Physics Notes

Note 16
December 2005

A Note on the Stationary State Model of the Hydrogen Atom

Ian L. Gallon
41, St Katherine's Avenue, Bridport, DT6 3DE, UK
ilandpm@gallon4151.fsnet.co.uk

An inconsistency in the derivation of the dynamics of the hydrogen atom [1] led to the omission of an improved approximation in the implicit formula for the fine structure constant. This note removes the inconsistency.

1 INTRODUCTION

1.1 In [1] the equation for the angular velocity of the electron in the ground state was found to be

$$
\begin{equation*}
\rho^{3}+\rho^{2}-\frac{\tau^{2} k}{r_{0}^{3}}=0 \tag{1.1}
\end{equation*}
$$

and the approximate solution

$$
\begin{equation*}
\rho \sim \pm \sqrt{\frac{\tau^{2} \mathrm{k}}{\mathrm{r}_{0}^{3}}}\left[1-\frac{1}{2} \sqrt{\frac{\tau^{2} \mathrm{k}}{\mathrm{r}_{0}^{3}}}\right] \tag{1.2}
\end{equation*}
$$

obtained, where $\rho=\omega \tau$ and $\mathrm{k}=\mathrm{e}^{2} / \mathrm{m}$. The orbital radius was then assumed to be a_{0}, the Bohr radius. The correct procedure is to obtain the radius on the assumption that the angular momentum is \hbar.

2. ORBITAL RADIUS CORRECTION

2.1 The angular momentum is given by

$$
\begin{equation*}
\Omega=\operatorname{mr}_{0}^{2} \omega \tag{2.1}
\end{equation*}
$$

Imposing the known orbital spin

$$
\begin{equation*}
\mathrm{mr}_{0}^{2} \sqrt{\frac{\mathrm{k}}{\mathrm{r}_{0}^{3}}}\left[1-\frac{1}{2} \sqrt{\frac{\tau^{2} \mathrm{k}}{\mathrm{r}_{0}^{3}}}\right]=\hbar \tag{2.2}
\end{equation*}
$$

This reduces to

$$
\begin{equation*}
\sqrt{\frac{\mathrm{a}_{0}}{\mathrm{r}_{0}}}=\left(1-\frac{1}{3} \alpha^{3}\left[\frac{\mathrm{a}_{0}}{\mathrm{r}_{0}}\right]^{3 / 2}\right) \tag{2.3}
\end{equation*}
$$

Setting $\mathrm{r}_{0}=\mathrm{a}_{0}+\delta$ and making use of the binomial theorem

$$
\begin{equation*}
\mathrm{r}_{0}=\mathrm{a}_{0}\left[1+\frac{2}{3} \alpha^{3}\left(1-\alpha^{3}\right)\right] \tag{2.4}
\end{equation*}
$$

or to $0\left(\alpha^{3}\right)$

$$
\begin{equation*}
\mathrm{r}_{0}=\mathrm{a}_{0}\left[1+\frac{2}{3} \alpha^{3}\right] \tag{2.5}
\end{equation*}
$$

3. CORRECTION TO THE ANGULAR VELOCITY

3.1 It follows that the angular velocity is

$$
\begin{equation*}
\omega=\frac{\alpha \mathrm{c}}{\mathrm{a}_{0}}\left(1-\frac{4}{3} \alpha^{3}\right) \tag{3.1}
\end{equation*}
$$

4. CORRECTION TO α FORMULA

4.1 This correction makes a small change to the formula for α (see equation 12.18 in [1]), specifically

$$
\begin{equation*}
\mathrm{p}=2 \frac{\mathrm{~s}^{3 / 2}}{3 \alpha}\left[\sqrt{1+\frac{3}{\alpha}}-1\right]^{2} \times\left[1-\frac{\alpha^{2}}{2}\left(1-\gamma^{2}\right)\left(1+\frac{3 \alpha^{2} \gamma^{2}}{2}\right)\right]^{3} \frac{1}{\left(1-\frac{4 \alpha^{3}}{3}\right)}=34031.01845 \mathrm{~s}^{3 / 2} \tag{4.1}
\end{equation*}
$$

5 REFERENCE

Ref [1] An Investigation into the Motion of a Classical Charged Particle, I.L. Gallon, Physics Note No 15, University of New Mexico, Albuquerque

