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Abstract 

In this note we consider the situation where the half toroid is joined 

to a perfectly conducting half space upon which the hemisphere rests. The 

half toroid is modeled as an infinitely thin semi-circular current loop. 

We settle some subtle questions concerning the method of images and derive 

three suitable image currents to solve for the magnetic field on the surface 

of the hemisphere. This field is compared to the field which would exist in 

the limit a/b i.m where a is the radius of the half toroid and b is the 

radius of the hemisphere.. In this limit the half toroid tends to simulate ' 

the low frequency magnetic field corresponding to the electromagnetic pulse. 

Plots are given which indicate the simulation trade off one must accept with 

a finite a/b. 

..T -: 
- 

p!L 9k ’ Ill5 
.-- .- .^. 



. L 

0 
I.. Introduction 

In this note we consider the interaction of the half toroid simulator 

with a perfectly conducting hemisphere situated on the ground. The geometry . 
of the simulator has been described in a previous note’. The center of the 

hemisphere coincides wLth the origin of our coordinate system as depicted in 

figure 1. In this figure the toroid is depicted as a half loop. The justi- 

fication for this is that the major radius of the toroid is assumed to be 

much larger than its minor radius. We are interested in the low frequency 

interaction and consequently we assume that in this limit the simulator can 

be represented by a constant current flowing in this half loop. We assume the 

ground to be infinitely conducting in order to facilitate the analysis. The 

conditions under which the finitely conducting ground can be considered 

perfectly conducting are presently being studied. In summary, the problem 

we will solve is that of the magnetostatic interaction of a constant current 
half loop joined to a perfectly conducting half space with a perfectly conducting 

hemisphere resting upon the half. space. In particular we will solve for the 
magnetic field on the surface of the hemisphere. 

We perform this calculation in order to determine how the finite size 
’ of the toroid limits its function as a simulator. We solve for the magnetic 

field at any point on the surface of the hemisphere as a function of the 

toroid’s inclination angle El and the ratio of the toroid’s radius to the 

radius of the hemisphere, a/b, As a/b approaches infinity the toroid tends 

to simulate the low frequency limit of the magnetic field corresponding to 

the electromagnetic pulse. One of our tasks is to determine the value of 

a/b that allows us to come sufficiently close to the value of the limit within 
a specified engineering accuracy. An important quantity which can be used to 

decide the engineering value of a/b is the magnetic field deviation Dv. This 

quantity is defined as the magnitude of the vector difference of the actual 

total magnetic field and the limiting total magnetic field. The maximum, Dv, 

occurs at the intersection of the plane of the loop, the surface of the 

henisphere, and the x-z plane which is the symmetry plane of the half loop. 

For a fixed #1 and a/b the value of Dv does not appreciably deviate from the 

maximum Dv along most of the intersection of the plane of the loop and the 

surface of the hemisphere. For an inclination angle different from zero, the 
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value of Dv along this intersection changes appreciably only near the point 

where the loop joins the ground. This change is most pronounced for large 

inclination angles-. The value of Dv does change significantly as we move 

perpendicular away from the intersection curve. 

The two other quantities which we study in this note are the spherical 

components of the total magnetic field on the surface of the hemisphere. We 

normalize these components with respec.t to the magnitude of the total surface 

magnetic field which corresponds to the limit as a/b approaches infinity. 

These quantities are plotted versus a/b with 5, and the spherical angles 0 

and (a as parameters. These plots show how the distribution of the field on 

the hemisphere is affected by 5, and the ratio a/b. 

Our method of solution is based on the method of images. The use of 

this method in electrostatics is straightforward; however, its application in 

magnetostatics involves sublte points, To attack this problem we considered 

a current element and studied its properties. A current element has a non-zero 

divergence and does not satisfy the usual magnetostatic equation. To handle 

this difficulty we modeled the current element in such a way that the fields 

associated with it satisfy the time-dependent Maxwell’s equation. It was 

found that given the proper interpretation one can use the method of images 

for a constant current element that has non-zero divergence. The details 

concerning this point are presented in the appendix. Based on this result 

we were able to apply the method of images to our problem. 



II. Formulation 

Using the method of images the magnetic field at any point is the sum of 

the magnetic fields caused by four semicircular current loops oriented as in 

figure 2. The four semicircular current loops are derived as follows. First 

we consider the mirror images of the original half loop and the hemisphere 

with respect to the ground plane. The current of the image half loop is equal 

to the current I of the original half loop and it flows in a way that preserves 

current continuity. At this stage we have reduced our problem to that of the 

interaction of a perfectly conducting sphere and a symmetrically bent loop of 

radius a. Next we substitute the sphere by two image half loops that constitute 

a symmetrically bent loop carrying a current(a/b)I and having a radius b2/a where 

b is the radius of the sphere. The flow of the current in this latter loop is 

opposite to the flow of the current I. In figure 3 we define a Cartesian 

coordinate system so that a typical current loop lies in the u: - u: plane and 

the corresponding cylindrical coordinates (Ai, Bi, ui) are also uoed. The 

superscript i ranges from 1 to 4 corresponding to each of the four loops. The 

calculation of the magnetic field due to a particular loop in its own coordinate 

system has been performed in a previous note2. The results for the normalized 

magnetic field, k - (2a/I)H, are 

% 
4 

Yi 
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and E(p(q) anf F(plq) are elliptic integrals defined 80 that 

E(p + sjq) - E(P 

F(p + sfq) - F(P 

(10) 

P+s 

I’ 9) - J (1 - q sin2t)'dt (11) 

P 

Pfs 

4) = J (1 - q sin2t)-'dt (12) 

P 
The signs of 61, yl, 63 and y3 determine the quadrant for the 6's as though 

they were polar angles in 6-y plants. When comparing (l), (2) and (3) to 

the appropriate reeults in note 112 it is ntcesaary to set Ai = h/a and 

Bi - 9' h a w err a is the radius of the semi-circular current loop. Before we 

can add the magnetic fields due to the four current loops we must change the 

normalized h'r to the actual field components through the relation g m(I/2a)h, 

I is the magnitude of the DC current flowing in the semi-circular loop. The 

current in the spherical image loop is a/b I and thia factor must be accounted 

for as well as the modified radius when adding the contribution of this loop. 

Taking these facts into account the procedure for adding the four loop 
contributions will now be given. We define 

hi - h: cos f3i - hi sin 6, 

hi - hi sin ~~ + hi co8 8, 

hi - hi cos 5, - hi sin 5, X 

hi - - hi 
Y 

hi - hi sin El + hi co8 Cl z 

hi X = - hi cos 5, + hi sin 5, 

i - 1,2,3,4 

i - 1,2,3,4 

i = 1,2 

i = 1,2 

1 = 1,2 

i - 3,4 

(13) 

(14) 

(15) 

(161 

(17) 

(18) 
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. . 

hi 
Y 

= h; i = 3,4 (19) 

h; = hi sin 51 + hi cos 5 1 i = 3,4 (20) 

and add these quantities in a manner which accounts for the different radii, 

current strengths, and directions as follows: 

h ~~ 4-h; - 
X (;)2h; + h; - (;)2h; 

h = h1 
Y Y 

- (;)2h; + h; - (;)2h; 

hZ = hi - (;)'h; + h; - (f)2h; 

We will present our results in spherical coordinates using the standard 

relationships 

hr = hx sin ~3 cos 0 + h sin 8 sin 9 + hZ cos 8 
Y 

hf3 
= hx cos a cos I# + hy cos a sin C$ - hZ sin a 

h4 = - hx sin I$ + hy cos Q 

Before we describe our main results it is necessary to present the 

limiting value of the magnetic field on the surface of the hemisphere as the 

ratio a/b tends to infinity. In the limit h has only a 0 component which can 

be shown to be given by 

3 hgL=- 2 sin 8 co8 5 1 (2;') 

The quantities of interest are hg, hCb, and Dv = [(he - heL)2 + hi$. In 

graphically presenting our results WC plot Ihe/heL 1, Ihe/hsL / , ah D = II,,/ Ih*J 

In this note we restrict our observation point to lie on the surface of the 

hemisphere so that r = b and hr is calculated as a partial check of our 

program as it must equal zero. 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 
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veraus a/b with parameters 8, 4, and 51. The absolute magnitude symbol for 

Iha/heL[ is superfluous since the hg and hgL always have the same sign; 

however, we will retain this symbol for the sake of uniformity. We also plot 

D corresponding to Dv maximized over the sphere. This D, referred to as Dm, 

is plotted versus a/b with only the inclination angle as a parameter. 

Specifically we plot fhe/heLI, \h+/hgLI, and D versus a/b at points on the hemisphere 

for inclination angles 2C1/~ = 0,.2,.5,.7 and .9. We also plot D versus 

a/b for these inclination angles. In particular for the quantiti:s Ihe/heL], 

Iho/hgl, I I and D the spherical angles Ei and (I also serve as parameters. We 

have selected 13 = a/2O,n/4,m/2,3r/4 and 19n/20 and for each 0, C$ assumes 

the values O,T~/~,IT/~,TT/~. We have not considered the values 8 = 0 or IT 

because all field components are zero irrespective of the value of 5, or 

a/b. No negative values of I$ are considered since our problem is symmetric 

with respect to the xz plane. The plots of Ihg/heL( do not appear for 9 

equal to 0 or m/2 or Cl = 0 because h is zero for these cases. 

The plots of Ihe/heLI, lhmiheLi! and D show how at different points of 

the hemisphere and for different simulator inclination angles the relative 

size of the simulator, a/b, limits the behavior of the simulator. The Dm plot 

indicates a limitation which accounts for all observation angles on the hemisphere. 

Specifically the deviations of (he/heLI from unity and \h+/hgL\, D, and Dm from 

zero indicate the simulation trade off one must accept with a finite a/b. 
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No single observation point is associated with Dm because it results from 

a maximization procedure which allows 6 and 41 to range over the entire 

surface of the hemisphere. 
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III, Discussion of Numerical Results 

All of the plots contained in figures 6 through 56 converge to the values 

one would expect. The observation points on the hemisphere corresponding to 

these plots are depicted in figure 5. When interpreting the data one might be 

concerned that the rate of convergence to the limiting values with increasing 

a/b is comparatively slow for observation points corresponding to 0 equal to 

77120 or 19n/20. This is especially true for the plots of Ihe/hel,\ and D versus 

a/b. When interpreting these plots one should be aware that IheL/ is relatively 

small for these observation angles, thus diminishing the significance of this 

comparatively slow convergence. The same discussion is also pertinent for the 

plots corresponding to 8 = n/4 and 3~/4 as compared to the piots for 8 = ?r,2. 

In figures 36, 40, 41, 43 and 44 certain plots contain sharp dips where 

the value of D drops to zero. These dips only occur when h 
4 

= 0 and consequently 

D = 11 - he/he& As noted earlier hC,/heL is always positive, but we retained 

the notion Ihe/heLI when plotting this quantity for uniformity. By studying 

the corresponding smooth plots of this quantity in figures 6, 10, 11, 14 and 15 

we see that (he/heLI can equal one for finite values of a/b. We can understand 

how this is possible by considering figure 15. When the observation point is 

near the toroid then Ihe/heLI i s very large for small a/b while when the 

observation point is far from the toroid then \h3/hel,/ is small for small a/b. For 

large a/b, \he/heLI approaches unity, independent of the observation point on 

the hemisphere. This explains the extreme curves corresponding to 2Cl/~ equal 

to 0 and .9, the first being monotonically decreasing to unity while the second 

is monotonically increasing to unity. It is reasonable that an intermediate 

value, 25111~ = .2, whould correspond zo a transition from a decreasing function 

to an increasing function which has a maximum that is greater than unity. It 

should be noted that the steepness of the dips is greatly exaggerated by the 

use of a logarithmic scale for the D plots. 
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Appendix 

. I 

In electrostatics the method of images has gained considerable popularity 

mainly because of its simplicity. By choosing suitable image charges we can 

make the tangential component of the total electric field, along the surface 

of a perfectly conducting body, equal to zero. This guarantees a unique solution. 

In magnetostatics the boundary condition on the surface of a perfectly conducting 

body is that the normal component of the magnetic field should be zero and the 

choice of the image currents is di&tated by this boundary condition. There 

are situations, however, in which, as we shall see below, the boundary condition 

is automatically satisfied independently of whether or not we introduce image 

currents. Before proceeding with this difficulty, we would like to draw an 

analogy between electrostatics and magnetostatics. In electrostatics the 

fundamental unit is the point charge which produces a Coulombic field. In 

magnetostatics the fundamental unit is the current element. The magnetic 

field, associated with it, is given., by 

d& = & 
idll x R - - 

R3 
(A-1) 

where R = r - r-f, - - L is the observation point and r’ is the position vector 

of the current element. Actually steady current flows in closed loops and 

the claim is usually made that dg given by (A-l) is only a mathematical 

convenience and the true observable field is obtained by integrating (A-1) 

over a closed loop. A fundamental difference between a field given by (A-Z) 

and the field due to a closed loop is that V x dg # 0 whereas V x JdE = 0, 

as long as we observe at points away from the current source. Despite the 

fact that dFf is not curlfree we would like to construct a physical model for 

a current element and derive (A-l) as a consequence of Maxwell’s equations. 

To preserve current continuity we have to assume that at the ends of the 

current element charge accumulates. Thus, at the ends we have 

dQ,/dt F i * 0 or Q, = ? it. If we introduce the potentials A and I$ and 

choose the Lorentz gauge we find that the fields satisfying Maxwell’s equation 

are given by 

12 



. . 

0 

where 

aA 
E=-Q$-$ - 

I-$= _ QxA 

dV 

V 

(A-2) 

(A-3) 

(A-4) 

1 
I 

P Q:’ , t - R/c) 
+== - R dV (A-5) 

OV 

Assuming that the charges Q, are point charges and recalling that i is a time 

independent current (A-4) and (A-5) give 

Q(ret) Q(ret) 
++L 

R1 R2 

i(t - R1/d -i(t 
-+ 

- R2/c) 

R1 R2 

1 E’R =-- 
41rco R3 

where 

E - = (.lt)dR 

(A-6) 

(A-7:) 

‘U 

a 

We thus see that 
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. . 

dg - - Vd$ = - V - 
4rsoR 3 

dE - & 
idn. x R - _ 

R3 

We can easily verify, by using standard vectorial relations, that 

adg 
VxdH+- - 

(A-8) 

(A-9) 

which shows that despite its rotational character, dFi can still represent a 

physical magnetostatic field. We should also observe that despite the fact 

that the charges Q, grow with time they only give rise to static-like 

electric field configurations, We then understand that at each moment we can 

treat the electric field configuration as static and apply the method of 

images. Once this is done the image current element arises automatically 

by satisfying current continuity, We conclude that the magnetostatic image 

problem can be associated with an electroetatic image problem and that the 

fields involved satisfy the time dependent Maxwell's equations. One can 

easily show that for plane perfectly conducting interfaces the normal 

component of the total magnetic field is also zero. We will show below that 

this is also the case for a current element parallel to the surface of a 

perfectly conducting sphere. To show the value of our novel way of treating 

current elements consider the situation of a current element, along the z-axis, 

above a perfectly conducting plane interface perpendicular to the z-axis. 

Using (A-l) one can easily conclude that Hz due to the current element on 

the interface is zero. The image9 if any, should also be along the z-axis, 

but there fs no way to determine its relative position or strength since 

the total HZ on the interface will be always zero. In the electrostatic 

case such a problem never arises. According to our method the current element 

Is always accompanied by the Q, and Q- charges which makes possible the exact 

determination of the image current element, 

Consider now a current element ilgr parallel to the surface of a 

perfectly conducting sphere of radius b. We choose the x axis along the 
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direction of the current element ildLl situated at the point PI with a position 

vector r -1 along the z-axis (see fig. 4), The image current element will be 

directed along the negative x-axis and its position vector is ~2. We will 

assume according to the well-known situation in electrostatics that (~21 = b2/a 

where 1~ 1 = a. We will show that the total Hr at any point p’ on the sphere 

is zero provided that ild!Ll/i2dL2 = a/b (in accordance with the associated 

electrostatic problem). We have 

dg2 = & 
i2s2 x R2 i dil (ax) x R 2 2 -2 

R? =-- 477 R3 m L L 

The r-component is 

dHr 
=i 

r l WE,  + dg2> 

t; . 
r 

ild!Ll[yaZ-a (z-a)] i2dk2[yaz-; (z-b2/a)] 

[x2+y2+(z-a) 1 23/2 - 
[x2+y2+(z-b2/a) 2]3’2 

We can easily see that 

x2 + y* + (2 - a> 
2 3: b2 + a2 - 2az 

x2 + y2 + (2 - b2/a)2 = (L)2[b2 + a2 - 2az] a 

and (A-12) gives 

dH = 1 
r 6 

(b2+a2-2az)3’2 ’ 
l ay) (%d’lla - 

(A-l 0) 

(A-l. 1) 

(A- 12) 

Thus if ildLl/i2d!L2 = a/b we find dHr= 0. From the geometry we understand 

that dill/a = dR2/b2/a and consequently illi = b/a. Thus the image current 

i2 is a/b larger than the original current il in contrast to the electrostatic 
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situation in which the image charge is b/a smaller than the original charge. 

If instead of an element we have a current loop of radfus'ti'surrounding the 

sphere,the image loop will have a radius b2/a and a current equal to b/b)iL 

will flow in this loop. We can also demonstrate this situation in the following 

way. The field Hr due to the outer loop is given by 

n+l 

(r < a) Hr - - 2a 3 i (-g-- 2 y:;;yl';y& (y-l 
n=l . . Pn(cos e> 

odd 

p1 - 2 ; SJy-1 
n=l 

P,(cos 0) 

odd 

The scattered field outside the sphere is curlfree and can be calculated as 

SC - - V$ where I$ satisfies Laplace's equation. Thus 

cp = i An r-(nfl)Pn(cos 6) 
n=l 

(Hsclr = - 2 = y An(n+l)r-(n'2'Pn(cos 0) 
n=i 

The boundary condftion (Hr)total = 0 at r = b is satisfied if 

An(ni-l)b-(n'2) il = yfg sn(y-l , 

and consequently 

(Hsc)r = 2a 
5 y sn(yr-("+2)pn(cos e)b(n+2) . 

n=l 

(A-15) can be rewritten as 

(H& = - i2 y s (b2/aIn+2 

2(b2/a) n=l n r 
Pn(cos 0) 

odd 

(A-13) 

(A-14) 

(A-15) 

(~-16) 
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where i2 = il (a/b) , (A-16) can be recognized as the Hr field of a loop of 

radius b2/a and a current il (a/b) evaluated at r = b > b2/a. The current 

i2 flows opposite to the original current il. 

We would now like to emphasize that the analysis in this appendix 

dealt with the determination of images for current elements and is not 

restricted to the previous example where the sphere is surrounded by a 

circular current loop. In particular when the inclination angle 5, is 

different from zero we can obtain images in a pointwise manner to obtain 

the situation depicted in figure 2. 
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Simulator-Aemisphcre geometry. 

Figure 2. The four current half loopb. 
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Figure 3. The coordinate systemr (u1,u2,u3) and (A,B,u3) 
associated wieh a typical half loop. 

Figure 4. Image of a current element with respect to a 
perfectly cobducting sphere. cop+ - El’ cop21 - 5. 
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N 0 

Figure 5. Numbers 1 to 20 correspond to points on the hemisphere at which plots of Ihe/heL], 

Ih /h 1 and D were considered. I, 2, 
4 0L 

3, 4 (0 - r/20, $ - 0, a/6, v/3, n/2); 

5, 6, 7, 8 (0 - IT/~, + = 0, n/6, n/3, s/2); 9, 10, 11, 12 (8 - n/2, 4 = 0, n/6, 
IT/~, n/2); 13, 14, 15, 16 (13 = 35r/4, 4 = 0, a/6, n/3, 71/2); 17, 18, 19, 20 

(0 = 1911/20, 9 = 0, n/6, s/3, a/2). 



a/b 

FIGURE 6 

/ 

,. -- 
. , 

1 a/b 

FIGIJRE 7 
21 



6 7 0 9 IO 
a/b 

FIGURE 8 

100 I I I I IlIlt t I I I ’ I bI’I’l’I 

I- I 

L 1 

.l -111 I I I I I I tItIdIll1 
1 2 3 4 5 670 9 10 

a/b 
FIGURE 9 

22 



.l 

2 

i I I 1 I I I I IIIIIII 
1 2 3 4 5 6 7 89lO 

a/b 

FmJRE10 

10 I I IIIIIII 1 ’ I ‘I’J’IZ ll IT 
e--,$-- 4 6 L 

0 

.l t ,/, I I l,,,ll I I I 1 I t I I I IIilll 
1 2 3 4 5 6 78 9 10 

a/b 
FIGURE 11 

23 

-. 

-  - - .  - - -  I_ __ -_- 
_ _.--_ -  - - - .  ___*_- _~_- ___I-.-.  



10 

% I I -- 
%L 

1 

.l 

LC 1 , II - . , 

‘IT lT 
0=-,4=- 4 3 _ 

- 9 

~~. i 

.5 

. 

0 

a/b 
FIGURE 12 

FIGURE 13 

24 



_ 
(r 

I 

‘L 

a 

A0 
I1 

II ll(ll 1 1 1 I I L’J’ 1’1’1 IT - 2$/n 97 l 5 - .9 e--,4=0 2 

IA F 

10 

3 
a/b 

4 

FIGURE 14 

5 6 7 8 9 10 

. 
I I I lllll I 

I 
I 

I 
I 

I ’ I ‘IV’ 
77 

2$/i? l .9 e=- 

I- 

2’o’~ 

7 l 7 =I 

w 

(I, 25 

3 
a/b 

4 5 6 7 ‘8 9 10 

FIGURE 15 

- 



3 
a/b 

4 5 6 7 8 9 10 

FIGURE 16 

he l-1 h8L 

1 

.l 

F\t El/T 2” 2 - 0, .2, .5, .7, .9 

I- 

L 

LI 111 IllI!\ I I 
1 2 3 a/b 4 5 6 78 9 10 

FIGURE 17 

26 



10 
I 

I 1 
I 

I 
I 

I ’ , 
e -- 3rr 

4 ,4=0 
I--- ‘= ‘- - fi -4 

.1 
1 I 1 I I 2 I I 

3 
11, f ,I 

a/b 4 5 6 7 8 9 10 = 
PI&JRE 18 

I I 1 I I 3 I 

4 
//,I I I 

a/b 5 6 7 9 9 10 
FIGURE 19 

27 



r 

r5$gfff1 f,I,, 

2 3 
w’b 

4 5 6 

FIGURE 20 
- , 

1 I 
8 

I 

u-- 
h I t 4 
~- 
heL NLLIl”’ - ” 

i 

v 

0 

FIGURE 21 

28 

w 
0 



! I 1 I I 
3 

I I II, 
I_ I, 5 6 

!-J 
7 8 9 10 a/b -i 

FIGURE 22 

I J 1 1, [ 
6 7 8 9 10 

FIGURE 23 

29 



.l , ,’ .l I.J> I 1 1 I _ .I.- ..I . ..I .I, 2 2 3 3 a/b a/b 4 4 5 5 6 6 78910 78910 

FIGURE 24 

.l 
: 2 3 a/b 4 5 6 789 

FIGURE 25 

30 



10 

1 

I I 5 

. 

*C 

LC 

I I t *a 

. 

, , , \lll I1 IL ILlIIJ I I I , 
‘. 2 3 

a/b 
4 5 6 7 8 9 10 L 

FIGURE 26 

I- 
-I 

l- 

l- 

- r-------- ? 
I I I I I I I 11 1 JI’IJ 

OL I II 11 IIJ 4 5 6 7 8 9 10 
1 2 

3 
a/b 

FIGURE 27 

31 



FIGURE 28 

’ 

4 

FIGURE 29 
0 

4 

0 

32 
t 



2 3 4 5 6 7 8 9 10 1 
FIGURE 30 a/b 

.Ol ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ 
2 1 FIGURE 31 3 a/b 

4 5 6 7 a 9 10 

,001 I 
1 FIGURE 33 

I, I ,“I1 ! L-l. ’ 1 ’ 1 ’ ’ ’ ’ ’ 
2 3 a/b 4 5 6 7 8 9 10 

33 



1 

.l 

I I 
+- 0L 

.Ol 

.OO' 

1 

. I 

I I t 
.O 

.OC 

1, 1 ’ ~~I!~!~’ I I I I I 
2 8 9 10 . 6 7 1 _ 3 a/b 4 5 

- 

t- 

l- 

IL- 
1 

FIGURE 34 

FIGURE 35 

34 



1 - 
1 

.oo / I I I IIl’l 

FIGURE 36 

I -I 

- I I L51”’ - - Ii ---.2 
------- .5 

.Ol 1 i L----. - 

.7 
---I .9 1 

lIIIII11 
I I 

____ -_.. 
1. - ,l 

I ,..i..-1.. 
1. I..1 1 I 11 II 

9 10 .OOl I 2 
3 

a/b 
4 5 6 7 8 

1 

FIGURE 37 

35 



100 I I I’ 1 ‘I’I’y 

e-&o-f 

10 - 

.Ol - 

’ .9 

I II 1 IIllll I I I I I,l,..L-ll..-1 1 ’ 1 ’ ’ 
,001 

1 2 3 4 
5 678 9 10 

a/b 

FIGURE 38 I 

FIGURE 39 

36 



100 

10 

1 

D 

1 . 

.o 

.oc 

loo-, ,,I,IIIII 

’ -l-----i 

I- 

l- 

l- 

. . 
01 - ::/I I 

O/ 

IOl- 

FIGURE 40 

37 



FIGURE 42 

..: 
, , I I II I”1 

1 

II-- 

; 

D 
\ \ 

W 

a 
FIGURE 43 

38 



10 

1 

D 

.I 

.o 

,oc 

10 

I 

D 

l I 

.O 

I I Illll” I I 
I I 1 1 ‘i’lll~ 

1 

1 - 

UC’ 1’ ’ ““’ I L_I~,l.Il..lJ 5 



. 

FIGURE 46 

10 

1 

D 

.l 

.Ol 

.OOl 

-r 

I I I L I lllll 1 -I I t I I I I I I I IllIll 
3 a/b 4 5 6 7 8 9 10 1 2 t 

-d 8 

FIGURE 47 

40 

“0 



1 

D 

.I 

.C 

10 

1 

D 

. 

. 

C 

1- 

01 * 
1 

FIGURE 49 

41 



. 

.7 .5 .2 0 

I II L IittJ. 
1 2 3 4 5 6 7 0 9 10 

a/b 
FIGURE 50 

FIGURE 51 

42 



4c 

.1 - 

.Ol 1 
1 I I I I I 1 I 1 I-.-J--+-J 1 I I I I II ilJ1, 

2 5 6 7 a 9 10 
a/b 

FIGURE 52 

43 



.Ol- ' L ' ' ' ' ' ' 
I I I I I I 

6 7 8 9 10 

1 2 
3 4 5 

a/b 

FIGURE 54 

L 

FIGURE 55 

44 



.- 

il) 

lOi 

10 

1 

Din 

10’ 

10’ 

10’ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
a/b 

FIGURE 56. Pm is defined as the ratio (max Dv)//h,,l, where the 

magnetic field deviation D has been maximized over the 

surface of the hemisphere lnd IheLl has been evaluated 

at the point where the maximum occurs. 

45 



lo3 

10* 

101 

Dm 

1 

10-l 

lo-; 

. 

1 1.5 2 2.5 3 3.5 4 4.5 
a/b 

Figure 57. Dm is defined as the ratio (max Dv)/(heLI, where the 

magnetic field deviation Dv has been maximized over the 

surface of the hemisphere and (htiL/ has been evaluated 
at the point where the maximum occurs. 

46 



.  

-  

r  

Acknow ledgemen t  

W e  thank Mr.  R. W . S a s s m a n  w h o s e  computer  p r o g r a m m i n g  was  ind ispensab le  

a n d  w e  a lso thank Dr. C. E . B a u m  for his helpfu l  comments .  

4 7  



References 

1. Capt. Carl E. Baum, Sensor and Simulation Note No. 94, Some Considerations 

Concerning a Simulator with the Geometry of a Half Toroid Joined to a 

Ground of Water Surface, November 1969. 

2. Capt. Carl E. Baum, Sensor and Simulation Note No. 117, Low-Frequency 

Magnetic Field Distribution for a Half Toroid Joined to the Surface of 

a Medium with Infinite Conductivity, July 1970. 

48 


