in this case. The Root mean square error (RMSE) associated with
the reconstruction of the time domain signal and the HFT domain signal are 0.0032 and
0.0035, respectively. The pole locations in the complex s-plane are plotted in Figure 12. The
x-axis represents the normalized damping coefficient and the y-axis is the normalized
frequency. In the labels associated with both the axes in Figure 12, L is the length of the
wire scatterer and c is the velocity of light. The analytical data for the complex poles has
been presented by Tesche [32]: It shows that, the frequency components of the computed
poles coincide well with the analytic-data, but the damping components display some
differences. |

Next we apply this procedure to the data obtained from a conducting sphere.
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_Figure 12. Locations of the poles for the wire scatterer.
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5.2 A conducting sphere

The second example considered is a conducting sphere of radius 1em, which is shown in
Figure 13. The back-scattered field has been computed using the electromagnetic analysis
code WIPL-D in the frequency domain, as shown in Figure 14. The incident field is coining
from the top and is x-polarized. A Gaussian window is applied in the time domain to limit
the spectral bandwidth of the incident waveform. The inverée Fourier transformed frequency -
domain data is shown in Figure 15 by a solid line. This data exhibits two tjrpes of pulses.
One is a directly reflected pulse and another is a creeping wave. The time difference

between these two pulses is about 0.176ns. This shoWs a good agreement with the calculated

- value of 0.1714ns. {(2-!-71:)xr/3x108 =0.1714 nsec }. Figure 16 shows the plot of the
coefficients of the associate Hermite (AH) polynomials used to approximate the time
domain waveform. The order of the associate Hermite polynomials (AH) is determined
using the time-bandwidth product rule of 2BT+1. In ﬂ'llS example the frequency band B is
100 GHz and the time duration T is 0.65 nsec. So in.this case N = 2x100 x0.65 + 1 = 131.
However, a larger value for N = 301 has been chosen to guarantee cdnvergence of the

solution.

PEC Sphere {=1cm)

2r

-----------------

Incident and
> Reflected Wave

) Creeping Wave

Figure 13. A conducting sphere.
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Figure 15. Back scattered field of a conducting sphere in the time domain.
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Initial guesses for the complex exponentials are obtained using the Matrix Pencil method
by using the time domain data, extending from 10% to 99% of its original value as shown in
Figure 17. It is clear that there is one creeping wave in this range, so there may be some
difficulty when we use the matrix pencil method. With the comparison of the computed
singular values to the largest one in magpitude, as shown in Figure 18, 26 poles, or
- equivalently 52 singular values, are chosen. But we know that there is apparently one

creeping wave in the region. However, due to the presence of the creeping wave the power
or equivalently the amplitude associated with the all the complex poles are also taken into
consideration. By using the power as a metric for comparison, we reevaluate the number of
- dominant poles. The average power is calculated by taking the time average of the amplitude
for each complex exponential. If the power associated with the exponentials is greater than
10.1% of the total average power of the signal then they are retained in the computation. As a
result, 21 poles are selected, which are shown in Figure 19. The solid line in Figure 20-
shows the half Fourier transform of the backward scattered field, which is calculated using
the coefficients of the associate Hermite functions. Parameter optimization is performed
simultaneously in the HFT domain and in the time domain to select the optimum set of
parameters of the Gaussian-like impulses and the decaying exponentials. In this example, 3
Gaussian pulses have been obtained which are used to represent the early-time signal. Those
- pulses are shown by an asterisk (*) in Figure 15. The asterisks represent the amplitade and -
position of the pulses. It appears that there is a pulse doublet. This is due to the derivative of
the incident Gaussian pulse. The third one is the creeping wavé. Another creeping wave can
be found around 0.4 nsec but its amplitude is very small.

The reconstructed time domain and HFT domain signals using the associate Hermite |
polynomials are shown in Figures 15 and 20 by the dots. The root mean square error in the
- approximation of the waveform in the time domain is 0.0036 and that in the HFT domain is
0.0026. Figure 21 shows the estimated pole locations along with the analytic values. The
analytical data for the poles have been obtained from [34]. In Figure 21, a is the radius of |
the éphere and ¢ is the velocity of light. They show good agreetﬁent even for the damping :

constants.
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6. Conclusions

A new technique is presented for extracting the parameters of the damped sinusoids and
the early time impulse like responses using the entire transient response data set. Hence, the
time domain data contains both the early time and late time responses. Early time responses

“have pulse-like componehts and this makes it hard to analyze the complete signal. In this
study, Guassian pulses have been used to describe the early time portion of the data and a
fractional Fourier transform is used to separate the pulse like components from the damped
exponentials. Initial guess for the complex exponentials using the Matrix Pencil method
gives us a good starting point for the optinﬁzation-process. We show that the Half Fourier
Transform is very effective when the transient -response. from a target has pulse-like
components. The results for the wire scatterer and conducting sphére show that the proposed
technique performs well in extracting the aspect independent complex resonance
information of the object. Analytical results from the references [32-34] show that there are
multiple layers of poles but during tﬁis study we could observe the poles only from the first

" layer. They are quite adequate to represent the transient responses from various objects. A

parameter optimization tb match both the transiént and the half Fourier transform data shows

" that an individual exponential function has their own ‘turn-on time’ which will be described

in details in the next paper.
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