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Abstract 
 
This paper addresses the question of integrating voltage source terms for generating equivalent 
distributed sources in a transmission line model. This problem is of particular interest when applying 
Agrawal’s Field-to-Transmission-Line model in a numerical modelling procedure involving a 3D-full wave 
solver with a very small mesh-cell size and a MTLN solver based on the BLT resolution. It particularly 
stresses the importance of load conditions at the ends of the transmission-line conductors and shows that 
this integration is not valid for low-impedance conditions of the transmission-line. However, it shows that 
an equivalent source, valid for any type of load conditions on the transmission line can be defined. The 
demonstration is made by developing analytical solutions on a single-conductor transmission-line model 
loaded in 3 specific conditions: short-circuit/short-circuit, matched/matched, short-circuit/open-circuit. The 
paper shows that low frequency analytical solutions of BLT-based MTLN formulations are entirely 
compatible with equivalent electrical circuit formulations. The equation derivations are oriented in such a 
way to verify the conclusions on the validity of the distributed-sources integration approach. Illustrations 
are made with the CRIPTE code for the 3 specific load and various source-distribution conditions. 
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1. MOTIVATION 

1.1. MTLN theory and Field-to-Transmission-Line 

Multiconductor Transmission-Line-Network (MTLN) theory has proved in the past 20 years its efficiency 
for modelling realistic cable network architectures [1]. The BLT equation, formulated in the frequency 
domain, provides an efficient way to make the resolution of large wiring problems installed in 3D 
structures, based on EM Topology principles [2]. In such models the cable networks can be modelled as 
topological networks in which “tubes” represent homogeneous sections of MTLs and junctions represent 
connection between MTLs or end-load conditions of MTLs. Nowadays, it is a method particularly indicated 
to address EMC and propagation on EWIS (Electrical Wiring Interconnection System) as defined in the 
recent subpart H of aeronautical Certification Specification (Part 21, [3]).  
 
Field-to-Transmission-Line (FTL) theory provides several models in order to derive the distributed voltage 
and current generators to be applied in MTLs models when they are submitted to EM field illuminations 
[4]. All those models are based on the determination of vector components of incident EM fields, that is to 
say EM fields in the absence of the transmission-line, taken at the location of the route of the cables. 
Among them, Agrawal’s model is particularly interesting for numerical modelling since only one voltage 
generator is required (no current generator is required). Despite several drawbacks especially due to the 
weakness of this field component (especially at low frequency or very close to structure walls, the Agrawal 
model has become the basis of a modelling procedure in which 3D solvers make the calculation of the 
incident fields on cable routes and the MTLN solvers make the resolution of the cable network response 
([5], [6], [7]). Nowadays, such procedures are being transferred to industry with automatization of the pre-
processing of the input data required for the description of the wiring topology and the description of the 
cable routes in 3D models. 

1.2. Problems observed when optimizing voltage source distribution in Agrawal’s models 

In Agrawal’s model, these generators are equal to the components of the incident electric field tangent to 
the route of the cable, which does not require any information on the local geometry of the transmission-
line such as for the other models requiring transverse or normal components of the electric field (for 
example Taylor’s [4] or Rachidi’s models [8]). 
 
Nevertheless, when applying Agrawal’s model, the user has to keep in mind two important requirements: 
 

 All tangent electric fields have to be collected on the routes of the wiring, especially at the level of 
the ends of the wiring. This requirement is mandatory in order to respect Faraday’s law, 

 This FTL model directly calculates the electrical currents but only calculates the so called 
“scattered voltages”

1
. 

 
In the implementation of the numerical procedure with a 3D solver, the tangent electrical fields are 
distributed as constant values applied on intervals. As native data directly coming from the 3D calculation, 
the intervals are directly coming from the sampling of the mesh used for the 3D calculation. Since 3D 

                                                           
1
 Theoretically, the total voltage is obtained by adding the normal component of the electric field which brings back this model to the 

drawback mentioned for the other FTL models. However, from a practical point of view of real wiring installations, the end voltages 
are generally measured at the level of connectors for which the distance to the reference ground is very small and at which level the 
scattered voltage can be therefore approximated to the total voltage. By the way, in order to avoid any error in the determination of 
the voltage, the safest practice is to determine the total voltage at the ends of networks by multiplying the current by the end-

impedance. 



4 
 

calculations are improving with capabilities of computers, meshed models become more and more precise 
and mesh cells smaller and smaller. The number of samples of distributed voltage sources to be 
transferred to MTLs models according to FTL becomes thereby very large and we may ask ourselves if 
such a sampling is not over-dimensioned with respect to the frequency range of interest for solving 
transmission-line equations. In particular, taking as a basis the generally admitted quasi static 

approximation based on the /10 sampling required in 3D calculation, we may think of reducing this 

number of intervals (i.e. having cells smaller than /10 is sufficient to neglect propagation in the cell and 
the value in the cell may be approached as constant). The number “10” is a typical value but it may vary 
depending on the numerical method. For those distributed generators, one reasonable idea is to integrate 
the generators coming from the 3D calculation on new intervals, optimized in size, as proposed in [9]. In 
this paper, we want to address the question of the validity of this approximation  
 
In order to carry out this investigation, we can think of a simple model in order to simulate this 
phenomenon and confirm these two hypotheses. Consequently, in this paper, we consider a simple 
transmission-line made of only one conductor on which we apply several end-load and distributed 
generator configurations. 
 
In this paper, we will call: 
- “Low Frequency” (LF), the frequency regime for which the overall length of the line is much smaller than 

the wavelength; it is also the regime for which the transmission-line can be modelled by lumped circuit 
elements. It refers to frequencies before the first resonance of the line. 

- “High Frequency” (HF), the frequency regime for which the overall length becomes in the same order of 
magnitude as the wavelength or larger than the wavelength; it is the regime for which the 
transmission-line modelling requires taking into account its propagation characteristics (propagation 
matrix, characteristic impedance). It refers to all frequencies when the line resonates. 
 

The application in this paper is made with a 2m-long transmission line with various load conditions. 

Therefore, the first smallest resonance frequency is when the length of the line is equal to /4 

(=wavelength), i.e. 35 MHz. In order to be outside of the variation of this first smallest resonance 
frequency, the limit of the LF regime must be taken under this resonance frequency. This is why the LF 
frequency limit is chosen at 10 MHz in our example. 

1.3. Structure of this document 

Section 2 introduces the one-conductor transmission-line model as well as the BLT general solution that 
will be used in the following sections. This section also introduces a generic example of a transmission-
line made of a wire over a ground plane that will be used in the illustrations of the results. 
 
Section 3 presents several analytical solutions of source-waves to be used in the general solution 
developed in section 2, for various configurations of constant per-unit-length (p.u.l.) voltage source. Since 
the motivation of this paper is to investigate Agrawal’s numerical implementation, only distributed voltage 
sources will be considered in this paper. 
 
Section 4 introduces several load conditions of the transmission-line and summarizes the wideband BLT 
solution, for the various source wave configurations presented in section 2. We consider two extreme end-
conditions: a short-circuit/short-circuit configuration and a short-circuit/open circuit configuration. In 
addition, we also consider a matched/matched configuration as a transition between the two extreme 
conditions. 
 
Section 5 takes the results of section 4 and studies the low frequency variations of currents and voltages 
at both ends of the transmission-line. The question of the independence of the response as a function of 
the position of the source is asked. 
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Section 6 takes the results of section 5 and considers the effect of distributing  p.u.l. sources of various 
constant values on intervals and asks the question of simplifying this distribution at low frequency by 
integrating them. It finally addresses the question of a possible equivalent source model for low frequency 
approximation valid for any load configuration and any source.  
 
Finally, section 7 concludes on the rules for integrating voltage sources on a transmission-line in order to 
lower the number of voltage generators.  
The reference validations displayed in this paper are made numerically with the CRIPTE code [10]. This 
software has been validated among many applications in the past 20 years. 

2.  PRESENTATION OF THE PROBLEM 

2.1. Single conductor transmission-line description 

In this paper, we consider a single conductor transmission-line connecting two end-impedances Z1 and Z2. 
Its length is ℓ. The transmission-line will represent any type of geometry (two wires, wire over a ground 
plane, coaxial, shielded). On this transmission-line, we define two opposite directions of propagation z1 
and z2. According to these two directions of propagation, we define voltage and current quantities V1(z1) 
and I1(z1) on the one hand and V2(z2) and I2(z2) on the other hand. At each end, those quantities take the 
value V1(0), I1(0), V2(ℓ) and I2(ℓ), at the origin and the remote extremities according to z1 and z2 

respectively. On this tube we consider also a distribution of p.u.l. voltage sources Vs(z) that will be written 
Vs1(z1) and Vs2(z2) according to z1 and z2 directions of propagation.  
 
At a given position z2 = ℓ-z1, we can write: 
 
Vs1(z1) = -Vs2(z2) = -Vs2(ℓ-z1) 
I1(z1) = -I2(z2) 
V1(z1) = V2(z2) 

(1)   

 
Since in this paper the transmission-line problem is supposed to simulate voltage sources coming from 
Agrawal’s model, note that V1(z) and V2(z) must be understood as scattered voltages as mentioned in 
paragraph 1.2. As specified in the introduction, we do not consider any current sources. 
 
In Figure 1, we consider as an illustration a transmission-line made of a wire in free space over an infinite 
perfectly conducting ground plane (height of wire = 10 cm, radius of wire = 1 mm). The following values 
will be taken for the numerical and mathematical applications: 
 
- Per-unit-length inductance: L = 0.6 µH/m 
- Per-unit-length capacitance: C = 18.5 pF/m (transmission-line in free space) 

- Per-unit-length resistance: R = 1.1 m/m 
- Per-unit-length conductance: G = 0 S/m 
- Length : ℓ = 2 m 
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Figure 1 : One wire transmission-line example used for validations 

 
From the above values we can determine: 

 




jC

jLR
Zc


  (2)   

the characteristic impedance and its usual approximation at high frequency 
C

L
Zc  = 180  

LC
v

1
  (3)   

 

the propagation velocity and its value v = 3.10
8
 m/s, as expected in free space 

    jLRCj  .  (4)   

 

the propagation coefficient of the transmission-line with its usual high frequency approximation: 

     
v

LCjLRCj
RL





 


.  (5)   

 
Note that for the validations, we chose to have only resistance losses and no conductance losses (G=0), 
which covers a large number of situations of transmission-lines. We’ll see later on in this paper that the 

interest of this approximation is that we have 0
0
 


 . 

2.2. BLT general formulation 

The wave formulation of the BLT equation as defined by C.E. Baum [1] can be written as follows: 
 

]][[)]0(])[][[]([ sWSWSId   (6)   
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where: 
 

 [Id] represents the unit matrix, 

 [S] the network supermatrix, made of the S-parameters of the junctions organized in matrix blocks 
with respect to the topology of the network, 

 [] the network propagation supermatrix made of the propagation matrices of the tubes, 

 [W(0)] the outgoing waves supervector of the network, 

 [Ws] the source-wave supervector. 

2.3. BLT formulation for the single conductor transmission-line model 

Figure 2 represents the topological network of the one-conductor transmission-line described in Figure 1. 
It is made of a single tube connected to two junctions J1 and J2, representing the two end-impedances Z1 
and Z2. W1(z1) is the wave propagating along the z1 direction and W2(z2) is the wave propagating along the 
z2 direction. W1(0) and W2(0) on the one hand, and W1(ℓ) and W2(ℓ) on the other hand are the waves at the 
origin and the end of the directions of propagation z1 and z2 respectively. WS1 and Ws2 represent the 
source waves according to z1 and z2 derived from the collections of the various p.u.l. voltage generators 
Vs1(z1) (and Vs2(z2)), according to z1 (and z2). 
 

 
Figure 2 : Topological network and propagation waves for a one-tube topological network 

 

We call: 
 

-  the propagation matrix of the tube with  e , with  the propagation coefficient of the tube. 

- S1 and S2 the two S-parameters of junctions J1 and J2. 
 
The BLT equation of this particular network can be derived in the following matrix form: 

 
  






































































2

1

2

1

2

1

2

1

0

0

0

0

0

0

0

0

10

01

s

s

W

W

S

S

W

W

S

S
 (7)   

 
Equation (7) leads to the general solutions of W1(0) and W2(0): 

   
   








12212

21211

00

00

WsSWWS

WsSWSW
 (8)   
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From the resolution of this system of two equations providing the two unknowns W1(0) and W2(0) 
solutions, we can derive the expressions of W1(ℓ) and W2(ℓ) from either the two propagation equations: 
 

222

111

)0(.)(

)0(.)(

s

s

WWW

WWW








 (9)   

 
or the two scattering equations at junctions J1 and J2. 
 

)0(.)(

)0(.)(

1

1

12

2

1

21

WSW

WSW












 (10)   

 
From the solution of the waves obtained in section 2 and the various source-wave solutions derived in 
section 3, we can derive the explicit solutions of end-voltages and currents for various end-load and 
voltage source distribution conditions. 
 
Classically, the combination of W1(0), W2(0), W1(ℓ) and W2(ℓ) solutions in equations (8), (9) and (10) allows 
the derivations of voltages and currents at each extremity of the transmission-line, V1(0), V2(0), V1(ℓ) and 
V2(ℓ). We have: 
 

 
   

2

0
0 21

1

WW
V


  (11)   

 
   

2

0
0 12

2

WW
V


  (12)   

 
   

cZ

WW
I

2

0
0 21

1




 
(13)   

 
   

cZ

WW
I

2

0
0 12

2




 
(14)   

 
where Zc represents the characteristic impedance of the transmission-line. 
 
Since the general explicit expression of V1(0), V2(0), V1(ℓ) and V2(ℓ) is quite complex, we calculated them 
by deriving specifically W1(0), W2(0), W1(ℓ) and W2(ℓ) for each specific configuration of end-loads. 

3. BI DIRECTIONAL SOURCE WAVE CALCULATION FOR VARIOUS CASES 

3.1. General definition of Ws 



















0

222
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2

0

111

)(

1

)(

)(

2

1

dzzVeW

dzzVeW

s

z

s

s

z

s





 
(15)   
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Where Vs1(z1) and Vs2(z2) represent the p.u.l. values of the distributed voltage sources Vs(z) according the 
directions of propagation z1 and z2. Note that Ws1 and Ws2 have dimensions of volts as well. 

3.2. Delta voltage source located at a position d 

We consider a Dirac (“delta”) source of amplitude Vo located at a position “d”, between 0 and ℓ.  
 
In the sense of the theory of distributions, we have: 

)()()(

)()(

202122

1011

zdlVzlVzV

zdVzV

ss

s








 (16)   

 

Equations (15) give: 

0

0

2202

0

0

110

)(

1

)(

)(

2

1

VedzzdVeW

VedzzdVeW

dz

s

dz

s



























 (17)   

 
In particular, when d = 0, the source is localized at the origin of the transmission-line (J1) and we have: 

02

01

VW

VW

s

s




 (18)   

 
When d = ℓ, the source is localized at the remote end of the transmission-line (J2) and we have: 

02

01

VW

VW

s

s




 (19)   

3.3. Constant voltage source located between d1 and d2 

3.3.1. General expression 
 

Now we consider a distribution of constant per-unit-length (p.u.l.) generators Vs(z1) (i.e. Vs(z2) as well) 
distributed between the position d1 and the position d2, with d2> d1 and with a total voltage equal to V0.  

   
i

ss

V
zVzV




2

0
2211  (20)   

Both d1 and d2 are between 0 and ℓ. For this, we consider an interval such that: 
 
d2 - d1 = 2.∆ℓi , and a medium position 
ℓ I = d1+∆ℓi = (d1+d2)/2 

(21)   

 
Then d1 and d2 take the following values: 
 
d1 = ℓi-∆ℓi, and 
d2 = ℓi+∆ℓi 

(22)   
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Equations (15) become: 

 
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(23)   

 

3.3.2. Equivalence with a Dirac source 
 

We consider a Dirac source of amplitude Vsd, positioned in d = ℓi = (d1+d2)/2. Equations (17) become 

1sW and 

2sW  and are written as: 

i

i

i

eVdzzeVW

eVdzzeVW

sdi

z

sds
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z

sds
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

0
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(24)   

 
Comparing equations (23) and (24), we see that a total voltage source distributed between d1 = ℓi-∆ℓi and 
d2 = ℓi+∆ℓi is equivalent to a Dirac source located in ℓi and having an amplitude: 

 i
ii

sd

V
ee

V
V ii 











 




sinh)(

2

00  (25)   

 
As verification, from equations (23), we consider ∆ℓi = ℓ/2 and ℓi = ℓ/2, we find the expression of the source 
wave when a total voltage source V0 is distributed all along ℓ: 

1
0

2

0
1

)1(

)1(

ss

s

W
V

W

V
W












 (26)   

And, from equation (25), the amplitude of the equivalent Dirac source located at d = ℓ/2 is equal to: 

 





1.)( 0220







 V
ee

V
Vsd  (27)   

4. BLT SOLUTIONS OF A ONE-CONDUCTOR TRANSMISSION-LINE WITH VARIOUS LOAD 
AND SOURCE CONDITIONS 
 
In this section, we consider various conditions of distributed p.u.l. voltage Vs1(z) sources distributed 
between z1 = d1 and z1 = d2. Those two positions are defined as in (22) as a function of a center position ℓi 

between z1 and z2, the length of the distribution section been given by 2.ℓi as in (21). 
 
We also suppose that the total source integrated on the whole source distribution section is equal to V0. 
We can therefore write: 

  0111

2

1

VdzzV
d

d
s   (28)   
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Table 1 summarizes the results obtained on the 3 load configurations addressed in this paper: 
 

 SC/SC (S1 = S2 = -1) for which we have a short circuit both on J1 and J2. This configuration is the 
one for which the current is maximum at both ends. The resolution of the BLT equation directly 
gives V1(0) = V2(0) = 0 

 SC/OC (S1 = -1 and S2 = +1) for which we have a short-circuit on J1 and an open circuit on J2. 
This configuration is the one for which the I1(0) current is minimum on J1. The resolution of the 
BLT equation directly gives V1(0) = 0 and I2(0) = 0 

 Zc/Zc (S1 = S2 = 0) is a medium configuration in the middle of the two previous extreme SC/SC ad 
SC/OC configurations, for which we have matched conditions at both on J1 and J2. The resolution 
of the BLT equation directly gives W1(0) = 0 and W2(0) = 0 

 
The p.u.l. source distribution configurations addressed are: 
 

 Source config. 1: Distributed between z1 = d1 and z1 = d2 (general formula) 

 Source config. 2: Dirac source localized at the origin of the transmission-line. So we have:  
∆ℓi  0 and ℓi = 0 

 Source config. 3: Dirac source localized in the middle of the transmission-line. So we have: 
 ∆ℓi  0 and ℓi = ℓ/2 

 Source config. 4: Distributed on the whole length ℓ of the transmission-line. So we have: 
 d1 = 0 and d2 = ℓ (general formula) 

 
Derivation of the solutions can take advantage of the equivalent source model defined in (27). For Dirac 
source configurations (Source config. 1 and Source config. 2), we make ∆ℓi  0. We note that the result 
does not depend on ℓi and we have: 

  00

0 sinh V
V

V
i

i

i

sd  











 (29)   

 
In Table 1 we can make the observations that for sources distributed on the whole length of the 
transmission-line, we find exactly the same solution, except a different sign for the SC/SC and Zc/Zc load 
configurations, due to the symmetry of the problem. 
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Table 1 : End voltages and currents for various source and load configurations of the transmission-line 
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5. LOW FREQUENCY APPROXIMATION FOR VARIOUS LOAD AND SOURCE CONDITIONS 
 

5.1. Low frequency derivations 

In the following section, we’ll take the results of Table 1 and make the approximation   0, with  = 2f, f 

being the frequency. When   0, () in (4) can be approximated as: 
 

    0.
0
 


 jLRCj  (46)   

 
and: 

ze z 


  


 1
0

.
 (47)   

 
Using the low frequency approximation of the exponential in (27), we have:  

00

0 )(
2

Vee
V

V ii

i

sd  
















 (48)   

 
We note also the following relations: 

  LjRZc  .  (49)   




jC
Zc

  (50)   

(remember that our models supposes that G = 0, see paragraph 2.1). 
 
Table 2 presents the various low frequency approximation results derived from Table 1. 



14 
 

  
 
Table 2: Low frequency approximation of end voltages and currents for various source and load configurations of the 
transmission-line 
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5.2. Low frequency SC/SC analysis 

In SC/SC configuration, the low frequency expressions of I1(0) and I2(0) do not depend on the positions d1 

and d2 (51). The expression obtained is equal to the resolution of an electrical circuit model, equivalent at 
low frequency, in which the impedance of the loop is made by the total impedance of the transmission-line 
only, Z = (R+ jω)ℓ, since the end loads are short-circuits (Figure 3). 

 
 

Figure 3 : Equivalent electrical circuit at low frequency for the SC/SC configuration 

 

Figure 4 shows a comparison of the result of the currents at J1 and J2 for the one-conductor transmission-
line presented in Figure 1 in the following source configurations: 
 

 CRIPTE calculation for a Dirac source V0 = 1V localized at the beginning of the transmission-line 
(legend “Loc Source Left”),  

 CRIPTE calculation for a Dirac source V0 = 1V localized in the middle of the transmission-line 
(legend “Loc Source Middle”),  

 CRIPTE calculation for a total source V0 = 1V distributed along ℓ (legend “Dist Source”),  

 Analytical calculation for the low frequency approximation of the 3 previously mentioned source 
configurations, (legend “BF approx.”). 

 

 
|I1(0)| 

 
|I2(0)| 

Figure 4 : Comparisons of magnitudes of currents I1(0) (left) and I2(0) (right) obtained in SC/SC configuration (V0=1V) 

The following observations can be made: 
 

 In the configuration of the Dirac source excitation at the level of J1, the currents present typical 
responses of near-end response (with zeros between resonances) and far-end response (with 
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minima between resonances) signal observed on transmission-lines excited at one extremity 
(equations (31)).  

 In the configuration of the Dirac source excitation in the middle of the transmission-line, we 
confirm that currents at both extremities are similar (equations (32)). We also verify that 
responses for local excitation at the beginning and in the middle have respectively resonances in 

/2 and . 

 In the distributed source configuration, we confirm that the currents at each extremity are equal in 
module and do not present any resonance (equations (33)). The cutoff frequency is equal to 

L

R
fc

2


L

R
fc

2
 = 292 Hz (with the p.u.l. parameters defined in 2.1, and corresponds to the 

cutoff frequency of the equivalent circuit. At low frequency, the plateau corresponds to the 

resistance regime and  
.

0 0
1

R

V
I  . Over cf , the current varies as  

.
0 0

1
Lj

V
I


  and is 

dominated by the inductance. 

 Finally, at low frequency (before resonance regime, i.e. under about 10 MHz), the four plots are 
superposed which demonstrates that at low frequency, the result does not depend on the position 
of the source (equations (51)). 

 

5.3. Low frequency Zc/Zc analysis 

Accounting for (30) to (33), we can show that both types of solutions for localized and distributed 
generators lead to the same approximations at low frequency. 
 
In terms of equivalent electrical circuit, the results are equivalent to solve the electrical circuit model of the 
line loop loaded by two Zc loads and excited by a series voltage generator V0. The voltage obtained on 
each load is equal in amplitude and opposite (Figure 5). 

 
Figure 5 : Equivalent electrical circuit at low frequency for the Zc/Zc configuration 

 

Figure 6 shows a comparison of the result of the current at J1 of the one-conductor transmission-line 
presented in Figure 1 in the following source configurations: 
 

 CRIPTE calculation for a Dirac source V0 localized at the beginning of the transmission-line (legend 
“Loc Source Left”), 

 CRIPTE calculation for a Dirac source V0 localized in the Middle of the transmission-line (legend 
“Loc Source Middle”), 

 CRIPTE calculation for a total source V0 distributed along ℓ, (legend “Dist Source”), 

 Analytical calculation for the low frequency approximation (legend “BF approx.”). 
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|I1(0)| 
 

|I2(0)| 

 
|V1(0)| 

 
|V2(0)| 

Figure 6 : Comparisons of magnitudes of currents and voltages obtained in Zc/Zc configuration (V0=1V) 

 

The following observations can be made: 
 

 At low frequency, the four plots are superposed which demonstrates that at low frequency, the 
result does not depend on the position of the source (equations). 

 At low frequency, voltages are constant as expected in (52) whereas currents are varying with 
frequency (53) because of the dependence of Zc with frequency itself at low frequency 

(
C

L

C

R
jZc 


). After a cutoff frequency equal to 

L

R
fc

2
 = 292 Hz (with the p.u.l. 

parameters defined in 2.1, Zc becomes constant and equal to 
C

L
Zc  =180 . 

 Note that, at high frequency, the responses vary in the signal as  
x

xsinh  (see (37) and (41)). The 

flat response of the voltage expected in the resonance region for the localized voltage source is not 
anymore valid for distributed sources. This results in maxima and minima and the attenuation of the 
voltage and current responses with frequency. 
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5.4. Low frequency SC/OC analysis 

From (54) we note that the equivalent voltage at the level of the open circuit at J2 is equal to V0, whatever 
the distribution between d1 and d2 which sounds logical from a circuit analysis point of view. However, we 
note from (55) to (58) that the value of the short-circuit current at the level of J1 depends on the positions 
d1 and d2. 
 
From an electrical circuit point of view, this means that only the part of the capacitance located between ℓi 
and the end open circuit contributes to the derivation of the current, the part distributed between the end 
short-circuit and ℓi being somewhat short-circuited (Figure 7).  

 
Figure 7 : Equivalent electrical circuit at low frequency for the SC/OC configuration 

 
Figure 8 shows a comparison of the current and voltage calculated by CRIPTE and with analytical 
formulas for the case of a Dirac source V0 = 1V localized at the beginning of the transmission-line 
presented in Figure 1 (p.u.l; capaciitance C=18.5 pF/m). 
 

 CRIPTE calculation for a Dirac source V0 = 1V localized at the beginning of the transmission-line 

(ℓi=0) (legend “Loc Source Left”),  

 CRIPTE calculation for a Dirac source V0 = 1V localized in the middle of the transmission-line 

(ℓi=ℓ/2) (legend “Loc Source Middle”),  

 CRIPTE calculation for a total source V0 = 1V uniformly distributed along ℓ (legend “Dist Source”),  

 Analytical calculation for the low frequency approximation of a Dirac source V0 = 1V localized at 
the beginning of the transmission-line (legend “BF Loc Source Left”). 

 Analytical calculation for the low frequency approximation of a Dirac source V0 = 1V localized in 
the middle of the transmission-line and uniformly distributed along ℓ (legend “BF Loc Source 
Middle & Dist”); indeed, the low frequency approximation gives the same responses (equations 
(57) and (58)). 
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|I1(0)| 

 
|V2(0)| 

Figure 8 : Comparisons of magnitudes of current I1(0) and voltage V2(0) obtained in SC/OC configuration (V0=1V) 

 
The following observations can be made: 
 

 At low frequency, all current plots vary as j (equation (55)), 

 Some numerical noise is observed in the CRIPTE calculation at low frequency due to the fact that 
this configuration cannot develop current at DC, 

 Unlike the previous SC/SC and Zc/Zc configurations, the current plots are not superposed at low 
frequency which demonstrates the influence of the position of the source (equations (42) to (45)). 

 All voltages are equal at low frequency, whatever the distribution of the source is (equation (54)), 

 In the resonance region, all the currents resonate in /2, as expected with the denominators of 
(42). For distributed sources we note a damping for the distributed source configuration that can 

be explained by the presence of .Zc = Z at the denominator of (45). 
 

6. INFLUENCE OF SOURCES DISTRIBUTED ON SEVERAL SEGMENTS 

6.1. Position of the problem 

We consider now a series of N total constant sources V0,i distributed on intervals [di,di+1]. We also consider 
that the sum of those total sources on the whole length ℓ is equal to V0. We write: 





N

i

i VV
1

0,0
 (59)   

According to (25), assuming: 
 
di = ℓi-∆ℓi 

di+1
 
= ℓi+∆ℓi 

ℓi = (di+di+1)/2,  

(60)   

 
each of those total V0,i sources may be approximated by Vsd,i Dirac sources centered in ℓi. The amplitudes 
of the Dirac sources are thereby: 
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With this new distribution, the superposition theorem allows finding the resulting currents, I1(0), I2(0), and 
voltages, V1(0), V2(0), at both ends of the transmission-line as the sum of the currents and voltages due to 
each constant voltage source separately, I1,i(0), I2,i(0), V1,i(0) and V2,i(0). 
 
Hereafter, we will take again the three previously studied configurations SC/SC, Zc/Zc and SC/OC and 
apply this new distribution of current sources and look at their low frequency approximations. 
 

6.2. Configuration SC/SC 

From (33), we can write: 
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(62)   

And we obtain the same low frequency result for I2(0). The result is exactly similar to (51). The low 
frequency approximation of the currents and voltages can be obtained by taking the integral of the voltage 
sources. 

6.3. Configuration Zc/Zc 

From (52) and (53), we can write: 
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(64)   

And we obtain the same low frequency result for I2(0) and V2(0). The result is exactly similar to (52) and 
(53) in the case of a unique source segment. The low frequency approximation of the currents and 
voltages can be obtained by taking the integral of the voltage sources. 

 

6.4. Configuration SC/OC 

6.4.1. General solution 
 

From (54) and (55), we can write: 
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(66)   
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Introducing the per-unit-length capacitance and still assuming that the per-unit-length conductance is 
equal to zero, (66) can be written as: 
 









 

 


 i

N

i

iVVCjI
1

,001 .)0(   
(67)   

 
Equation (65) shows that the voltage at the level of the open-circuit remains equal to the sum of all the 
distributed generators, V0. However, (66) or (67) clearly show that the current at the level of the short-
circuit cannot be deduced from V0 only. More, the value of the current depends on the distribution of the 
sources on the intervals. 
 

6.4.2. Application 
 

As an illustration, we show three calculations of 2 distributed constant sources, V0,1 and V0,2, for which the 
integral is equal to V0 = V0,1+V0,2 and respectively positioned at ℓ/4 and 3ℓ/4 with d1 = 0, d2 = ℓ/2, d3 = ℓ. 
 
Configuration 1: V0,1 = 2V0 and V0,2 = -V0: 
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Configuration 2: V0,1 = -V0 and V0,2 = 2 V0: 
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Configuration 3: V0,1 = 1/2 V0 and V0,2 = 1/2 V0: 
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6.5. Equivalent source solution for low frequency approximation 

6.5.1. General solution 
 

As far as low frequency is concerned, the question is now to determine if an equivalent source solution 
consisting in the application of a unique voltage generator Veq localized at a given position ℓeq or 

distributed between two positions d1,eq = ℓeq-ℓeq and d2,eq = ℓeq+ℓeq can be found for any of the three 
loading conditions considered in this paper. We have seen that SC/SC configurations and Zc/Zc 
configurations did not imply any constraint on the positions of the distributed voltage generators Vo,i 
provided that the total source remained V0. The main constraint is for the SC/OC configuration for which 
the solution depends on the positions of the Vo,i. Nevertheless, in the three load configurations, the current 

and voltage solutions at low frequency do not depend on ℓi; its value can thereby be chosen in order to 
facilitate the use of the model. The research on the equivalent source must thereby focus on this SC/OC 
configuration and should directly be valid for the two other configurations. 
 
The equivalence with a localized voltage source can be made by identification of equations (55) and (67) 
on I1(0). We have: 
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(68)   

 
Where Veq represents the equivalent voltage and ℓeq the equivalent position of this source. Because of the 
condition (54) on V2(0), we have necessarily: 
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(69)   

Therefore, we can rewrite (68) as: 
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(70)   

From which, by identification, we have: 
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Consequently, the ℓeq equivalent position of the Dirac source depends on the distributed voltages and their 

position. As far as the user wants to use a distributed source instead of a localized source, a value of ℓeq 

must be chosen. We propose to choose ℓeq = ℓ/2. Note however that the equivalent interval limits, d1,eq 
and d2,eq, can be outside the real boundary limits of the transmission-line ([0, ℓ]). 
 
Note that the results of this paper also cover a load configuration for which both ends of the transmission-
line are in open circuit. Indeed, in this case, the BLT resolution directly gives I1(0) and I2(0) equal to 0, 
whatever the source is. In addition, by resolution of (8) with S1 = S2 = 1, the reader may verify that the 
wideband result is dual of the SC/SC configuration and that the low frequency voltages vary as V1(0) = 
V2(0) = V0. 

6.5.2. Application 
 

As a first application, we choose the same voltage source distribution configuration as in the application 
described in section 6.4.2 on the one-conductor transmission-line presented in Figure 1. Here after we 
indicate the equivalent values of ℓeq and introduced them in equation (55) low frequency formulation. We 
find again the three jω variations found previously in 6.4.2.  
 
Configuration 1: V0,1 = 2V0 and V0,2 = -V0: 

4

4

3
.

4
.2

0

00 


 




V

VV

eq   and     
001

4

5
.0 VjCVjCI eq     

Configuration 2: V0,1 =- V0 and V0,2 = 2V0: 
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Configuration 3: V0,1 = 1/2 V0 and V0,2 = 1/2 V0, (equivalent to totally distributed sources) 
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Figure 9 shows the CRIPTE I1(0) and V2(0) calculations made in the SC/SC, Zc/Zc and SC/OC load 
configurations when applying the equivalent source as defined in (69) and (71) in the 3 configurations of 
distributed sources (respectively legends “2V0 & - V0”, “-V0 & 2 V0” and “V0/2 & V0/2”). Results at low 
frequency are compared to the low frequency approximations using the model of the unique equivalent 
source, equally distributed between d1,eq and d2,eq (legend “BF Approx.”).The results confirm the previous 
results obtained in the applications in paragraph 6.4 as well as the use of the equivalent source model. On 
the one hand, we see that voltages V2(0) and I1(0) currents in Zc/Zc and SC/OC configurations are 
obtained either from the integral field distributions (voltage in SC/SC configuration is of course zero) 
distributed on the whole length of the line, either from the equivalent source. On the other hand, even if 
I1(0) currents in SC/OC configuration depend on the source distribution, for the low frequency 
approximation of the application of the unique equivalent source provides the correct result. 
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|I1(0)| in SC/SC configuration 

 
|I1(0)| in Zc/Zc configuration 

 
|V2(0)| in Zc/Zc configuration 

 
|I1(0)| in SC/OC configuration  

|V2(0)| in SC/OC configuration 

Figure 9 : Comparisons of magnitudes of current I1(0) and voltage V2(0) in SC/SC, Zc/Zc and SC/OC configurations, 
applying the equivalent source model for three distributions of 2 sources giving the same total voltage (V0=1V) along 

the transmission-line. 
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7. CONCLUSION 
 
In the past 10 years, theoretical research on transmission-lines has mainly addressed the problem of the 
extension of the theory toward high frequencies, with the willingness to maintain the efficiency and 
simplicity of the technique while taking into account higher modes beyond the TEM mode [11]. However 
recent industry projects of full composite aircraft and their consequence in terms of protection against 
lightning indirect effects and optimization of current return networks have renewed the interest for the 
application of transmission-line models at low frequency [12]. This paper concentrates on this low 
frequency aspect for the application of Field-to-Transmission-Line and the capability of the BLT equation 
formulation to describe electrical circuit models. Indeed this paper also gives the opportunity to show that 
the BLT solution covers the electrical circuit solution at low frequency, which is not so obvious since the 
BLT equation is first of all formulated in terms of “waves” and not explicitly in terms of “voltages and 
currents” which would rather indicate the use of this equation for situations in which propagation is 
relevant. Nevertheless, the generalization of this property when the per-unit-length conductance of the 
transmission-line is not equal to zero has not been shown in this paper and remains to be done. 
 
In this document, we have studied in which conditions we could consider that the integral of voltage 
source terms could be sufficient in order to obtain low frequency solutions of currents on transmission-
lines illuminated by incident EM fields. For this, we have analytically studied the case of a single-conductor 
transmission-line loaded at its ends. We have shown that this approach was sufficient for low-impedance 
loading conditions at the end of wires and this condition could be extended to load conditions up to 
matching conditions. 
 
Nevertheless, this integration of voltage sources cannot be extended anymore to high-impedance loading 
conditions. The study of short-circuit/open circuit configurations shows that the result depends on the 
location where the source is applied on the transmission-line and thereby on the way the distribution of 
voltage sources is made on intervals along the transmission-line. 
 
Consequently, the fact that some difference may be observed between “full-3D-sources” and “integrated-
sources” approaches when integrating distributed source terms in segments along cable paths is not an 
error of the BLT solution implementation. The reason of this difference comes from the application of the 
MTL model. The most exact solution remains the “full-3D-sources” solution which, by the way, remains an 
approximated solution due to the discretization approximation made in the 3D computer code. However, it 
is important to realize that in such low-impedance conditions, the relevant observable is not the current 
but the voltage and the fact of making an error on low-level currents would be indeed more acceptable 
than making an error on high level currents! 
 
However, in terms of applications at aircraft level, investigation of the values of loads at the end of the 
wires is not practically possible, especially if loads vary with frequency, being aware of the difference that 
can be observed for low amplitude currents is important. The equivalent source model developed at the 
end of this paper is based on the determination of an equivalent center position. This equivalent position is 
determined from an integration of the voltage source terms on intervals weighed by the length of those 
intervals. This leads to a simplified model of low-frequency equivalent source, universal in the sense that it 
does not depend on the value of loads under consideration. Note that the equivalence is only 
mathematical since the boundaries of application of the source are generally outside of the boundaries of 
the transmission-line. 
 
Next steps of the research on this topic will consist in implementing this technique in computer modelling 
environments such as CRIPTE and in applying it on complex test-cases such as at aircraft level. 
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