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Abstract

The general solution of propagation on nonuniform multiconductor transmission lines is described by prod-
uct integrals which may be difficult to evaluate except in numerical form. However, the conservation laws of elec-
tromagnetics concerning reciprocity and encrgy can be used to determine some of the analytic properties of these
product integrals. Special results occur when the transmission lines are lossless.
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1. Introduction

An N-conductor (plus reference) nonuniform mmlticonductor transmission line (NMTL) is characterized by
the telegrapher equations

BZQ-(I?" (z, 5)) = -(Z,’, m (z,s)) . (fn (z,s)) ¥ (jgﬂr (z,s)]

(1.1
8 -, ) A(s)
—52-(],, (z,s)) = — (Yn m (z s)) . (Vn (z, s)) + ( ]?gs ) (z. S)J
The vectors have N components and the matrices are N x N. The various terms arc
(1’?,, (2,5)) = voltage vector
(% (=, 5)) =current vector
[17',,(3) (=, S)J = per-unit-length voltage-source vector
( ~n.s') (z s)] = per-unit-length current-source vector
( ";,,m (z,s)) = (f nm (z,s))T = per-unit-length (longitudinal) impedance matrix (1.2)
( (2, s)) = (f,;’m (z,s))T = per-unit-length (transverse) admittance matrix

~ = two-sided Laplace transform over time ¢
8 = Q + jo =Laplace-transform variable or complex frequency

z = spatial coordinate along transmission line

The telegrapher equations are combined into a single equation with 2N-component vectors (supervectors)

and 2N x 2N matrices (sapermatrices) as

")



3 [ (7 (2.5)) ]
Z(Zam(5)) + (7 (s)
_ [ (On,m} (Z;r,m (Z=S)) - (fn,m (S))] o [ (ﬁn (Z:S)) J
(Znu(s)) + (Taym (2.9)) (Onm) (Znm () + (n(5))

[f’,gs)r {z, S)] )
(Zom (s)) - (1’,@*‘*)’ (z,s)]
Zom () = Cam () + Faml))

= normalizing impedance matrix chosen at our convenience (not a function of z)

The supermatrizant differential equation

%[(ﬁn,m (z, ZO;S))V,V’) - ((fnm (z5) )V=V') ) [(ﬁn’m (Z’zo;S))V’V’)

[ 7,8 = - ) (2;“” (z S)) * (fn,m (S))]
[(rn,m( > ))V,V’ ) ((an (s)) . (f,;,m (= s)) (()n:m)

(1.4

[(ﬁn,m (20,203, V,J - ((lmm)v, V) - (1”’"‘)) (O"’”’)J (boundary condition)

has a solution as the product integral [3]

((ﬁn’m (z,zo;s))y, V,) = ﬁg((fn,m(z',s))v,v')dz’ 5)

2

In terms of this the solution to (1.3) is

(?n (z,s)) ] _(tr . [ (Vun (zO,s)) ]
[%mm%MM)(%M””MJO@Ww-@wm
[r?,ﬁs)' (z',s)J (16)
cizf .

* z (Onm (2.759)), :
| Z_[ ( T, | g ,w) _® (En?m “)- [L(?s) (z,’s)]



In the present paper we do not include the presence of sources in our NMTL and concentrate on the source-free
propagation, and in particular on the properties of the product integral.

We also consider the product integral

((fn,m (Z,Zo;s))vyj - ﬁe(( ~n,m(z',3))v,y,)dz’

%

((G",,,m (z, S))v,v’) - [( (Oum)  (Zim(zs ))J

T m (Z:S)) (0,,,,,,)

(1.7

This corresponds to the differential equation (1.3) without the normalizing impedance (Z,, m(5)). Defining

oy 1 ) (o) .
((in,m (S))V,V'J - [(On,m) (Zum (S))] .8

the two forms are related by

(Canz9),,. ) = (G @), ) © (@un ), ) © (Gun),,)

((G’n,m (Z=zo;S))vV) = f-e((g"”"(s))wv’) o ((Guntzs)), ) © [(9:”””(3))%#]_1‘{2'
o ) (1.9)
- ((gmm (S))v,v’) o :je((Gn,m(z:,s))y,w)dz' o ((.fn . (S))V’V,J_I_ (similarity role)

~((@n®),) 0 (umtcr9),,) © (om0, )

The form in (1.3) and (1.4} has consistent units for the ¢lements of the vectors and mairices, while that in (1.7) is

useful for what follows and can be related to the first form via (1.9). For later nse we can write out the matrizant
blocks in (1.9) as



[(fn,m (sl (Tum(z20i))

(T (.20 ;S))Z,l (Ton (22035 ))2,2

(1.10)

_[ (O (z.20:9) (Zan () * (O (z.20:9)),
l

fn,m (S)) * (ﬁn,m (Z’ZO§S))2’1 (fn,m (S)) . (ﬁnm (ZaZOZS))zzz' (Zn,m (S))

Note that since we have

tr(((fn:m i s))w,)) 0
4 [((Gﬂ,m (Z»S)),,M ))

0

il

we have the well-known general results

det(((ﬁn,m (Z,ZO;S))V,V,)) =1
det[((f,,sm (2 ZOQS))V, v D =1

This provides a general constraint on NMTL product integrals.

(1.11)

(1.12)



2. Reciprocity

Consider any two solutions of (1.1) denoted by superscripts 1 and 2. Then form (with zero distributed

SOUrces)

-4 (z,s)]:| . (f,?)(z,s)J . [ﬁ,gl)(z,s))[%(f,(,z) (z,s)):l

- (i,(,l) (z,s)J (2 (z5)) - (f,(,z)(z,s)) - [r?,?) (z,s)j  (Ta(z9)) - (;7,?) (z,s)) @1
- () - @) - (10e9) - (7@9) - Gntas)) « (A 69)

= %[ ;7,52) (z,s)] . [f,(,l) (Z’S)H

This, of course, relies on the symmetry (reciprocity) of (7}, m) and (f,;’m) . Then we have

{

(@) - (106.9) - (P 9) [f,?)(z,s)ﬂ y @2)

- which might be termed differential reciprocity. Integrating this we have

(I?,SI) (z,s)) - [f,(,z) (z,s)] - (ﬁ,ﬁz) (z,s)] . (fg) (z ,s-)) = constant {independent of z) | " (2.3)

Stated another way we have

[f},g})(zz,s)) . [f,(f) (zz,s)) - (V;SZ) (22,.5‘)) . [f,(}) (22,5))

) (ﬁ’(l)(zl’s)] : (f'(tz) (ZM)] - (V’f)(zl,s)) . [f,(_}) (zl,s)j ey
for any two points z) and zy onthe NMTL. This can also be rearranged as
(V;gl) & ’S)) | (f,(f)(zz,s)) B (’42) (Zlvsj] | (f,(,l)(zl,S)) @.5)

= (Iﬁgl) (22,3)] . [f,gz) (zz,s)) - (142) (21-5‘)) . [fr?)(zbs)] |

showing the symmetry on the interchange of the 1 and 2 labels. -



Now consider the impedance properties of the NMTL. For this purpose 1et us attach a passive reciprocal

impedance matrix (as in Fig. 2.1)
(Ah) - () - (o)

at the beginning of the NMTL. Then look at the impedance matrix (Z",(f;’,d) (5)) looking into the end (z = 4 of the
NMTE. With alt reciprocal elements from (1.2) and (2.6) then this impedance matrix must also be symmetric, i.e.,

[ (o) (s )) (_:(f:,d)(s)f - (Y,Sf:,‘d)(s)J“I @7

Noting the current convention, at the ends of the NMTL we have

(7 0:9) = ~(2549)) « (1.05)
(ates)) = ~(Z500) - (1)

28

Using the matrizant (product integral) we also have

(~ (& S)) ] _ ({5 ! [ (ﬁn(o’s))
[( Zum () + (T2 (89)) (@umeo),, ) @ (Znm (s)) = (T (0.5))
(T (20 s)) « (7 (0,9)) + (Tm (z,o;s))L2 « (Zum (5) -+ (Tn(0.5))
( nm(f 0 s))21 (V’n (O,S)) + (ﬁn,m (1?,0;5;))2’2 . (Z"n’m (s)) . (fn (O,S))

[( wm (£05) ;= (Onm(80:5), * (Zam(s)) - [r,ﬁj,), (S)H . (7,(0.5)) 2.9)
\[( nm(80:)),, = Cnm (£0:5)), 5+ (Zum(s)) - (yﬁ): (S)]] (7 (0.5))

(7 (2.9))
(nn ) - (HR0 @) - 0 )|

Equating the two results for (7,(0,5)) gives



(2.6

Fig 2.1 NMTL with Reciprocal Termination at z =

—O —o"

: Tes)
—(O % —_—’(IH(E’S))
. 0—>IZ £ ?



H(ﬁn,m (L’,O;S))u— ((7',, m (sz,O;s))L2 . (an (S)) . (ﬁgfn (S)H_I

] om0~ 20, o ) (BN ) 552 (s)]}(f’n (05)

= (0n) | (2.10)

Varying (V,(¢,5)) over N independent choices gives

(F () = (2859
= ~(am @) | o (£09), (O (009) () - (O @1y
. [(ﬁn!m (e, O;S))l,l —(ﬁn’m (2.0 S))1,2 . (Z,,,m (s)) . (f,gj), (S)j]‘l

Since this must be symmetric we also have

() - (Zm ) |
= -[(ffn,m (£0:5)), 1-(1’;5:2 (S)J (o (5)) * (Tum(£0:). 2]_1 @.12)
: [(ﬁ,,,,,, (L0, ~(TH6)) o (5) + (Cu (f,o;s));] (o (5))

Equating the two results removes (f,gf,,‘}d) {s)) from the equation, giving constraints on the matrizant blocks (subma-
trices) due to reciprocity. This must hold for all symmetric (f,gj,), (s)) . Note that the matrizant biocks are functions

of (Zyy m(s)).

We can simplify the above result by considering special cases of (f,gj,), (s)). Letting it be the zero matrix

gives

(U’n:m (E,O;s));':l“l. (ﬁn,m (1?,0;.«;));1 . (fn:m (s))

= (fn’m (s)) . (Tnm (E’O;S))Z,l. (0,1,,,; (aé’,O;S));’I1



((7,,7,,, (E’O;S));] * (F",m (S)) : (ﬁn,m (E’O;S))u
= (Tupm (&Ohs'))i%—(%(—&))%m (2’0”))2,1 (2.13)
= [(ﬁn,m (E’O;S))::l * T (s)) * (Onm (4’330;3))2,1}T

Therefore, reciprocity implies that this product of three matrices is symmetric. Similarly by changing (7, ,53,,), (5) to

(Z~,(,S ) (s))_l in (2.11) and (2.12) and converting to (£ (s ) m(s)} by appropriate multiplication gives ancther form.

Then setting this to zero gives
(T (E,O;s))lz_l- (Onm(60:9)], * (o (5))
= (T () - (On (80:9) 0 (Onm(t:s)),
(ﬁn,m (£.0 S));,?. . (fn’m (s)) . (ﬁn o (45’,0;.5‘))1 P

= Oam ©03))y, * (G (®)) = (Onm(£05)), | (2.14)

- [Cun )], - Cun®) - am209),, ]

This three-matrix product is then also symmefric. Note now that the end conditions on the NMTL have been
removed and the z values of 0 and £ can be replaced by arbitrary z; < zp .

One can go on to more combinations of the matrix blocks by equating (2.11) and (2.12), multiply to remove
inverses, multiplying out the terms and removing (canceling) terms from the equalities in (2.13) and (2.14). These
involve larger combinations than the simpler three-term products as

O 0y = Fam () + O (08, - (Znm ) - ()]
(B0 )+ (o )+ Onn €09 *(am 9) - (Orm :055),,
() + @am(®) + um(&09), + (B )+ Gum20:9)
G009y, o) + Om(£0:9), + (Fam©) - (FA))
)

(2.15)

+[}7r£jp):(S)J ( nm(S)) ( nm (EOS))12 (n,m(s)) ( "m(gos))z,l]

10



This allows for varicus choices of (f,ﬁj,), (sH.eg.,

(706) = (fun©) - (Gan®) - (H06) = (0] - (2am©) =tnn) 10
which simplifies (2.15) considerably.

In the alternate form of the product integral in (1.7) we have similar results which we can find by replacing
(Zp 1 (5)) by the identity giving

.
(Fam (609, - (T (035),, = [(T",,,,,, (09, * (Fum (e,o;s))m]

.17
. T a | . T n T
(Tsm (e,o;s))L2 o (o (:z,o;s))l2 = [(T,, - (/z,();s))L2 o (Tum (£.0:5)), ’2]
Similarly (2.15) simplifies to
- T ;- e (s . T -
(o (0055} + (Fum (8035)), + (T 5) )+ (FE19) )« (rm (209) e (P (2035,
T @18

|G (09 - (m(.05),, +(F 05 (T 9+ o (L0 (i (2 05),

This can be readily converted back to the other form of product integral via (1.9). Note that the simpler form in

(2.18) must hold for all realizable symmetric (F< (s)) .
. H.m

‘Now manipulate (2.18) into the form

(&,,,,,, (ﬂ,O;S)) = (’fmm (E’O;S));:l . (T"n - (E’O;S))z,z - (f'n - (E,O;s));’l . (T"n,m (E,_O;s))1 2
: )0 + (7)) - (3 T >0
(nm (,0:5)) + (y,,,,, (s)) " (y,,,m (s)] + (G (£,0:5))
First choosing
(o () = (nm)= (@ (£0:) = Em(0:5) o 2.20)

11



gives the general form
(#nm (05) + (B = (FA©)) + (i (4.09) @

ie, these two symmetric matrices commute. These two matrices then must have a common set of cigenvectors.
Writing

() - iﬁﬁ;’ W) (He),

(j'f(; ) (S))ﬁl ’ (33/(5‘9) (S))ﬁz =lgp, (orthornormal)

(2.22)

We are free to choose the (jzf;’)) many different ways, still giving a symmetric (f,gj,),) . This implics that (a, ,,)

has all possible sets of N orthogonal eigenvectors. In turn this implies that it is proportional to the identity.

(Gnm (4:0:5)) = @(£,0:5) (1)

N .
(ln’m) - ; ( y,(,'g) (S))ﬂ ( },1(23 ) { S)Jﬁ (for ail orthonormal choices) | (2.23)

Thus we have the restrictive result

(un (0}, + (o (05)), ~ ()], + (o (055,

1 (2.24)
= @(£.0;5) (L) -

From (1.7) we also readily find

a(0.0:5) = 1 | | @2

Using (1.10) the result (2.24) can also be applied to ((U’n:m (£,0:8)).,+) , giving

12



(T (E’O;S))L * (Gan () * Onm (22039)),, * (Zum (5))
- (ﬁn (2 zo;s));l . (ﬁn,m (z,zU;s))L ) (2.26)

= @{€,0:5) (Lupm)

Thus reciprocity implies that only three of the four matrix blocks are in some sense independent, the fourth being

calculable from the other three plus a scalar. At this point we can note that the coordinates 0 and #can be replaced
by arbitrary 2z and z . '



3. Time-Domain Energy for Lossiess NMTLs

Let us form

(CRORET _
e - e

- [£{860)] - @) + (8260) + (100) - (o) - [ Y200

SPIOJ

Setting the 1 and 2 solutions as the same gives (noting the symmetric matrices)

2 [020) - ()
—=2 (1) + (Ham (50) + (i (=0) + (a(28) + (Chm () - G 2]

3.2
(VH (22,1)) . (fn(zz,t)) - (Vn (Z},t)) . (In (Zl,l‘))
2 2 [0 ) - @) - (a20) + 0o E) - (G ) - O )]

This has a striking similarity to the usval electromagnetic Poynting vector theorem.

14



4. Frequency-Domain Energy

Beginning with

20 (z9) + (a(z9)] |
L0 () + () - |20 eo) @
= n(fn (z,s)) . (f;,’m (z,s)) . (fn (z,—s)) - (I?n (z_,s)) . (f,;}m (z,—s)) . (F/—'n (z,-—S))

we can integrate this to find

(V:, (zz,s)) . (fn (z;;_,—s)) - (17’,1 (zl,s)) . (f,, (zl,—s))

= j' {(Ta(2.5)) * (Zim(2.9)) -r(fn (z-5)) + u(29)) « (s (z-)) + (P (z-9)) ] &2 ¢
Setting s = jo we have the relation for real power.
Re((l}n (72. jco)) . (f,, (z2.- ja}))) —Re((l?,, (=1, ja))) . (fn (21— jm)))
- —Re I [((z.)) + (Zam (5.50)) + (Fa(zsmi)) ¢3)

+ (Vn (z,jw)) . (f,;m (z,—jw)) . (17,, (z,wja))):]dz

For RMS values an additional factor of ¥z appears in the above. Also note that, as real-valued time functions, the

above fanctions of —jo are the same as the conjugates of the functions of —jw .

For the lossless case we have

{8 (zz,s)) . (fn (zz,—s)) - (V; (zl,s)) . (fn (zl,s))

22

— [ [+ (o 2) + (i 59) - 2 9) - (G () - O]

Z

(4.4)

- 15



Setﬁng §= jw we have (noting the real quadratic forms)

Re((f;n-(zz, ja))) . (fn (z2.- ja}))) - Re((l;n (z1, j&?)) . (fn (zl,mfw))) =0 (4_5).

which is, of course, the power-conservation law,

16



5. Implications of Lossless NMTL on Matrizant

As is well known a lossless impedance (or admittance) function is an odd function of s (with real coeffi-
cients} so that for s = jw no real power enters or leaves the network. Also known as Foster’s theorem, such Teac-

tance functions have the properties:

1 All poles and zeros are simple and lie on the jor axis

2, Residues are real and positive.

3. The function has either a zeroorapole ats=0and at s = o
(for a finite number of circuit elements in the latter case).

4, The reciprocal of the function is also a reactance function.

Lossless, reciprocal impedance (or admittance) matrices also have special properties, as can be seen by

forming

() = (Zum(s)) = (Tu(s)) - 62

Setfing v = jo choose

o )

| 0

(I, (j@)) = | I, (jo) (5.3)
0
0 J

- by open-circuiting all but the nth port. Since no real power can enter (or leave) this port, then 17',1 (jar) must be 90°
out of phase with the current implying that

f}z,rz (jm ) = Imaginary 5.4
So ali the diagonal clements are reactance functions and have the (5.1) properties.

For the off-diagonal clements take two nonecro currents, 7, (j@) and 1,y (o), and form

17



(7 (j@)) « (I, (~jo)) = imaginary
Vo(Jo) I, (jo) +Vy (jo) Ly (-jo)= imagimary

I;;z (J@) = ~n,n (Jm) fn (J@) + Zn,:?' (ja)) jil' (J&})

Vo (J‘Q) = Z_n’ﬂ’ (jm) Ly (_fm) + f.n',n (jm) Iy (jor) N
. Combining these gives
(i0) Zyp () Tu(-10) + T (j0) Zaye () Ty ()
+ Iy (j@) Zy i Ly (=jo) + Iy (o) Zy y (jo0) Ly (- J)
= imaginary o (5.6)

Noting that the diagonal terms are imaginary, and a function times its conjugatc is real, gives

Iplgo) 2w (Jo) Iy{=jo) + I, (jo) 7, (o) Iy {jo) = imaginary . | (3.7
Applying matrix symmelry (reciprocity) gives

[fnr (jo) I, (-ja) + T, (jw)i, (ja)):F Zyy  (Jo} = imaginary (3.8)
Noting that the coefficient is the sum of conjugates and 1s therefore real, we have

Zpr (j@) = imaginary (59
So all matrix elements are odd functions of s as

(Z (=S )) - (Zn,m (*)) | G.10)

Recall that in Section 2 formulae were developed for the impedance matrices of terminated NMTLs. Con-
straining the NMTL to be lossless with a lossless termination leads to information concerning the matrizant blocks.

From {2.11) setting the normalization to the identity gives

[(TH”;”’ (ﬂ’O;S))z,l — (Zm (E’O;S))z,z ) (17;5";), (S))J

'(S.II)

[

-1
. I_(T;I’m (ff)s)) = T (:..”,O;S)) . }}Sj), 5} 1 = odd function of s
1" 12 | on o

18




Taking (17,55,3, (5)) as open and short circuits (special degenerate cases of reactance functions) gives odd matrix

. functions
(Tam (£0:5)), | = (B (e,o;s));} == (Tam(0-9)), |« (Tom (60:-5)), 11 51
(fn,m (g,o_;s))m . (1";, - (fz,o;s))l"j2 = — (fn,m (E’O"-,S)}z,z . (Tn - (z,o;—s))l‘; :
These can also be rearranged as
(Zom (z,o;_s));l < Gm 80:5)),, = = (T (f,O;—s));; s (Fum (80)), ot

(fn - (i_’,();—s)):2 . (fn,m (ﬂ’O;S))2,2 = - (Tom (L’,O;_s));: = (Tam (E,O;s))}’2

Additional relations of this type can be found by rewriting (5.11) by replacing (f,gj%) by a f,ﬁf,},) where a

is real and smail, as

[(fn,m (1?,0;5;‘))2,1 - a(f’n,m (3,0;3))2,2 . (flgjﬂ)i (S)J]

(5.14)
. |:(7~‘n m (£, 0;5))1 L a(f’n m (4,0 S))12 . [f,gi,), (S)J:|= odd function of s :
Next expand the inverse as a geometric series [4] for small ¢ as
: ; A T
[(7;,,,, (¢, o;s))l, LT a(Tym (2,0; s))L2 . (Y,, T (s)ﬂ
B (5.15)

{ ) + 0l (09 - (o (209, - (750 (s)]r- (T (£0:)
=[(1n,m) + a(fom (e,o;.«;))l",l1 < (Fum (80:5)),, - (ﬁgsm (s)) +'0(a2)}

~ 1
. (Tn,m (1,’,0;.5'))171 as a—0
Consider the various powers of a in the series expansion of (5.14). The 4 term reproduces the first of (5.12). The

- coefficient of a_} gives

19 -



| (09), + (n(9) + Gam (209, = (o €05 (B (£09) - (9]

+ (T (£,0:5)),, = 0dd function of s (5.16)

An acceptable choice for (I;,g,),) as aun odd function is of the form of a special capacitance matrix

(7509)) = 5C(tnm) = -(#e9) . (5.1
giving
[(T",,m (£.0;5)) b ™ (T (2.0, s))u. (T (£,0; S))l",l1 “(Toum (£.0; s))m} o (Tam (£.0; S'));ll (5.18)
= ¢ven fu_ncu'on of ¢

Higher powers of a give larger ensembles of the matrizant blocks as odd or even functions of s.

A similar result is found by rewriting (5.11) in the form

-[b(fm (E’O;S))z,l ) [H'(’S’z’ (S)) = (B (£05)) 2’2]
. {b(ﬁ,gm (©0:5)),, - [~an21 (S)J = (T (E’O;S))l,z}_l

= odd fonction of s (5.19)

Now take b as small and write
| -1
|:b (fn,m (¢.0; S))l,l . (Z-nfm (s)} - (Tn,m (2.0 S))I,Z]
— . & -1 . -
= —l:—b (T”J" (E’O; S))l?i * (Tn,m (E’O;S))l,l * (Z?(I,L)ﬂ (S)] + (ln’m ):| * (Tn:m (E’O;S))]_,; " (5.20)

()l (5 (), (7500 o)

B (fn,m (E,O;S))I_; as b—>0

20



Consider the various powers of 5. The 50 term reproduces the second of (5.12). The coefficient of bt with the

choice
(z‘ff,}, (s)) = sL{lym) = —(z",(f,l, (—s] ' (5.21)
gives

[(T;,,m (¢.0; s)) b1 (f,, m (E,O;.s‘))z’2 . (T,, m (E,O;S))l_’; . (fn,m (AR s))l,l]

) (fn,m (4.0, S)):;

= even function of s

(5.22)

As we can see, lossless NMTL matrizants are significantly constrained by the lossless property. These

results also apply to (ﬁn’m (¢,0;5), 1) by application of (1.9).
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6. Direct Construction of Properties of Matrizant for Lossless NMTL

Now consider the properties of the matrizant in the simple lossless case from the definition of the product

integral as a limit. For the simple tossless case we have

( mr’:,m (z, S)) = S(erl,m (z)) ._
(Frm (2.5)) = 5(Cpm (2)) (6.

(Enn =), ) _{ Onm)  (Zm(@) - (Fom)

Cam) * @) (Onm)

where the normalizing impedance matrix is taken as constant {specifically frequency independent),
The product integral takes the forms [7]

z

(Oum (2.20:))) = He((fn,m(zf,s))v,v.)dz’

= ﬁ[((lnm )V:V,) + ((f‘n’m (=, S))V.,V' ) dz] (6.2)
= - | (1"=m) - (L;i,m (= r)) ‘ (Yn,m) dz ,]
g{—s(zn,m) (o () (bn)

In this latter form we take the product integral as a product of terms, one for each Az from zg to z. Consider the

even/odd in s propertics of any of these terms as

(1,,,,,,) | —S(.L;,}m (z)) . (Yn,m)m]_[(aven) (odd)} ' - (6.3)

) G N () ) ) (eren)

- this being the case for o/f such terms.

Take the dot product of any two adjacent terms in the continued products; this has the form
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[(even) (odd)J . [(even) (odd)J

(0dd) (even) (0dd) (even)

_ {(even) + (even) + (odd) » (0dd)  (even) « (odd) + (odd) « (even)J
(odd) + (even) + (even) - {odd)  (odd) - (odd) + (even) - {even)

_ ( (even) (odd) )

_ (odd} (even)

6.4)

By extension (induction) continue this process to all terms in the product giving the (6.4) result to the entire contin-
ved product. This holds for all Az >0 . Take the limit as Az — 0 giving this as the exact form of the product inte-
gral,

We, therefore, have the general result for this special lossless case

( nm(ZZO S))“ .
= even functions of s
( nm(z g S))Z,Z
( nm(z zp; s))12
™ = odd functions of s _ (6.3)
( n.m (" "O’S))21

¥

which is a yet more powerful result. This is based on the lossless properties of the incremental sections, Whereas,
in Section 5, the results are based on the lossless properties of the entire NMTL as a whole, and, as such, are

app]icab!e to more general linear, reciprocal electromagnetic systems.
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7. Bounds on Propagation on NMTLs

Consider the product integral (1.5) representing propagation on an NMTL. We have the norm (some

associated matrix norm, later 2-norm)

ﬂ[(ﬁn,m o) - [T

20

[( (m VV’) ((f",fn(z',s))vy,)dz’]
“( ) ( nm(zo,S) Azu ” V’V,) + [( wom (20 +Az, S) AZH .

o ‘((ln,m)w/) + ((r,,m (20 +[N—1]Az,s))V’V,J forAz%O(z—zO =NAz)

{norm product rule)
{1+ (( ,,m(zo,s) ”Az} {1+ [( Fomizo +Az;.s')) “Az]
[

( ,,’,,,(20+[N l]Azs V )“Az] (norm sum rule)

( o e _ )

z
YN |
e?

(7.1)

This reduces the problem to the norm of the propagation supermatrix (1.4). One can attempt to minimize this norm

by appropriate choice of the normalizing impedance matrix. Note that all associated matrix norms have

H((lmm),,,,JU o | . | a2

A special case of interest has s = jo and the norm chosen as the 2-norm. Furthermore let the NMTL be

lossless so that

3 (fj,m (z, s)) = S(L,i,m (z))
(f,;_m (Z»S)) = S(Cf'i,m (Z))

(7.3)

A special case of interest is a lossless NMTL for which



(Zy o (2.5)) = s(Lpm(2)) . By (25)) = 5{Chm (2))

: ~ . (0nm) (Lo (2)) * (B () e
[(F,,,m( : ))] - [(z ©) + (Em () (On)

Letting
5= jo (Zn,m) = real, svmmetric, and frequency independent (7.5)

We have the 2-norm {6]

) (Enee )],
o= [mak eigenvalue U:((In,m )V, V,) + ((Fn m{z, ja)))v, V,]AZ]T

. [((1,1:,,,)%1/] +' [(Fn,,,l (z ja)))v’V,]Az} ] } (7.6)

- {m eigeuvalue[((ln:m)vy,) + |:[(fn:m (z.12)), ., )7 + ((fn,ﬂz (z.2),,, ﬂ Az}

1/2
+O((Az)2) as Az — 0}

. %Z_ |:max eigenvalue ((f',,,m (= jm))"},v' )T + ((1: nm (Z,J'&?))V,V’)}

+ 0((&)2) as Az >0

Thus we need to consider

| ((fn,m (2./0)), JT n ((fn,m (z’f‘*’))v,‘x)

= ja).[ (On,m) (L,;m (z)) . (Yﬂm) - (C;!m (z))_(zn’m)] (7.7)
(Znm) * (Com(2)) = .(fn,m) - (i (2)) - (O .

1,17t

This can be set to zero provided
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(L;z,m (z)) * (Yn,m) - (C;@,m (Z)) ‘ (Zn,m) =0
Com @)+ (Fm (@) = (Zam)’ = Tam (@) * (Gun ()
(Zm(2) + (Com () = (Com{2)) + (L (2)) (commute)

(7.8}

This is a constani-~characteristic impedance NMTL with the normalizing impedance matrix given as above.

Furthermore the per-umnii-length inductance and capacitance matrices commute implying common eigenvectors.

Since these are also eigenvectors of the z-independent (Z n,m) » then the eigenvectors must be z-independent except

- possibly in the case of degenerate eigenvalues of (Z, ) - Such commuting matrices have been treated in {1, 2].

With the constraint of (7.8) we have

(Eun )+ (Ean,) - (00
(e, ) T T2

Zp

Applying this to the inverse matrizant and following the previous procedure also gives

<1

(Ganteoion,,)|,

Taking the 2-norm of the product gives

”((ﬁn e zo;j&’))m,) o} ((ﬁn,m (20.7; jw))l,,,/ )uz

= l((ln,m )V,v'J o
< ((ﬁn,m (z,zo;f“’))u,v’) b

=1

(Ountor,)

2

Combining these constraints gives

=1

(OnnGasio, ), = [(Oun oo, ),

(7.9)

(2.10)

(7.11)

(7.12)

This can be compared to the general (unconstrained) case of the propagation supermatrix for which all-zero diagonal . -

entries implies
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det[(( - (z,zo; jm))v’ '/D =1 (7.13)

For the more general case of lossless NMTLs one could try to choose (Z nm) (symmetric) such that (7.7)

is minimized in some sense over some range of z of interest. In 2-norm sense this means minimizing the maximurn

eigenvalue (magnitude) noting that (7.7) is Hennitian. In the sense of the continued product in (6.1) we then have

. “((l?nm (z, zo;j&?))w,J A |
j}%[max e:genvalue[(( (2 J(o))V,V']T-'- ((f,,,m (7. jm))v_p')ﬂ

d_;_f

(7.14)

as the real quantity to be minimized. This is accomplished by minimizing the integral in the exponent. One can

show that the maximum cigenvalue is real and nonmegative by noting that (7.7) takes the form for eigenvaiues

()

jo

(Onm) ~ (anm)
~(aum) (Onm) G;n;]

)
(nm) + (o X
() (};x,z H

.(an,m)T . (an, ) (.}’n) = (an,m)T * (xrt) = "Wz (yn)

. T
7—1,1/2 = eigenvalues of (an’m) . (a,,= m) (rcal Hermitian, positive semidefinite)

Oy

20 (real, nonnegative)
y = % [-real n‘:mnegatiw:]u2

= £ [real nonaneg,atiV{—:}1"‘2 (7.15)

Thus take the most negative imaginary value of y, multiply by jw to obtain the Iargest real positive cigenvalue.

This implies

1 . _ . o _
E{max. elgexwaiue[((Fn:m (z jm))v,v’) + ((Fn:m (z. Jco))v?v, ]H
>0 forallz o : - (7.16)

Appropriate choice of (Z,, ,,,) can minimize the integral of this. In turn
> 1 _ | - @I

| “((gn e zo;jé’)).,,v') )

is minimized.

O]
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8. The Lossless Transmission Ling: N=1

Now specialize the foregoing results to the case of N = 1: a single-conductor (plus reference) transmission
line. The matrizant blocks are then scalars. This should simplify the results, since the normalizing impedance is
also a scalar and factors out of the equations. Note that the blocks now equal their own transposes. Multiplication

now commuies. The forms of the matrizants in (1.10) now reduce to

f‘u (z.29:5) ’f-],z (z,zo;s) _ fju (z.2035) f(s)[j’l’z (z, 20;3)1 . .
Ty (z.20:5) Ty"z,z (z.29:5) ¥ (s) [72,] (z.26:5) {,72’2 (z.z0:5) )

The determpinants in (1.12) also simplify to

(71’1 (z.20:5) "2?2 (z.20:5) - Uy 2 (z,zo;s)(;’g’l (z.2938) =1 a2
f’u {z,_zﬂ;,s')f’ﬂrg {z.25.5) = 17“1,2 (z. ZO;S)EE’} (z.20:5) = 1 '
Comparing this to (2.24) we find for this special case
&(e,0:5) =1 (1.3

Considering the reciprocity results in Section 2, we find that this case of N = 1 is the trivial case in which

the appropriate cquations become lautologies.

The lossicss-case result in Scctions 3 and 6 now simplifies for N = 1 with the additional constraini in (7.2).



9. Concluding Remarks

Considering a previous paper [5], there are various reciprocity and energy theorems applicable to
electromagnetic fields and sources in free space {or a lossless uniform isotropic medium). The present paper con-
siders the application of such concepts to NMTLs, with varions results found. Perhaps the list of such results can be

extended,

1 would like to thank Prof. Jiirgen Nitsch and his staff and students at the
U. of Magdeburg, Germany for discussions concerning the topics in this paper.
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