
 
 

Interaction Notes 
 

Note 602   
 

4 July 2006 
 
 
 
 

Double-Pulse Technique for Defending from Hostile Systems 
 
 
 
 
 

D. V. Giri 
Pro-Tech, 11-C Orchard Court, Alamo, CA 94507-1541 

 
 

and 
 
 

Tai Tsun Wu 
Gordon McKay Laboratory, Harvard University, Cambridge, MA 02138  

 
 
 

Abstract 
 

In this paper, we have addressed a promising way of defending from a hostile system, using two 
electromagnetic pulses. The first pulse is a hyperband signal meant to interrogate the target 
system to determine its vulnerabilities in terms of the frequencies that can penetrate the system. 
The second pulse is then tailored to contain the electromagnetic energy in the appropriate 
frequency band in an attempt to disable the hostile system. The possibility of such a double-pulse 
technique has been raised by many and we have decided to look into this further. The emerging 
technology of hyperband systems with bandratios of ~ 100 facilitates and inspires us to further 
investigate this technique. In a representative example considered in this note, we find that a 
single equation can lead to both external and internal resonances of the target system.  

 
 
 
____________________________________________ 
The work reported here is the result of an I R & D project in Pro-Tech. 
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1. Introduction 
 
 

A promising way to defend against a hostile system in air, on water or land (ex: an incoming 
missile, speed boat or a ground vehicle with hostile intention) is to send a powerful 
electromagnetic pulse to disable the electronic control system. It is the purpose of this paper to 
discuss one aspect of such a defense. In the case of a missile, an alternative possibility is to send 
up an anti-missile to intercept the incoming missile. We are of the opinion that this alternative 
has uncertainties and the electromagnetic solution could complement the defense. 
 
In order to disable the electronics some of the energy of the electromagnetic pulse must penetrate 
to the interior of the missile. If the outer shell of the hostile system is not highly conductive, this 
penetration can be accomplished with relative ease. Even if the outer shell is metallic, there are 
unavoidable points of entry consisting of junctions of metallic surfaces, slits around moving 
surfaces, inadvertent apertures etc, where the electromagnetic pulse can penetrate. Points of 
Entry (PoEn) for electromagnetic energy can also serve as Points of Exit (PoEx). 
 
Such penetration into the system is more easily accomplished at some frequencies of the 
electromagnetic pulse than other frequencies. Therefore, the disabling of electronics can be more 
easily carried out if the pulse can be tailored to contain most of its energy in these frequencies. 
From this point of view, the defense can be accomplished in two successive stages. 
 

1) We first send a moderately powerful electromagnetic pulse. Over certain frequency 
ranges, this pulse contains significant energies. We analyze the return signal to 
determine the frequencies that may have penetrated the target system, which are 
likely to be the frequencies where the system is vulnerable. It is noted that coupling of 
certain frequencies into the system is necessary, but may not be sufficient to 
accomplish the necessary damage.  

2) We send a second pulse to disable the electronics of the system. This second pulse is 
much more powerful than the first electromagnetic pulse and is tailored to contain as 
much energy as possible in the frequencies that coupled into the system. 

 
This procedure of using two electromagnetic pulses has the following side benefit. It is 
conceivable that systems of the same type can be individualized so that their responses to 
electromagnetic pulses are different from each other. Such a discriminating program does not 
have any effect on the present procedure of using two pulses. 
 
The double-pulse defense has been suggested in the past by researchers including the first author 
of this paper. A general intuitive response has ranged from “this technique is not practical” to “it 
can not give the interior resonances”. The implied pessimism and finality of the responses has 
motivated us to look into this problem, in some detail. 
 

a) Airborne Target System 
 

We have considered a canonical problem representative of the missile defense in this paper. We 
find that in an idealized case, it is possible to write a single equation that yields both exterior and 
interior resonances. We believe this is a new result opening the door for pursuing this problem. 
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b) Water or Land borne Target System 

 
The two scenarios where this double pulse technique could apply are: 
 

i)  Defending ships from hostile speed boats and  
ii) Portal defense against hostile and speeding automobiles.  

 
Consider the case of ship defense employing a 3-tier perimeter defense zones. These three areas 
are typically centered on the ship to be defended. The outermost area or the green zone where 
recreational and other vessels are permitted is followed by an orange zone where certain 
defensive measures are triggered. If the unknown water vessels (ex; speed boats) enter the red 
zone they could be disabled or fired upon if needed. The first of the two-pulse method is applied 
in monitoring the vessels in the green zone. The second pulse is applied while the unknown 
vessel enters the red zone. Such a method has several advantages. 
 

1) No EM shield is perfect and there are almost always points of entry (PoEn) for EM 
energy into any electronic system.  

 
2) Points of entry can also be viewed as points of exit (PoEx) for EM energy. 

 
3) Attempts to change the resonances or additional shielding of the speed boat engines 

will not work, since vulnerabilities are determined for the “as configured” system and 
not for a generic model. 

 
4) Speedboats with the additional shielding are found by the first pulse and if they 

approach dangerously close they are targeted. 
 

5) This technique is nonlethal, i.e., if a mistake is made, there is no serious consequence 
such as the loss of life. 

 
6) The necessity of monitoring the water vessels in the outer green zone serves also the 

purpose of keeping sailors/soldiers alert on the watch-out duty, avoiding the 
associated sheer boredom issues. The first pulse monitoring is not busy work, but 
may be essential for the survival of the ship.  

 
7) The second pulse is intended to disable the approaching speed boat at close range. 

The results of applying the second pulse are immediately obvious, while reserving the 
last resort option of firing upon the speed boat with hostile intentions. 

 
Considerations described above, in the context of ship defense are also applicable for the case of 
portals where the passing automobiles are required to stop for inspection.  
 
In the past, Ziolkowski et al., [1] have considered the problem of scattering from an open 
spherical shell having a circular aperture and enclosing a concentric dielectric sphere. They look 
for resonances in the radar cross section and indicate that for cavity backed apertures there is 
interior information contained in the exterior scattering data, which is encouraging. Apertures in 
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conducting screens [2], slotted cylinders [3], and spherical cavities [4 and 5] have been studied 
from a diffraction point of view. The effect of small perturbations in the surface of a metallic 
sphere on the exterior resonances has been studied by Varvatsis [6] using perturbation theory.  
The problem of Nuclear Electromagnetic Pulse (NEMP) excitation of cavities through small 
apertures is discussed by Chen and Baum [7]. They characterize the electrically small aperture 
by its electric and magnetic polarizabilities to determine the interior resonant modes of the cavity. 
 
We are looking at a somewhat different aspect of the problem than what has been reported in the 
literature cited above, excepting [1].  In the modern context, studying the back scattered fields 
from a target system for varying incidence parameters (angle and polarization) is already proving 
to have important benefits in target identification. This has been possible because hyperband 
systems have come on the scene [8, 9] and the return signals have rich information about the 
target exterior and potentially on the target interior resonances.  We can now illuminate target 
systems with impulse-like waveforms lasting 100 - 200 ps [9] with huge interrogatory 
capabilities. 

 
 

2. The basic Idea 
 
Consider a closed surface of perfect conductor as shown in Figure 1. 
 
 
 
 
 
 
                                       
 
  Figure 1. A perfect conducting surface enclosing a volume 
 
There are exterior resonance frequencies fj

(e) and interior resonance frequencies fj
(i). Since there is 

no loss but there is radiation, we know: 
 

• the fj
(i) are real 

                              (1) 
• the fj

(e) are complex with non-zero imaginary parts. 
 
If an electromagnetic spike is sent to scatter from such an object, we can determine from the 
return pulse: 
 

• the fj
(e) 

                            (2) 
• but not the fj

(i) 
 
On a fundamental level, we know the following: 
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(1) The interior resonance cannot “see infinity”, meaning that the solution of the Maxwell 
equations is non-zero only in a finite region of the space. In particular, when there is no 
loss, the interior resonance frequencies are real. 

 
(2) On the other hand, the exterior resonance can “see infinity”, meaning that the 

corresponding solution of the Maxwell equation is non-zero in a region that extends to 
infinity. Even when there is no loss, the exterior resonance frequencies are complex. 

 
 
We consider next the same closed surface of perfect conductor, but we make a hole on it: 
 
 
 
 
 
 
 
 
 
 Figure 2. A perfect conducting surface (with a hole) enclosing a volume  
 
Even when the remaining part of the closed surface is perfectly conducting, the interior and 
exterior are no longer isolated from each other. When the hole is small, the interior and exterior 
resonance frequencies are small perturbations from those without the hole. But the natures of the 
perturbations are qualitatively different. 
 

(a) Since the external resonance frequencies are complex to begin with, the presence of the 
small hole causes a small shift in both the real part and the imaginary part. 

 
(b) Although the interior resonance frequencies are real without the hole, the presence of the 

hole makes them complex. In the language of the (1) and (2) above, the interior 
resonance can now “see infinity” through the hole. Therefore all the interior resonance 
frequencies are also complex. 

 
In other words, in the presence of the hole, there is no longer any qualitative difference between 
the interior resonance and the external resonance. 
 
The basic idea is therefore this: 
 
 
 
 
 

 
 
 
 

Because of the presence of joints and possibly other holes on the target system 
surface, the return signal from the missile due to an electromagnetic pulse 
contains information about the interior of the system. 

hole
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3. Simplest Example 
 
In order to make the discussion concrete, it is always useful to have examples, especially those 
that demonstrate explicitly the main point of the idea. 
 
We have been trying to formulate as simple an example as possible. It is believed that the 
following is the simplest non-trivial example. 
 
A useful example should have the following properties. There is an interior region and an 
exterior region. These two regions should be coupled electromagnetically with a coupling that is 
described by one or more parameters. In the simplest case, the number of such parameters should 
be only one; let us call this parameter α, At some limiting value of this parameter α, these two 
regions become decoupled, there being interior resonance frequencies and external resonance 
frequencies. We want to study values of α that are close to, but not equal to, this limiting value. 
 
Since we want to formulate the simplest example, we propose that the following should hold not 
only for the limiting value of α but also for all values of α. 
 

(1) Since two-dimensional problems are easier to deal with than there-dimensional problems, 
this simplest example should be two-dimensional. This has the additional advantage that 
the vector nature of Maxwell’s equations disappears and we are dealing with a scalar 
problem. 

 
(2) Since we want the simplest example, we want maximum symmetry. 
 
(3) Since the interior region must be of finite size, the maximum symmetry is achieved by 

rotational symmetry. 
 
(4) This rotational symmetry should hold for all values of the parameter α. 
 
(5) Since lossy problems are in general messier to deal with than those without energy 

dissipation, all energy dissipation should be avoided. 
 
(6) Since we want to have an interior region and an exterior region, it is simplest to choose 

these two regions such that together they cover the entire two-dimensional space. 
Mathematically, what we are saying is that the union of the closure of the interior region 
and the closure of the exterior region is the entire two-dimensional space. 

 
(7) This implies that the interior region and the exterior region communicate through a 

“wall” of zero thickness. 
 
From these considerations, the following simplest example emerges, (as illustrated in Figure 3) 
 
Maxwell’s equations in free space are 
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OBEODH

OBOD

=
∂
∂

+×∇=
∂
∂

−×∇

=⋅∇=⋅∇
→

→
→

→

→→

tt

                                                     (3) 

 

For free space, oµ/BH
→→

=  and
→

= EoD ε
r

, and we use 
tie ω−

 for sinusoidal time dependence.  

For 0D,0 =⋅∇≠
→

k  and 0B =⋅∇
→

 no longer contain any information. We therefore have 

             
a) Infinite cylinder made of a                   b)  Same cylinder with a reactive (Xs) 

perfect conductor                                         coating on the surface  
 
         Figure 3. Geometry of the problem 
 
 
  0DH =+×∇

→→

ωi         or Eεω i-H 0=×∇
r

                        (4) 
 
    0BE =−×∇

→→

ωi           or HµωiE 0

rr
=×∇                                   (5) 

 
 
For two-dimensional problems, it is convenient to use the cylindrical coordinates ),,( zθρ  with 

both 
→

E  and 
→

B  independent of z, i.e., they are functions of ρ and θ only. 
 
For two-dimensional problems, the components 
 
 
  θρ BBEz ,,  (Magnetic fields are transverse   ⇒   TM case) 
                                         (6) 
and   θρ EEBz ,,       (Electric fields  are transverse    ⇒    TE case) 
 

x

z 

y 2a 
2a 

ρ 

θ 
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are decoupled from each other. We can choose to work with either set of three components; for 
definiteness, let us choose the first set. We thus set 
 
  000 === θρ EandEBz                                                                            (7) 
 
The other components are then related by 
 

  

( )

θ

ρ

ρ

θ

ω
ρ

ω
θρ

εµω
θ

ρ
ρρ

B
E

B1

E
B

B1

z i

i
E

i

z

zoo

=
∂
∂

−

=
∂
∂

−=⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
−

∂
∂

                                                                      (8) 

 
These equations hold both for the interior region ρ < a and for the exterior region ρ > a. 
 
It is natural to express both θρ BandB  in terms of zE . Let φ (ρ,θ) =  zE  , then 

  
θ
φ

ρωρ ∂
∂−

=
1B i     and  

ρ
φ

ωθ ∂
∂

=
iB                                                              (9) 

 
This φ satisfies the wave equation (Helmholtz equation)  ( ) 0),(22 =+∇ θρϕk , or 
 

  )(0),(11 2
2

2

2 ak ≠=⎥
⎦

⎤
⎢
⎣

⎡
+

∂
∂

+
∂
∂

∂
∂ ρθρφ

θρρ
ρ

ρρ
                                       (10) 

 
 
Once again, this holds everywhere except for ρ = a. 
 
We now turn to the important issue as to what we should put on the cylinder ρ = a, which is of 
zero thickness. There is very little choice.  We must put there something with surface 
impedance. Moreover, the surface must be a reactance, in order to avoid energy dissipation, as 
we have discussed earlier under (5). 
 
Let us skip the details at this point, because the result is precisely as expected, namely a delta 
function is added to equation (10): 
 

  ( ) ( ) )f(0,11 2
2

2

2 ρθρφρδα
θρρ

ρ
ρρ

allorka =⎥
⎦

⎤
⎢
⎣

⎡
+−−

∂
∂

+
∂
∂

∂
∂        (11) 

 
where α runs between 0 and + ∞ and has the units of inverse meter. Negative values of α are also 
allowed but do not seem to be useful to our understanding of the present problem of missile 
defense.  One can show that this parameter α  is given by 
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  )( 10 −= m
X s

µω
α     where  sX  is the surface reactance of the cylinder. 

 
When α  + ∞, then the interior region and the exterior region are no longer coupled. We are 
therefore primarily interested in large, positive value of α. 
 
Because of rotational symmetry, which holds for all values of α, Fourier series expression can be 
used to reduce the partial differential equation to a set of uncoupled ordinary differential 
equations. They are 
 

  ( ) ( ) 01 )(2
2

2

=⎥
⎦

⎤
⎢
⎣

⎡
+−−− ρφρδα

ρρ
ρ

ρρ
nkan

d
d

d
d        (for all ρ)                              (12) 

 
where n is an integer (or half integer for that matter), and it may be taken to be a non-negative  
integer without loss of generality. 
 
By the definition of the delta function, we have 
 
  )()()( )(')(')( aaa nnn αφφφ =−−+                                                                              (13) 
 

Of course )()()( )()()( aaa n
def

nn φφφ =−=+                                                                                (14) 
 
With the Sommerfeld radiation condition, we have, within irrelevant overall constants 
     

( ) =ρφ )(n  

( )
( )

( )
( ) afor
kaH
kH

afor
kaJ
kJ

n

n

n

n

≥

≤

ρ
ρ

ρ
ρ

)1(

)1(
                                        (15) 

   
 
 
The boundary condition above then gives 
 

  ( )
( )

( )
( ) α=−
kaJ
kaJ

k
kaH
kaH

k
n

n

n

n
'

)1(

')1(

                   (16) 

 

or  ( ) ( ) α=
kaHkaJ

ka
i

k
nn

)1(

2

          

 
 

( ) ( )
a
ikaHkaJ nn α

2)1( =           (17) 
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This is the desired answer. In the limit of α  + ∞, the above equation becomes 
 
  ( ) ( ) 0)1( =kaHkaJ nn             (18) 
 
This factorizes into   ( ) 0=kaJ n     and      ( ) 0)1( =kaH n  
 

( ) 0)1( =kaH n  gives the exterior resonance where k is complex 
 

  ( ) 0=kaJ n  gives the interior resonance where k is real 

This demonstrates explicitly that, in the limit α  ∞, the interior resonance and the exterior 
resonance are, as expected, separate and have nothing to do with each other. 
 
On the other hand, for finite values of  α, no matter how large, there is no such factorization, and the 
interior resonance and the exterior resonance are not separate. In particular, there is no fundamental 
difference between interior resonance and exterior resonance. They both “see infinity”. 
 
Let us study in more detail the case of large, positive value of α. 
 
In this case, the right-hand side of equation (17) is small, and we expect to be able to apply 
perturbation theory. 
 
Let k0 be the solution of 
 
  ( ) 00 =akJ n                                (19) 
 
Thus k0 is real and positive. We expand the desired resonance frequency k in terms of k0: 
 
Thus 
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                                (20) 
Similarly, we have 
 

  
( )

( ) ( )ak
a
akak

a
akakak

n

nn

0
'

n
1

0

1
0

YY

YY

α

α

+≈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++= L

                                       (21) 

 



 11

and hence 
 

  ( ) ( ) ( )ak
a
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the substitution into equation (17) gives 
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Therefore we get 

  ( ) ( )akakJa
k

nn 00
'1 Y

2
=                                 (25) 

 
It is very surprising that k1 is real. There must be a reason for this if this is true. Since ( )ak)(

n
'1H  is 

complex, there is no way for k2 to be real. 
 
 
 
 

4. Numerical Solution of Equation (17) 
 

In this section we determine the zeros of equation (17) which is reproduced below by denoting  
 z = x + i y = complex (ka) and A = aα  with A being a real number. 
 

   ( ) ( )
A
izHzJ nn

2)1( =                             (26) 

 
We have numerically solved the above equation (26) for the cases of n = 0, 1, 2 and 3 and for  
1 < A < 100.   We do know what happens for A = infinity when the above equation factorizes and 
the problem becomes that of finding the zeros of Bessel and Hankel functions. We are not 
particularly interested in the case of A = 0. In the case of A = 0, there is no wall and the problem 
becomes trivial.  
 
Before we present the roots of equation (26), the Hankel function is calculated in its principal 
Riemann sheet ( ππ <<− zarg ) for n = 0, 1, 2 and 3. The Hankel-function magnitudes are 
presented in Figures 4 and 5.  Figure 4 is for the cases of n = 0 and 1, while Figure 5 is for the cases 
of n = 2 and 3. 
 
 



 12

 
 
 
 
 
 
 

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7-7-7 -6-6 -5-5 -4-4 -3-3 -2-2 -1-1 00 11 22 33 44 55 66 77

1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0

1.51.5
1.01.0
0.50.5
0.00.0
-0.5-0.5
-1.0-1.0
-1.5-1.5
-2.0-2.0

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7-7-7 -6-6 -5-5 -4-4 -3-3 -2-2 -1-1 00 11 22 33 44 55 66 77

1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0

1.51.5
1.01.0
0.50.5
0.00.0
-0.5-0.5
-1.0-1.0
-1.5-1.5
-2.0-2.0

Contours of n = 0Contours of n = 0

Contours of n = 1Contours of n = 1

Real (ka)Real (ka)

Real (ka)Real (ka)

Im
 (k

a)
Im

 (k
a)

Im
 (k

a)
Im

 (k
a)

 
 
Figure 4.  Contours of Hankel functions of the first kind )kacomplex(H(1)

n =z for the cases of  
n = 0 and 1, showing the zeros and the branch point at the origin and the branch cut along the 

negative real axis 
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Figure 5.  Contours of Hankel functions of the first kind )kacomplex(H(1)

n =z for the cases of  
n = 2 and 3, showing the zeros and the branch point at the origin and the branch point along 

the negative real axis 
 
 

The location of the zeros in the complex z = ka plane agrees well with documented values in the 
literature for the Hankel functions [10, 11]. 
 
 
The trajectories of the roots of equation (26) and their numerical values are shown in Figures 6,7,8 
and 9 and Tables 1, 2 3 and 4, for n = 0, 1, 2 and 3. 
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Figure 6. Four roots of Equation (26) in the lower half of 
complex (ka) = z = (x + iy) plane for the case of n = 0
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Figure 6. Four roots of Equation (26) in the lower half of 
complex (ka) = z = (x + iy) plane for the case of n = 0
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Table 1.  Numerical values of the roots plotted in Figure 6 for the case of 
n = 0; (the values of the roots for the case A = infinity agree well with 
what is available in the literature)

Interior   Root 1 Interior    Root 2 Exterior    Root 1 Exterior    Root 2
A Re(ka) Im(ka) Re(ka) Im(ka) Re(ka) Im(ka) Re(ka) Im(ka)

1 1.32E+00 -1.14E+00 4.58E+00 -1.70E+00 -2.88E+00 -1.53E+00 -6.12E+00 -1.85E+00
2 1.49E+00 -7.84E-01 4.63E+00 -1.35E+00 -2.87E+00 -1.20E+00 -6.11E+00 -1.51E+00
4 1.68E+00 -4.88E-01 4.70E+00 -9.98E-01 -2.82E+00 -9.10E-01 -6.07E+00 -1.19E+00
6 1.79E+00 -3.46E-01 4.75E+00 -8.01E-01 -2.77E+00 -7.69E-01 -6.03E+00 -1.01E+00
8 1.87E+00 -2.61E-01 4.80E+00 -6.67E-01 -2.73E+00 -6.84E-01 -6.00E+00 -9.02E-01
10 1.93E+00 -2.05E-01 4.84E+00 -5.67E-01 -2.70E+00 -6.28E-01 -5.96E+00 -8.23E-01
20 2.11E+00 -8.35E-02 5.00E+00 -2.98E-01 -2.61E+00 -4.96E-01 -5.86E+00 -6.28E-01
30 2.19E+00 -4.48E-02 5.10E+00 -1.82E-01 -2.57E+00 -4.44E-01 -5.80E+00 -5.46E-01
40 2.24E+00 -2.77E-02 5.17E+00 -1.21E-01 -2.54E+00 -4.16E-01 -5.76E+00 -4.99E-01
50 2.27E+00 -1.88E-02 5.23E+00 -8.62E-02 -2.52E+00 -3.99E-01 -5.73E+00 -4.69E-01
60 2.29E+00 -1.36E-02 5.27E+00 -6.41E-02 -2.51E+00 -3.87E-01 -5.71E+00 -4.48E-01
70 2.30E+00 -1.02E-02 5.30E+00 -4.93E-02 -2.50E+00 -3.79E-01 -5.69E+00 -4.32E-01
80 2.31E+00 -7.99E-03 5.32E+00 -3.91E-02 -2.49E+00 -3.73E-01 -5.67E+00 -4.20E-01
90 2.32E+00 -6.41E-03 5.34E+00 -3.17E-02 -2.48E+00 -3.68E-01 -5.66E+00 -4.11E-01

100 2.33E+00 -5.25E-03 5.36E+00 -2.62E-02 -2.47E+00 -3.65E-01 -5.65E+00 -4.03E-01

infinity 2.4048 0 5.5201 0 -2.404 -0.341 -5.52 -0.345
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Figure 7. Four roots of Equation (26) in the lower half of  
complex (ka) = z = (x + iy) plane for the case of n = 1. 

 
 
 

Interior     Root 1 Interior   Root 2 Exterior    Root 1 Exterior   Root 2
A Re(ka) Im(ka) Re(ka) Im(ka) Re(ka) Im(ka) Re(ka) Im(ka)

1 2.80E+00 -1.53E+00 6.09E+00 -1.85E+00 -8.01E-01 -1.49E+00 -4.40E+00 -1.74E+00
2 2.88E+00 -1.15E+00 6.13E+00 -1.50E+00 -7.25E-01 -1.17E+00 -4.39E+00 -1.40E+00
4 3.00E+00 -7.85E-01 6.18E+00 -1.14E+00 -6.31E-01 -9.31E-01 -4.34E+00 -1.08E+00
6 3.09E+00 -5.93E-01 6.23E+00 -9.41E-01 -5.80E-01 -8.30E-01 -4.29E+00 -9.12E-01
8 3.16E+00 -4.69E-01 6.26E+00 -8.01E-01 -5.49E-01 -7.74E-01 -4.25E+00 -8.11E-01
10 3.21E+00 -3.82E-01 6.30E+00 -6.94E-01 -5.27E-01 -7.39E-01 -4.22E+00 -7.41E-01
20 3.40E+00 -1.74E-01 6.43E+00 -3.94E-01 -4.79E-01 -6.62E-01 -4.11E+00 -5.74E-01
30 3.51E+00 -9.88E-02 6.53E+00 -2.54E-01 -4.60E-01 -6.35E-01 -4.06E+00 -5.06E-01
40 3.57E+00 -6.30E-02 6.61E+00 -1.75E-01 -4.50E-01 -6.21E-01 -4.02E+00 -4.68E-01
50 3.62E+00 -4.35E-02 6.66E+00 -1.27E-01 -4.45E-01 -6.13E-01 -4.00E+00 -4.44E-01
60 3.65E+00 -3.18E-02 6.71E+00 -9.63E-02 -4.40E-01 -6.07E-01 -3.98E+00 -4.28E-01
70 3.67E+00 -2.42E-02 6.74E+00 -7.50E-02 -4.38E-01 -6.03E-01 -3.96E+00 -4.16E-01
80 3.69E+00 -1.90E-02 6.77E+00 -6.00E-02 -4.35E-01 -6.00E-01 -3.95E+00 -4.06E-01
90 3.71E+00 -1.53E-02 6.79E+00 -4.90E-02 -4.34E-01 -5.97E-01 -3.94E+00 -3.99E-01

100 3.72E+00 -1.26E-02 6.81E+00 -4.07E-02 -4.32E-01 -5.95E-01 -3.93E+00 -3.94E-01

Infinity 3.8317 0 7.0156 0 -0.419 -0.577 -3.832 -0.355  
 
 

Table 2.  Numerical values of the roots plotted in Figure 7 for the case of n = 1; (the values of 
the roots for the case A = infinity agree well with what is available in the literature) 
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Figure 8. Four roots of Equation (26 ) in the lower half of 
complex (ka) = z = (x + iy) plane for the case of n = 2.
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Exterior    Root 1 Interior   Root 1 Exterior   Root 2 Exterior   Root 3
A Re(ka) Im(ka) Re(ka) Im(ka) Re(ka) Im(ka) Re(ka) Im(ka)

1 6.50E-01 -2.27E+00 4.11E+00 -1.79E+00 -2.12E+00 -1.93E+00 -5.78E+00 -1.91E+00
2 6.09E-01 -2.01E+00 4.16E+00 -1.39E+00 -1.98E+00 -1.59E+00 -5.76E+00 -1.55E+00
4 5.65E-01 -1.79E+00 4.24E+00 -9.96E-01 -1.82E+00 -1.30E+00 -5.71E+00 -1.21E+00
6 5.41E-01 -1.67E+00 4.31E+00 -7.77E-01 -1.72E+00 -1.18E+00 -5.67E+00 -1.04E+00
8 5.24E-01 -1.61E+00 4.37E+00 -6.32E-01 -1.65E+00 -1.10E+00 -5.62E+00 -9.21E-01

10 5.12E-01 -1.56E+00 4.42E+00 -5.27E-01 -1.60E+00 -1.06E+00 -5.59E+00 -8.41E-01
20 4.80E-01 -1.44E+00 4.61E+00 -2.60E-01 -1.48E+00 -9.55E-01 -5.47E+00 -6.45E-01
30 4.66E-01 -1.40E+00 4.73E+00 -1.54E-01 -1.44E+00 -9.18E-01 -5.41E+00 -5.64E-01
40 4.58E-01 -1.37E+00 4.80E+00 -1.01E-01 -1.41E+00 -8.98E-01 -5.37E+00 -5.19E-01
50 4.53E-01 -1.35E+00 4.86E+00 -7.07E-02 -1.39E+00 -8.86E-01 -5.34E+00 -4.89E-01
60 4.50E-01 -1.34E+00 4.90E+00 -5.22E-02 -1.38E+00 -8.78E-01 -5.32E+00 -4.68E-01
70 4.47E-01 -1.34E+00 4.93E+00 -4.00E-02 -1.37E+00 -8.72E-01 -5.30E+00 -4.53E-01
80 4.45E-01 -1.33E+00 4.95E+00 -3.16E-02 -1.37E+00 -8.68E-01 -5.29E+00 -4.42E-01
90 4.43E-01 -1.32E+00 4.97E+00 -2.56E-02 -1.36E+00 -8.65E-01 -5.28E+00 -4.32E-01
100 4.42E-01 -1.32E+00 4.98E+00 -2.11E-02 -1.36E+00 -8.62E-01 -5.27E+00 -4.25E-01

Infinity 0.429 -1.281 5.1356 0 -1.317 -0.836 -5.138 -0.372  
 

Table 3.  Numerical values of the roots plotted in Figure 8 for the case of n = 2; (the values of 
the roots for the case A = infinity agree well with what is available in the literature) 
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Figure 9. Four roots of Equation (26 ) in the lower half of 
complex (ka) = z = (x + iy) plane for the case of n = 3.
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Exterior   Root 1 Interior   Root 1 Exterior    Root 2 Exterior    Root 3 Exterior   Root 4
A Re(ka) Im(ka) Re(ka) Im(ka) Re(ka) Im(ka) Re(ka) Im(ka) Re(ka) Im(ka)

1 1.83E+00 -2.76E+00 5.35E+00 -2.00E+00 -5.92E-01 -3.01E+00 -3.32E+00 -2.25E+00 -7.09E+00 -2.06E+00
2 1.74E+00 -2.50E+00 5.37E+00 -1.58E+00 -5.64E-01 -2.77E+00 -3.16E+00 -1.88E+00 -7.06E+00 -1.69E+00
4 1.65E+00 -2.26E+00 5.44E+00 -1.17E+00 -5.35E-01 -2.55E+00 -2.96E+00 -1.57E+00 -7.01E+00 -1.34E+00
6 1.59E+00 -2.14E+00 5.49E+00 -9.30E-01 -5.19E-01 -2.44E+00 -2.83E+00 -1.42E+00 -6.97E+00 -1.14E+00
8 1.55E+00 -2.07E+00 5.55E+00 -7.70E-01 -5.08E-01 -2.36E+00 -2.74E+00 -1.33E+00 -6.93E+00 -1.02E+00
10 1.52E+00 -2.02E+00 5.60E+00 -6.52E-01 -4.99E-01 -2.31E+00 -2.68E+00 -1.27E+00 -6.89E+00 -9.30E-01
20 1.45E+00 -1.88E+00 5.78E+00 -3.40E-01 -4.76E-01 -2.18E+00 -2.51E+00 -1.15E+00 -6.77E+00 -7.10E-01
30 1.41E+00 -1.83E+00 5.90E+00 -2.08E-01 -4.65E-01 -2.12E+00 -2.43E+00 -1.11E+00 -6.70E+00 -6.17E-01
40 1.39E+00 -1.80E+00 5.98E+00 -1.39E-01 -4.58E-01 -2.09E+00 -2.39E+00 -1.08E+00 -6.65E+00 -5.65E-01
50 1.38E+00 -1.78E+00 6.04E+00 -9.94E-02 -4.54E-01 -2.06E+00 -2.37E+00 -1.07E+00 -6.62E+00 -5.31E-01
60 1.37E+00 -1.76E+00 6.09E+00 -7.41E-02 -4.51E-01 -2.05E+00 -2.35E+00 -1.06E+00 -6.60E+00 -5.07E-01
70 1.36E+00 -1.75E+00 6.12E+00 -5.72E-02 -4.48E-01 -2.04E+00 -2.33E+00 -1.05E+00 -6.58E+00 -4.89E-01
80 1.35E+00 -1.74E+00 6.15E+00 -4.55E-02 -4.47E-01 -2.03E+00 -2.32E+00 -1.05E+00 -6.56E+00 -4.75E-01
90 1.35E+00 -1.74E+00 6.17E+00 -3.69E-02 -4.45E-01 -2.02E+00 -2.32E+00 -1.04E+00 -6.55E+00 -4.64E-01

100 1.35E+00 -1.73E+00 6.19E+00 -3.06E-02 -4.44E-01 -2.02E+00 -2.31E+00 -1.04E+00 -6.54E+00 -4.55E-01

Infinity 1.308 -1.682 6.3802 0 -0.432 -1.959 -2.243 -1.007 -6.383 -0.389  
 

Table 4.  Numerical values of the roots plotted in Figure 9 for the case of n = 3; (the values of 
the roots for the case A = infinity agree well with what is available in the literature) 
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5. Summarizing Remarks 

 
 
From this simple example, it is evident that when points of entry for EM energy exist, the interior 
and exterior resonances of the target system are qualitatively the same. In other words, they both 
have complex resonances in the complex frequency plane. 
 
 In the limit of the parameter A (characterizing the coupling of two regions)  tending to 
infinity which represents the case of uncoupled interior and exterior resonances, the interior 
resonances are given by real values of (ka), and the exterior resonances are complex. In the context 
of missile defense, the realistic values of the parameter A are likely to be large but not infinity (no 
EM shield is perfect). In this case, the interior resonances become complex, but still in the proximity 
of the positive real axis in the fourth quadrant of the complex k plane. It is noted that the coupling 
coefficients of such resonances are necessarily small [12] and approaching zero for resonances on 
the positive real axis of the complex k plane. This is a signal/noise issue in processing the return 
signal resulting from illumination of the target system with a hyperband signal, or the first of the 
double pulses.  
 
In our two pulse procedure, the return signal from the first Hyperband illumination is analyzed for 
the resonance mix. We then look for identifying the interior resonances which are likely to be in the 
fourth quadrant of the complex k plane with small imaginary parts. In the simple problem considered 
here, there are no difficulties in separating the interior and exterior resonances. This delineation of 
interior and exterior resonances is likely to hold for the realistic missile return signals. Identification 
of the interior resonances leads to the more important second-pulse excitation (narrow or moderate 
band signals) with its energy concentrated in the interior resonance bands. 
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