PL/FA IV DEL

# Sensor and Simulation Notes 

## Note 169

March 1973

# DIFFERENTILAL-GEOMETRY SCALING METHOD FOR ELECTROMAGNETIC FIELD AND ITS APPLICATIONS TO COAXIAL WAVEGUIDE JUNCTIONS 

TSE CHIN MO and C. H. PAPAS<br>Electrical Engineering Department Cailfornia Institute of Technology Pasadena, California<br>and

CARL E. BAUM
Afr Force Weapons Laboratory Kirtland Afr Force Base New Mexico 87117

# Sensor and Simulation Notes 

Note 169
March 1973

DIFFERENTIAL-GEOMETRY SCALING METHOD FOR ELECTROMAGNETIC FIELD AND ITS APPLICATIONS TO COAXIAL WAVEGUIDE JUNCTIONS

TSE CHIN MO and C. H. PAPAS
Electrical Engineering Department
California Institute of Technology Pasadena, California
and

CARL E. BAUM
Air Force Weapons Laboratory
Kirtland Air Force Base
New Mexico 87117

TABLE OF CONTENTS
Abstract ..... v

1. Introduction ..... 1
A. Background and Motivation ..... 1
B. Description and Outline ..... 1
2. General Differential-Geometric EM Scaling Method (DGM) ..... 3
A. Generalized Maxwell Eqs. ..... 3
B. The General Scaling $P \rightarrow P^{\prime}$ ..... 7
C. The General Inverse Scaling $P^{\prime} \rightarrow P$ ..... 12
D. Remarks ..... 13
3. Scaling in Special Cases ..... 15
A. Diagonal Geometry ..... 15
B. Diagonal Metric With $g_{0} \equiv 1$ ..... 18
B1. Diagonal Metric, $g_{0} \equiv 1$, and Diagonal Media ..... 18
B2. Diagonal Metric, $g_{0} \equiv 1$, and Uniaxial Media ..... 18
B3. Diagonal Metric, $g_{o} \equiv 1$, and Isotropic Media ..... 22
C. General Coaxial Geometry ..... 23
D. Remarks and Trivial Examples ..... 23
4. Matching Section with Variable $\mu$ and $\varepsilon$ Between Cylindrical and Conical
Coaxial Waveguides ..... 28
A. The Problem ..... 28
B. The Application of Scaling in the Cylindrical Part ..... 28
C. The Scaling and Design of the Matching Section ..... 31
D. From the Matching Section to the Conical Part ..... 36
E. Conclusion of the $\mu, \varepsilon$ Loaded Matching Section ..... 39
5. Matching Section with Constant $\mu$, Variable $\varepsilon$, and Anisotropic
Conductivity Between Two Cylindrical Coaxial Waveguides ..... 43
A. The Problem ..... 43
B. Approach with Impedance Concept ..... 44
BI. Conditions for the Shape and Medium of the Matching ..... 45 Section
B2. Shape of the Matching Section ..... 49
B3. Medium of the Matching Section ..... 54
B4. Fields and Their Matching on $\Gamma_{1}$ ..... 58
B5. Fields and Their Matching on $\Gamma_{2}$ ..... 61
B6. Sumary of the Matching Section Between Two Coaxial CylindricalTEM Waveguides64
C. Approach with Field Concept ..... 64
D. Scaiing into the Parallel Slate Waveguide $P \rightarrow P^{\prime}$ ..... 68
DI. $P \rightarrow P^{\prime}$ in Region $I$ ..... 68
D2. $P \rightarrow P^{\prime}$ in Region II ..... 70
D3. $P \rightarrow P^{\prime}$ in Region III ..... 71
D4. Determine the Scaling Constants ..... 72
D5. Sumary of the Parallel Plate Problem $P^{\prime}$ ..... 73
E. Concluding Remarks ..... 73
ACKNOWLEDGEMENTS ..... 74
REFERENCES AND FOOTNOTES ..... 75
TABLES
Table 1; Resuits for Chapter 4 on Variable $\mu$ and $\varepsilon$ MatchingSection41
Table 2; Results for Chapter 5 on Fixed-y Matching Section ..... 62
FIGURES
Fig. 1 ; Geometry of Variable $\mu$ and $\varepsilon$ Matching Section for ..... 78Chapter 4

Fig. 2; Geometry of Infinitesimal Impedance and Traveling Time
Considerations for Chapter 5-B.
Fig. 3; Geometry of Fixed $\mu$, Variable $\varepsilon$, and Anisotropic Conductivity Matching Section for Chapter 5.80
Fig. 4; Tangential Field Matchings on $\Gamma_{1}$ Between I and II. 81

Fig. 5; Plots of $\Gamma_{1}(\theta)$ of $\Gamma_{1}$ and $\varepsilon(\theta)$ As Function of $\theta 2$
Fig. 5-1; $\theta_{B}=10^{\circ} \quad 83$
Fig. $5-2 ; \theta_{B}=70^{\circ} \quad 84$
Fig. $5-3 ; \theta_{B}=30^{\circ} \quad 85$
Fig. $5-4 ; \theta_{\mathrm{B}}=40^{\circ} \quad 86$
Fig. 5-5; $\theta_{B}=50^{\circ} \quad 87$
Fig. $5-6 ; \theta_{B}=60^{\circ} \quad 88$
Fig. $5-7 ; \theta_{B}=70^{\circ} \quad 89$
Fig. $5-8 ; \theta_{B}=75^{\circ} \quad 90$
Fig. $5-9 ; \theta_{B}=80^{\circ} \quad 91$
Fig. 5-10; $\theta_{B}=85^{\circ} \quad 92$

## ABSTRACT

A differential geometry scaling method, stemming from Baum's pioneering work, is thoroughly explored and developed for electromagnetic fields. This method creates a class of equivalent electromagnetic problems $P$ each described by a complicated geometry and having a complicated medium from an electromagnetic problem $P^{\prime}$ described by a simple Cartesian geometry, and having a simple medium. Application of this method to coaxial waveguide structures is examined with special emphasis. Various conditions and Iimitation of the method as inposed by special choices of geometry, medium, and fiela modes are obtained. Also two specific problems are solved in detail by applying this scaling method. In one a perfect matching section between a cylindrical and a conical coaxial waveguide is obtained by appropriately loading the section with inhomogeneous $\mu$ and $\varepsilon$, and all relevant electromagnetic quantities and geometrical boundaries are tabulated. In the other a perfect matching section between two cylindrical coaxial waveguides is found with the appropriately shaped matching section loaded by inhomogeneous $\varepsilon$, anisotropic conductivity O, and constant, H. All results are cabulated and plotted. Also, we find the parallel-plate Cartesian scaled version of the fixed $\mu$ matching which may give matchings of other geometrical shapes by some variances in its $P^{\prime} \rightarrow$ P scaling procedure. This aspect, and the non-orthogonal scaling Which can make use of the Brewster angle transmission in a natural way are discussed for work of future interest.

Keywords: Electromagnetic pulses, differential geometry, waveguides

## 1. INTRODUCTION

A. Background and Motivation

It is well-known that in mechanics and Iluid dynamics one can transform or scale one problem and its solution to create a whole class of equivalent problems and their solutions ${ }^{[1]}$. Different problems and their solution behaviors of one equivalent class may look very different, but among them there are properties they share. The essence of such a scaling is to get appropriate dimensionless parameters that are common to them all.

However, in electromagnetic (EM) theory the nature and application of such a similar scaling method ${ }^{[2]}$, excep for conformal
 Only a few articles have recently been devoted to it ${ }^{[4]}$. The purpose of the present work is to investigate and develop for EM theory the nature, the limitation, the usefulness, and the application of such a scaling or similarity transform by using a differential geometry approach.
B. Description and Outline

In this work we try to present the EM scaling method, from the mose general theoretical formalism to the detailed solutions of some specific problems, in the simplest possible way that makes the reading extremely easy. We do not try to achieve the trivial task of being concise. On the contrary, we spell out most of the detail for such easy reading. We also tabulate the results for immediate engineering use.

In Chapter 2, we expiore and develop the general differential geometry scaling method, which carries an EM problem $P$ of complicated gecmetry into an equivalent problem $P^{\prime}$ of simple Cartesian or other simple
geometry with its accompanying transformations for medium, geometry, source and field. The advantage of such a procedure is, hopefully, to make the complexities of the geometry and of the medtum "cancel" each other in such a way that the resulting problem is simple and solvable. In Chapter 3, we study the time independent scaling for special cases. These include orthogonal coordinates and diagonal media, with coaxial systems especially emphasized.

Chapter 4 presents the inhomogeneors $\mu, \varepsilon$ loaded perfect matching between a cylindrical and a conical coaxial waveguide for TEM waves. Chapter 5 presents the inhomogeneous $E$, constant $H$, and anisotropic. $\underline{\equiv}$ loaded matching section between two cylindrical coaxiai waveguides for TEM waves. Chapter 5-E contains conclusion, remarks, and discussion of works of possible further interest.

Furthermore, the reader interested in a fast grasp of applications may skip the general theory in Chapter 2 and part of Chapter 3 and start at Chapter 4 if hesodesires. In doing so several "whys" referring to the previous general theory will arise, but despite these we have taken the effort to make such reading still easy and effortless.

Conceming notation, standard three dimensional vector analysis one is used. Also all results in the two aforementioned examples are in MKS units. In the general formalism, we have set the vacuum $\mu_{o}$ and $E_{0}$ equal to one so the $\mu$ and $E$ written are actually normsized with respect to $H_{0}$ and Eo. This practice is just to keep the notation consistent with differential georetry and generalized EM theory, and an appendix is attached for the Eull recovery to MKS units. [7] Aiso part of this report includes tine information Which is contained. in a paper to be published elsewhere. [5]

## ?. GENERAL DIEEERENTIAL-GEOMETRICAL EM SCALING IETHOD (DGM)

A. Generalized Maxwell's Eqs.

The usual Maxwell's eqs. that describe the classical EM fields in an inertial frame ${ }^{[6]}$ have been well tested and are fully accepted. In this case the observers who observe, measure, or "see" the fields are inertial observers. That is, they are attached to or fixed to an inertial coordinate frame $\left\{X^{\perp}\right\} \equiv\left\{X^{\circ} \equiv T, X^{1}, X^{2}, X^{3}\right\}$ such that each of them has his spatial location $\left(X^{1}, X^{2}, X^{3}\right) \equiv$ constants. The inertial frame $\left\{\mathrm{X}^{\mu}\right\}$ can be described by a Cartesian geometry that has the differential length square [7]

$$
(\Delta S)^{2}=(\Delta T)^{2}-\left(\Delta X^{1}\right)^{2}-\left(\Delta X^{2}\right)^{2}-\left(\Delta X^{3}\right)^{2}
$$

Let us consider a system of observers $\{0\}$ attached, in the above sense, to a coordinate frame $\left\{x^{\mu}\right\} \equiv\left\{x^{0}=t, x^{1}, x^{2}, x^{3}\right.$ ) which is not an inertial frame and cannot be described by a simple Cartesian geometry (2-1). Then to investigate the EM fields as "seen" by these observers $\{0\}$ we should use the postulated generalized relativistically covariant Maxwell's eqs. These eqs. have been so postulated because of their "naturalness" in a certain formalism - mamely tensor calculus and have been tested in special cases to a certain extent ${ }^{[8]}$. This relativistic classical EM theory is certainly correct for all known cases in special relativistic phenomena, and is probably correct to a high precision \{or general relativistic cases - within classical field theory. It is certainly the most popular and currently accepted one. We shall base Our investigation on this generalized relativistic EM theory to get the most
general EM scaling method which can be applied to moving media, time changing media, EM fields in gravity (general relativistic EM fields), accelerating media, and of course inhomogeneous and anisotropic media.

Now suppose we have a system of observers \{0\} attached to a general coordinate $\left\{x^{\mu}\right\} \equiv\left\{x^{0}=t, x^{1}, x^{2}, x^{3}\right\}$ where $x^{0}$ is the time coordinate and $x^{1}, x^{2}, x^{3}$ are the spatial coordinates. The geometry of this coordinate frame $\left\{x^{\mu}\right\}$ can be described by expressing its invariant length interval ds in terms of the metric coefficient functions $g_{\mu \nu}\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$ as ${ }^{[9]}$

$$
\begin{equation*}
d s^{2}=\sum_{\mu=0} \sum_{\nu=0} g_{\mu \nu} d x^{\mu} d x^{\nu} \equiv g_{\mu \nu} d x^{\mu} d x^{\nu} \tag{2-2}
\end{equation*}
$$

Here and in this work we have used the sumation convention that repeated indices are summed over their whole ranges, except explicitly stated otherwise. Also, Greek letters $\mu, v$, etc. stand for $0,1,2,3$ and Roman letters $i, j$, etc. stand for the spatial $1,2,3$. To these $\{0\}$, as the result of the relativistic EM theory, the Maxwell's eqs. become ${ }^{[10]}$

The notations used here have the following meanings.
The field vectors $\underset{\sim}{E}, \underset{\sim}{B}, \underset{\sim}{D}$, and $\underset{\sim}{H}$ have their usual meanings of macroscopic electromagnetic fields as electric intensity, magnetic induction, electric displacement, and magnetic intensity respectively, with respect to $\{0\}$. The $q$ and $J$ are the usual charge and current density relative to \{0\}. The vectors are decomposed or expressed on the observer's local spatial unit vectors $e_{\sim}(i)$ which point in the pure spatial direction and are projected from the coordinate $x^{i}$-directions to be perpendicular to the proper time direction. The dyadic ${ }^{[12]} \underset{\sim}{e}$ is defined by its components

$$
\begin{equation*}
(e)^{i j} \equiv e_{(i)^{j}} \tag{2-7}
\end{equation*}
$$

where $e_{(i)} j$ is the projection of the jth covariant coordinate basis vector $e^{j}$ on the ith local spatial unit vector $e(i)$. The ${\underset{\sim}{e}}^{T}$ is the transpose of the dyadic e, i.e., $\underset{\sim}{\left(e^{T}\right)^{i j} \equiv(e)^{j i}} \underset{\sim}{j}$. The vector $\subseteq$ is defined by $(\underset{\sim}{c})^{i} \equiv e_{(i)}{ }^{0}$ which is the $i$ th component of the covariant time-coordinate basis vector on the $\underset{\sim}{e}(i)$. Also the vector operators have their usual meaning and the quantity $g \equiv \operatorname{det}\left(g_{\mu \nu}\right)$.

Notice that if $\left\{x^{\mu}\right\}$ is Cartesian with a diagonal/ $g_{\mu \nu} \equiv(1,-1,-1,-1)$
as $(2-1)$, then $(2-3)$ to $(2-6)$ immediately reduce to the familiar Maxwell eqs. Since in this case we have $\underset{\sim}{\sum} \underset{\sim}{\mathrm{U}}$ (unit dyadic), $\underset{\sim}{c} \equiv 0, \mathrm{~g}=-1$, and
$g_{00}=1$, and thus for example the term on the left side of (2-4) becomes

$$
\begin{equation*}
\underset{\sim}{\nabla} \cdot \underset{\sim}{\mathbb{Z}} \cdot \underset{\sim}{E} \times \underset{\sim}{U})=\underset{\sim}{\nabla} \cdot \underset{\sim}{E} \times \underset{\sim}{U})=\underset{\sim}{\nabla} \times \underset{\sim}{E} \cdot \underset{\sim}{U}-\underset{\sim}{E} \times \underset{\sim}{V}=\underset{\sim}{\nabla} \times \underset{\sim}{E} \tag{2-8}
\end{equation*}
$$

and (2-4) reduces to $\underset{\sim}{\nabla} \times \underset{\sim}{E}=-\frac{\partial \underset{\sim}{B}}{\partial t}$. Other eqs., for this special case, reduce similarly to the usual familiar Maxwell eqs. In this work, we are considering scaling for linear media only. Thus, we can assume the constitutive relations for these observers
$\{0\}$ fixed in that $\left\{x^{\mu}\right\}$ as

$$
\begin{equation*}
\underset{\sim}{D}=\underset{\sim}{\varepsilon} \cdot \underset{\sim}{E}+\underset{\sim}{a} \cdot \underset{\sim}{B} \tag{2-9}
\end{equation*}
$$

$$
\begin{equation*}
\underset{\sim}{H}=\underset{\sim}{\beta} \cdot \underset{\sim}{E}+\underset{\sim}{K} \cdot \underset{\sim}{B} \tag{2-10}
\end{equation*}
$$

$$
\begin{equation*}
\underset{\sim}{J}=\underset{\sim}{\sigma} \cdot \underline{Z} \tag{2-11}
\end{equation*}
$$

Here the dyadics $\underset{\sim}{\varepsilon}, \underset{\sim}{\alpha}, \underset{\sim}{\beta}, \underset{\sim}{x}, \underset{\sim}{\sigma}$ again have their usual meaning for a general linear media, and are local quantitative of the medium at positions of $\{0\}$.

Also, if there are perfectly conducting boundaries, they are given by $F(\underset{\sim}{x})=0$ on which $\underset{\sim}{E}$ has no tangential components. The above descriptions, i.e. the Maxwell's eqs. (2-3) to (2-6), constitutive relations (2-9) to (2-11), and conducting boundaries $F(x)=0$, together with appropriate
boundary conditions at far away define an EM problem which we call P.[Iミ]
B. The General Scaling $P \rightarrow P^{\prime}$

Now a scaling method can transform the problem $P$ into an EM problem $P^{\prime}$ which is in a frame of simple Cartesian geometry and has correspondingly scaled medium properties, source strengths, and boundary conditions to be described in the following. To do so, we first define


$$
\begin{align*}
& \underset{\sim}{e} \equiv \frac{-1}{2} \sqrt{-g}{\underset{\sim}{e}}^{T} \dot{x}(\underset{\sim}{E} x \underset{\sim}{e})  \tag{2-12}\\
& \underset{\sim}{b} \equiv \sqrt{-g} e^{T} \cdot\left[\frac{B}{\sqrt{g_{00}}}+\underset{\sim}{c} \times \underset{\sim}{E}\right]  \tag{2-13}\\
& \underset{\sim}{d} \equiv \sqrt{-g} \underset{\sim}{e} \cdot\left[\frac{\underline{D}}{\sqrt{g_{O O}}}-\underset{\sim}{c} \times \underset{\sim}{H}\right]  \tag{2-14}\\
& \underset{\sim}{h} \equiv \frac{-1}{2} \sqrt{-g}{\underset{\sim}{f}}^{T} \dot{x}(\underset{\sim}{\mathrm{x}} \mathrm{x}) \tag{2-15}
\end{align*}
$$

in the coordinate frame $\left\{x^{\mu}\right\}$ which is now taken to be Cartesian with the simple metric geometry described by

$$
\begin{equation*}
d s^{2}=d t^{2}-\left(d x^{1}\right)^{2}-\left(d x^{2}\right)^{2}-\left(d x^{3}\right)^{2} \tag{2-16}
\end{equation*}
$$

Here and in some of the following, we define double operator () for $\dot{x}, x, i$ and $\frac{x}{x}$ between two dyadics as $\underset{\sim}{M}() \underset{\sim}{N}$ by the convention snat the upper operator operates first on the inner indices and the lower operator operates next on the outer indices. For example, in component form we have

$$
\begin{equation*}
\underset{\sim}{(M)} \underset{\sim}{\mathbb{N}})^{i} \equiv n^{i j k} M^{j \ell} \mathbb{N}^{2 k} \tag{2-17}
\end{equation*}
$$

$$
\begin{equation*}
(M \underset{\sim}{\mathrm{X}} \underset{\sim}{\mathrm{~N}})^{i j} \equiv \eta^{i l m} n^{j k n} M^{k \ell} N^{\operatorname{man}} \tag{2-18}
\end{equation*}
$$

etc., where $\eta^{i j k}+1,-1$, or 0 if $i j k$ are even, odd permutations of 123, or otherwise.

To proceed with the scaling, we then define the scaled charge and current density source $p$ and $\underset{\sim}{j}$ in this so-considered Cartesian frame $\left\{x^{\mu}\right\}$ by

$$
\begin{align*}
& \rho \equiv \sqrt{-g}\left(\frac{q}{\sqrt{g_{00}}}+c \cdot \mathrm{~J}\right)  \tag{2-19}\\
&  \tag{2-20}\\
& \dot{j} \equiv \sqrt{-g} \mathrm{~J} \cdot \frac{e}{z}
\end{align*}
$$

Then the Maxwell's eqs. (2-3) to (2-6) for these just defined "ficticious"
fields assume respectively their familiar forms

$$
\left\{\begin{array}{l}
\nabla \cdot \underset{\sim}{\nabla}=0  \tag{2-21}\\
\nabla \underset{\sim}{\sim} \underset{\sim}{p}=-\frac{\partial b}{\partial t} \\
\underset{\sim}{\nabla} \underset{\sim}{\underset{\sim}{r}}=\underset{\sim}{j}+\frac{\partial}{\partial t} \underset{\sim}{d}
\end{array}\right.
$$

in the usual simplest Cartesian sense. That is, these "ficticious" fields and sources are taken to be in an ordinary Cartesian coordinate frame $\left\{x^{\mu}\right\}$ with metric geometry (2-16), and their vector components are expressed on the orthogonal Cartesian spatial unit vectors in that $\left\{x^{\mu}\right\}$ which is now considered to be Cartesian after the scaling. To complete the scaling, the accompanying scaling of the medium's constitutive relations becomes

$$
\begin{align*}
& \underset{\sim}{d}=\underset{\sim}{\xi} \cdot \underline{e}+\underset{\sim}{A} \cdot \underline{\sim}  \tag{2-25}\\
& \begin{array}{l}
h=B \cdot e+\lambda \cdot b \\
z
\end{array}  \tag{2-26}\\
& \underset{\sim}{j}=\underset{\sim}{\sum} \cdot \underline{e}
\end{align*}
$$

where the new ficticious constitutive parameters are expressed in terms of the original ones of $(2-9)$ to (2-11) by

$$
\begin{align*}
& \text { - } \underset{z}{\hat{e}]} \times(\underline{c} \cdot \underset{=}{\hat{e}})  \tag{2-28}\\
& \underset{z}{A} \equiv \sqrt{g_{00}} e^{T} \cdot\left[\frac{\frac{a}{x}}{\sqrt{g_{00}}}-c \times \underset{z}{K}\right] \cdot \underset{z}{e} \tag{2-29}
\end{align*}
$$

$$
\begin{align*}
& \underset{\sim}{\sum} \equiv \frac{1}{2} e^{T} \cdot 0 \cdot\left(e^{T} \frac{x}{x} e\right) \tag{2-32}
\end{align*}
$$

Here $e^{T}$ is the transpose of e, i.e., $\left(e^{T}\right)^{i j}=(e)^{j i}$. Also, e $\hat{z}$ is the inverse of $e$ and always exists since det $\left.\underset{z}{z}(e)^{i j}\right] \neq 0$.

Finally, the scaled boundary conditions are given through (2-12) to (2-15) and (2-27) to regulate the ficticious fields behaviors on the scaled shape of boundaries in the Cartesian frame $\left\{x^{\mu}\right\}$. The mathematical description of such scaled boundaries in the scaled and taken-to-be Cartesian Erame $\left\{x^{\mu}\right\}$ is the same as its previous mathematical description in the original arbitrary coordinate frame $\left\{x^{\mu}\right\}$. For example conducting surfaces, if any, are still described by
$F(\underset{\sim}{x})=0$ in the scaled Cartesian frame $\left\{x^{i}\right\}$, on which the scaled $\xlongequal[=]{e}$ satisfies

$$
\begin{equation*}
\underset{\sim}{N} \cdot(\underset{\sim}{e} x e) \cdot e_{z}^{T}=0 \tag{2-33}
\end{equation*}
$$

where $\underset{\sim}{N}$ is the normal of the conducting boundary surface $F(x)=0$.
The above considerations, from eq. (2-12) and onward, describe how to obtain the new "fictitious" Cartesian problem $P^{\prime}$ from the original problem $P$ and give the relations between these two. Apparently, the reduction from $P$ to $P^{\prime}$ with greatly simplified geometry and differential eqs. is achieved at the expense of the much complicated medium properties. However, we must first realize that the scaled "fictitious" fields and "ficti tious" problem $g$ ' are the equivalent of and are just as real as the original fields and problem P. Thus they can play a reverse role with respect to each other at our disposal. We can require the apparently complicated medium properties (2-25) to (2-32) to be simple enough so that we can solve or know the solution of the scaled Cartesian problem $P^{\prime}$. Then through the inverse scaling $P^{\prime} \rightarrow P$ we can obtain a whole class of problems $P$ each with a known solution. Different problems $P$ belonging to the same class just correspond to different choices of the metric of the scaling geometry $g_{N}$. The advantage or the purpose of the scaling method in addition to being able to investigate the whole class of $P^{\prime}$ s by investigating one of chem, lies in the fact that one may choose the geometry and medium in such a way as to make their complications cancel each other so that the resulting problem is simple, solvable and possesses certain desirable features. This is
precisely what the following work will demonstrate.
C. The General Ifvirse Scaling $P^{\prime} \rightarrow P$

Since in the application of the scaling method, we need the inverse scaling $P^{\prime} \rightarrow P$ just as much as we need the scaling $P \rightarrow P^{\prime}$, we thus list the inverse scaling for $P^{\prime} \rightarrow P$ below. The fields are inversely scaled by

$$
\begin{align*}
& \left\{\begin{array}{l}
\underset{\sim}{D}=\frac{\sqrt{g_{00}}}{\sqrt{-g}} \underset{\sim}{e} \cdot\left[\underset{\sim}{d}-\underset{\sim}{h} \times \underset{\sim}{e} \hat{\sim}^{T} \cdot \underset{\sim}{c}\right] \\
\underset{\sim}{H}=\frac{-1}{2 \sqrt{-g}} \hat{\sim}
\end{array}\right. \tag{2-36}
\end{align*}
$$

and the sources are inversely scaled by

$$
\left\{\begin{array}{l}
q=\frac{\sqrt{g_{00}}}{\sqrt{-g}}(p-\underset{\sim}{c} \cdot \underset{\sim}{e} \cdot \underset{\sim}{j})  \tag{2-38}\\
J=\frac{1}{\sqrt{-g}} \hat{e} \cdot \underline{j}
\end{array}\right.
$$

Also the inversely scaled medium's properties, i.e. the parameters $\varepsilon$, $\stackrel{\sim}{\approx}, \underset{\sim}{\beta}, \underset{\sim}{K}$, and $\underset{\sim}{\sigma}$ of the problem $P$ in eç. (2-9) to (2-II), expressed in terms of the $\underset{\sim}{\xi}, \underset{\sim}{A}, \underset{\sim}{B}, \underset{\sim}{\lambda}$ and $\underset{\sim}{\sum}$ of $P^{\prime}$ in eqs. (2-25) to (2-27) are


$$
\begin{equation*}
\underset{\sim}{c}=\underset{\sim}{e} \cdot(\underset{\sim}{A}+c \cdot \underset{\sim}{e} x \underset{\sim}{\hat{\imath}}) \tag{2-41}
\end{equation*}
$$

$$
\begin{equation*}
\underset{\sim}{\beta}=\frac{1}{2} \quad\left(e^{T} \times \underset{z}{\hat{x}}\right) \cdot\left[\underset{z}{\lambda} \cdot e^{T} x \underset{\sim}{c}+\frac{1}{2} \underset{z}{B} \cdot\left(e^{x} e^{T}\right)\right] \tag{2-42}
\end{equation*}
$$

$$
\begin{equation*}
\underset{\underset{z}{K}=\frac{1}{2 \sqrt{g_{00}}}\left(\underset{z}{\left(e^{T} \times \frac{X}{X}\right.}\right) \cdot \underset{z}{\lambda} \cdot e_{z}^{T}}{z} \tag{2-43}
\end{equation*}
$$

$$
\begin{equation*}
\underset{z}{\sigma}=\frac{1}{2} \underset{z}{e} \cdot \sum_{z} \cdot\left(\underset{z}{e} \times e^{T}\right) \tag{2.44}
\end{equation*}
$$

D. Remarks

From the above, we see that the scaling $P \rightarrow P$ ' or the inverse scaling $P^{\prime} \rightarrow P$ are actually equivalent. The problem $P$ in any frame can be scaled into a problem in a Cartesian frame and vice versa. In manipulating the scaling processes, we should make sure the EM problems obtained have correct dimensions and represent true physical EM fields. For this reason the $g_{\mu \nu}$ metric coefficients should be made dimensionless.
Also, we can clearly see from (2-28) to (2-32) or from (2-40)to (2-44) that the nature of the medium after scaing depends on thescaling geometry as much as on the nature of the medium before scaling.This, plus realizability of the medium, poses various restrictions tothe application of the differential geometry scaling method.
3. Scaidng in special cases

For the $P \rightarrow P^{\prime}$ scaling, the part of mixad constitutive parameters
$\underset{\sim}{A}$ and $\underset{\sim}{B}$ in (2-25) and (2-26) that relate $\underset{\sim}{b}$ to $\underset{\sim}{d}$ and $\underset{\sim}{e}$ to $\underset{\sim}{h}$ are caused by two facts. As can be seen from (2-29) and (2-30), these mixings are caused partly by the medium's own constitutive mixings $\underset{\sim}{\alpha}$ and $\underset{\sim}{\beta}$ in (2-9) and (2-10), and partly by the non-time-orthogonality of the frame $\left\{x^{\mu}\right\}$ with $g_{o i} \neq 0$ which gives rise to $c^{i} \equiv e_{(1)}{ }^{0}$. If we restrict ourselves to time orthogonal frames, ioe. only dealing with frames with $g_{0 i} \equiv 0$ which exclude some parcicular non-stationary non-inertial frames such as accelerated frames, rotating frames, and frames of generally time changing gravitation, then $\underset{\sim}{c} \equiv 0$ and the scaling is simplified. Furthermore, we restrict ourselves for the present interest to media which have no electromagnetic mixture in their constitutive relations, i.e., $\underset{\sim}{\alpha}=\underset{\sim}{\beta}=0$. Within these two restrictions, i。e.

$$
\begin{align*}
& \underline{c} \equiv 0  \tag{3-1-a}\\
& \underset{z}{\underset{z}{x} \underset{z}{z}=0} \tag{3-1-b}
\end{align*}
$$

We shall consider the following further restricted special cases.
A. Diagonal Geometry

If the original arbitrary coordinate frame $\left\{x^{\mu}\right\}$ has a diagonal metric, i.e.

$$
\begin{equation*}
g_{\mu \nu} \equiv 0 \text { for } \mu \neq v \tag{3-2-a}
\end{equation*}
$$

such that

$$
\begin{equation*}
\left.d s^{2}=g_{0}^{2}(d t)^{2}-\left[g_{1} d x^{2}\right)^{2}+\left(g_{2} d x^{2}\right)^{2}+\left(g_{3} d x^{3}\right)^{2}\right] \equiv \overline{=}_{0}^{2} d t^{2}-d \sigma^{2} \tag{3-2-0}
\end{equation*}
$$

where $\mathrm{d} \sigma^{2}$ is the three-dimensional invariant length square and

$$
\begin{equation*}
\left|g_{\mu \mu}\right|^{\frac{1}{2}}=g_{\mu} \quad \text { (no summation here) } \tag{3-2-c}
\end{equation*}
$$

then $\stackrel{(e)}{=}{ }^{i j} \equiv \delta^{i j} / g_{i}$ (no summation). For this case, the $P \rightarrow P^{\prime}$ scaling for the fields (2-12) to (2-15) reduces to

$$
\begin{align*}
& \left\{\begin{array}{l}
\underset{\sim}{e}=g_{0} \underset{\sim}{e} \cdot \underline{\sim} \\
\underset{\sim}{b}=g_{1} g_{2} g_{3} \underset{\sim}{e} \cdot \underline{B}
\end{array}\right.  \tag{3-3}\\
& \left\{\begin{array}{l}
\stackrel{d}{=}=g_{1} g_{2} g_{3} \underset{\sim}{e} \cdot D \\
\underline{h}=g_{0} \underset{\sim}{e} \cdot \underline{Z}
\end{array}\right.
\end{align*}
$$

where the dyadic or matrix $\underset{=}{\mathrm{e}} \underset{=}{(e)}{ }^{-1}$, and

$$
\begin{align*}
& \stackrel{(e)^{i j}}{\stackrel{i j}{ }} \equiv \delta^{i j / g_{i}} \equiv\left(\begin{array}{ccc}
\frac{1}{g_{1}} & & 0 \\
& \frac{1}{g_{2}} & \\
& 0 & \\
& & \frac{1}{g_{3}}
\end{array}\right)  \tag{3-7-a}\\
& \left(\begin{array}{lll}
(\hat{e})^{i j}
\end{array}\right) \equiv g_{i} \delta^{i j} \equiv\left(\begin{array}{ccc}
g_{1} & 0 & \\
& 0^{g_{2}} & \\
& & g_{3}
\end{array}\right) \tag{3-7-b}
\end{align*}
$$

Also, the sources are scaled, from (2-19) and (2-20), even more simply
for the $P \rightarrow P^{\prime}$

$$
\begin{align*}
& \rho=g_{1} g_{2} g_{3} q  \tag{3-8}\\
& \dot{j}=g_{1} g_{2} g_{3} \stackrel{\varepsilon}{\approx} \quad J \tag{3-9}
\end{align*}
$$

But with this special restriction, on geometry the condition (3-2) and on media the condition ( $3-1-b$ ), the most simplified scaling relations are the constitutive relations. These relations (2-28) to (2-32) for $P \rightarrow g^{\prime}$ reduce to

$$
\begin{align*}
& \underset{z}{\xi}=\frac{g_{1} g_{2} g_{3}}{g_{0}} \underset{z}{e} \cdot \underset{z}{\varepsilon}  \tag{3-10}\\
& \underset{=}{A} \underset{\sim}{B}=0  \tag{3-11}\\
& \underset{z}{\eta} \equiv \underset{\sim}{(\lambda)}{ }^{-1}=\frac{g_{1} g_{2} g_{3}}{g_{0}} e \cdot \underset{z}{\underset{\sim}{\mu}} \cdot \frac{e}{z}  \tag{3-12}\\
& \sum_{\underline{z}}=g_{1} g_{2} g_{3} e \cdot \underset{z}{\sigma} \cdot \frac{e}{z} \tag{3-13}
\end{align*}
$$

such that for problem $p^{\prime}$ we have $d=\underset{\sim}{\xi} \cdot \underset{\sim}{e}, \underset{\sim}{b}=n \cdot h$ and $\underset{\sim}{j}=\sum_{\underset{\sim}{c}}$ e. In the above $\left.\underset{\sim}{\mu} \equiv \underset{\sim}{(R)}\right)^{-1}$ so that $\underset{\sim}{B}=\underset{\sim}{\mu}$. $\underset{\sim}{H}$ Eor $P$ in the present case. Also, the inverse scailng $P^{\prime} \rightarrow P$ for this case is obtained simply by the inverse of the above matrix relations (3-3) to (3-13). We will not write them out.

Notice that for this special case, by using a coordinate frame of diagonal metric, a problem with a "non-mixed" constitutive medium still scales into a problem of the same nature. But the inhomogeneity and the time-dependence of the geometry can be transfomed or scaled into such properties of the medium while the geometry is left simple and constant.
B. Diagonal Metric with $g_{0} \equiv 1$

This case corresponds to orthogonal curvilinear 3-dimensional coordinate frames in Euclidean space and leaves the time coordinate unchanged in the scaling. Since this is of particular interest to un, we now investigate it in further detail in the following.

B1. Diagonal Metric, $g_{0} \equiv 1$, and Diagonal Media
 they have only diagonal elements in their matrices, then from (3-10) to (3-13) we immediately see that the scaled medium for $P$ ' is also diagonal. Thus requiring both media before and after the diagonal scaling to be diagonal imposes no further restriction on the geometry itseaf.

B2. Diagonal Metric, $g_{0} \equiv 1$, and Uniaxial Media
If we require both $P$ and $P^{\prime}$ to have uniaxial media, i.e.

$\stackrel{\mu}{\underset{\sim}{\mu}=}\left(\begin{array}{lll}\mu & & 0 \\ & \mu & \\ 0 & \mu_{3}\end{array}\right) \stackrel{n}{=}\left(\begin{array}{lll}\eta & 0 \\ & \eta & \\ 0 & n_{3}\end{array}\right)$
then a certain restriction on our geometry is imposed, and as a result the above medium parameters are further related. From (3-10) and (3-14) we imnediately have

$$
\begin{equation*}
g_{1}=g_{2} \tag{3-17}
\end{equation*}
$$

and thus

$$
\left\{\begin{array}{l}
\xi=g_{3} \varepsilon  \tag{3-i8-a}\\
\xi_{3}=\frac{\left(g_{1}\right)^{2}}{g_{3}} \varepsilon_{3}
\end{array}\right.
$$

The same restriction $g_{1}=g_{2}$ satisfies (3-15) and (3-16), and gives similar relations

$$
\left\{\begin{array}{l}
n=g_{3} \mu  \tag{3-19-a}\\
n_{3}=\frac{\left(g_{1}\right)^{2}}{g_{3}} \mu_{3}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\sum=g_{3} \sigma \\
\sum_{3}=\frac{\left(g_{1}\right)^{2}}{g_{3}} \sigma_{3}
\end{array}\right.
$$

For this case, the restriction of uniaxiality on all $\sigma$, $\varepsilon$, and $\underset{\sim}{\mu}$ with respect to the same axis for both $P$ and $P^{\prime}$ requires the scaling diagonal geometry be also "uniaxial" with $g_{1}=g_{2}$. Notice that in this case, if we consider TEM wave propagation with respect to the $x^{3}$-axis, then the transverse "wave impedances" ${ }^{[14]}$ satisfy

$$
\begin{equation*}
\sqrt{\frac{\mu}{\varepsilon}}=\sqrt{\frac{n}{\xi}} \tag{3-21}
\end{equation*}
$$

and are unchanged during the scaling. This property will be used later In the next Chapter. Also $\mu_{3}$ and $\varepsilon_{3}$ do not enter the THM problem here. Notice that a coordinate frame with metric satisfying (3-17) can be obtained from any orthogonal coordinate frame ( $v^{1}, v^{2}, v^{3}$ ) with metric ${ }^{[15]}$

$$
\left\{\begin{array}{l}
d s^{2}=\left(f_{1} d v^{1}\right)^{2}+\left(f_{2} d v^{2}\right)+\left(f_{3} d v^{3}\right)^{2}  \tag{3-22}\\
f_{1} / f_{2} \equiv \text { function of } v^{1} \text { only }
\end{array}\right.
$$

To do so, we simply transform $\left(v^{1}, v^{2}, v^{3}\right)$ into $\left(x^{1}, x^{2}, x^{3}\right)$ by

$$
\left\{\begin{array}{l}
x^{1} \equiv \int\left(f_{1} / f_{2}\right) d v^{1}+\text { const } \\
x^{2} \equiv v^{2}  \tag{3-23}\\
x^{3} \equiv F\left(v^{3}\right) \underset{\rightarrow}{+} \equiv v^{-1}\left(x^{3}\right)
\end{array}\right.
$$

and the resulting metric for $\left(x^{1}, x^{2}, x^{3}\right)$ is simply

$$
d s^{2}=\left(f_{2}\right)^{2}\left[\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}\right]+\frac{\left(f_{3}\right)^{2}\left(d x^{3}\right)^{2}}{\left[F!\left(F^{-1}\left(x^{3}\right)\right)\right]^{2}}
$$

A coordinate frame $\left(x^{1}, x^{2}, x^{3}\right)$ so obtained from an orthogonal ( $v^{1}, v^{2}, v^{3}$ ) of (3-22) is ready to be used in scaling invoiving transverse isotropy or uniaxiality.

If the uniaxiality axes for $\S \underset{\sim}{\varepsilon} \underset{\sim}{\mu}$, and $\sigma$ are not the same, still further restrictions are imposed. For example, if $\underset{\sim}{\mu}$ is uniaxial relative to the $x^{2}$-direction such that

$$
\underset{\sim}{\mu}=\left(\begin{array}{cc}
\mu & 0  \tag{3-25}\\
& \mu_{2} \\
& 0
\end{array}\right) \quad, \quad \mu \neq \mu_{2}
$$

then, with $\cong$ and $\underset{\sim}{g}$ still required to satisfy (3-14) and (3-16), \cline { 1 - 1 } can be uniaxial with condicions in addition to (3-17)

$$
\begin{equation*}
\underset{\sim}{n}=g_{1} \underset{\approx}{\mu} \quad \text { if } \quad \dot{g}_{3}=g_{1} \tag{3-26}
\end{equation*}
$$

and

$$
\eta=g_{1} \sqrt{\frac{\mu}{\mu_{2}}}\left(\begin{array}{cc}
\mu & 0 \\
\cdot & \mu_{2} \\
0 & \mu_{2}
\end{array}\right) \text { if } \quad \varepsilon_{3}=g_{1} \sqrt{\frac{\mu}{\mu_{2}}}
$$

(3-27)

B3. Diagonal Metric, $g_{0} \equiv 1$, and Isotropic Media If we restrict the media of both $P$ and $P^{\prime}$ to be isotropic, then the scaling is severely limited. Now such restrictions

$$
\begin{align*}
& \underset{\sim}{\varepsilon}=\varepsilon \underset{\sim}{\mathrm{U}}, \underset{\sim}{\mu}=\mu \underset{\sim}{\mathrm{U}}, \quad \underset{\sim}{\sigma}=\sigma \underset{\sim}{\mathrm{U}} \tag{3-28}
\end{align*}
$$

immediately gives

$$
\begin{align*}
& g_{1}=g_{2}=g_{3}  \tag{3-30}\\
& \frac{\xi}{\varepsilon}=\frac{\mu}{\eta}=\frac{\sum}{\sigma}=g_{1} \tag{3-31}
\end{align*}
$$

from (3-10) to (3-13).

There are only two coordinate frames in the Euclidean space that can satisfy (3-30): 16] They are namely the Cartesian frame itself with $d S^{2}=(d T)^{2}-(d X)^{2}-(d Y)^{2}-(d Z)^{2}$, and the inverse Cartesian or inverse sphere frame with $d S^{2}=d t^{2}-{ }_{a}^{4}\left[(d x)^{2}+(d y)^{2}+(d z)^{2}\right) y\left(x^{3}+y^{2}+z^{2}\right)$ which is obtained by inverting the Cartesian coordinate with respect to the sphere

$$
X^{2}+Y^{2}+z^{2}=a^{2} \text { with } \sqrt{x^{2}+y^{2}+z^{2}} \sqrt{X^{2}+Y^{2}+z^{2}}=a^{2}
$$

C. Generalized Coaxial Geometry

For the geometry with $g_{0} \equiv 1$, a generalized coaxial coordinate frame $\left\{v^{1}, x^{2} \equiv \phi, v^{3}\right\}$ has metric coefficients as given in the invariant length by the non-orthogonal

$$
\begin{equation*}
d s^{2}=\left(f_{1} d v^{1}\right)^{2}+\rho^{2} d \phi^{2}+\left(f_{3} d v^{3}\right)^{2}+2 f_{13} d v^{1} d v^{3} \tag{3-32}
\end{equation*}
$$

Here $\phi$ is the usual azimuthal angle for cylindrical coordinate and $\rho$ is the usual cylindrical polar distance. Notice that the constant- $\phi$ half-planes are perpendicular to both the constant- $v^{1}$ and constant-v ${ }^{3}$ surfaces which are not perpendicular to each other. Also, the $\mathrm{F}_{1}$, $f_{3}, f_{13}$, and $\rho$ can all be functions of $v^{1}$ and $v^{3}$, but not functions of $\phi$. Such a generalized coaxial coordinate frame can be obtained by rotating any two dimensional coordinate frame possessing an axis of symetry about the axis. Furthermore, if $f_{13} \equiv 0$ and $f_{1} / f_{3}$ is function of $v^{1}$, then this ( $v^{1}, v^{2}, v^{3}$ ) can readily be used to obtain the $\left(x^{1}, x^{2}, x^{3}\right)$ frame of (3-23) and (3-24).
D. Remarks and Trivial Examples

Viewing from the foregoing analyses, it might look as though
the simpler the involved medium is, the more restrictive the scaling geometry must be and therefore the less useful the scaling method becomes In application. However, we should notice that if in a problem considered there are EM fields in certain directions only, then only constitutive relations in those directions enter in the analysis. So in such a situation a simple isotropic medium can be used as a substitute.for the complicated media required by the full scaling method. Furthermore, a choice of anisotropic or directional conductors can help to select desired field components and suppress others such that the just-mentioned situation can be achieved. It is in the light of these that the scaling method becomes very powerful in both theoretical investigations and in applications.

Before we go on to solve special probiens, let us illustrate the procedure and mature of the scaling method by some simple examples. Consider $P^{\prime}$ as a parallet plate waveguide with plates at $X=a$ and $X=b$. Let the region between the plates be filled with a uniform medium having constant dielectric constant $\xi$, magnetic permeability $\eta$, and conductivity $\sum \equiv 0$. Consider a TEM wave propagating in the. Z-direction with field components

$$
\begin{equation*}
E^{(X)}=\sqrt{\frac{\eta}{\xi}} H^{(Y)}=e^{i \omega \sqrt{\xi \eta}} Z \tag{3-33}
\end{equation*}
$$

This describes the Cartesian Problem $P^{\prime}$.

Now a scaling or rather an inverse scaling can carry $P^{\prime}$ into
a curvilinear problem $P$. If we choose the scaling geometry as

$$
\begin{equation*}
(X, Y, Z) \leftrightarrow\left(x^{I}, x^{2}, x^{3}\right) \leftrightarrow\left(c_{1} \theta, c_{2} \phi, r\right) \tag{3-34}
\end{equation*}
$$

where $(r, \theta, \phi)$ is the ordirfary spherical coordinate and $c_{1}, c_{2}$ are constant lengths, then this choice corresponds to scale the parallel plate problem with TEM propagation in Z-direction into a conical problem with TEM propagation in the r-direction. Using (3-7) and the inverse of (3-10) to (3-13), we immediately obtain that the scaled medium must be inhomogeneous and diagonally anisotropic and must have constitutive parameters in the scaled $\left(c_{1} \theta_{2} c_{2} \phi, I\right)$ coordinate as

$$
\begin{equation*}
\sigma \equiv 0 \tag{3-34-a}
\end{equation*}
$$

$$
\frac{\varepsilon}{\bar{\xi}}=\frac{\stackrel{\mu}{\tilde{j}}}{\eta}=\left(\begin{array}{ccc}
\frac{c_{2}}{c_{1} \sin \theta} & \frac{c_{1} \sin \theta}{} & 0  \tag{3-34-b}\\
& 0 & \frac{c_{1} c_{2}}{c_{2}^{2} \sin \theta}
\end{array}\right)
$$

In the conical coaxial waveguide between conical boundaries $\theta=\frac{a}{c_{1}}$ and $\theta=\frac{b}{c_{i}}$. The TEM wave that propagates in the conical coaxial waveguide, obtained easily from (3-3) and (3-6), is

$$
\begin{equation*}
E^{(\theta)}=\frac{c_{1} \sin \theta}{c_{2}} \sqrt{\frac{\pi}{\xi}} H^{(\phi)}=\frac{c_{1}}{r} e^{i \omega \sqrt{\xi \eta} r} \tag{3-35}
\end{equation*}
$$

Notice that in this trivial example, we have some freedom to regulate the conical coaxial waveguide. Namely $c_{1}$ is at our disposal to control the angular span of the conical waveguide. The constant $c_{2}$ has to be chosen that

$$
\begin{equation*}
c_{2}=\frac{\Delta Y}{2 \pi} \tag{3-36}
\end{equation*}
$$

where $\Delta Y$ is the periodicity of the original problem in the $Y$-direction, but for this TEM case $c_{2}$ can be arbitrary and does not influence the scaling. Also the phase velocity during the scaling is unchanged here. Just as another example, we can scale the above mentioned parallel-plate problem into a concentically bent parallel-plate waveguide by

$$
\begin{equation*}
(X, Y, z) \leftrightarrow\left(x^{1} x^{2}, x^{3}\right) \leftrightarrow\left(p,-z, c_{3} \phi\right) \tag{3-37}
\end{equation*}
$$

where ( $\rho, \phi, z$ ) is the usual cylindrical coordinate system. In this case, the concentrically bent parailel-plate waveguide has boundary plates at $\rho=a$ and $\rho=b$, and the TEM wave is propagating along中-direction with fields

$$
\begin{equation*}
E^{(p)}=-\sqrt{\frac{n}{\xi}} H^{(z)}=e^{i \omega \sqrt{\xi n} c_{3} \phi} \tag{3-38}
\end{equation*}
$$

where the phase velocity along $\phi$-direction is $\rho /\left(c_{3} \sqrt{\xi n}\right)$ which is not constant on the $\phi=$ constant cross-section of the wave guide and differs from the phase velocity. $1 / \sqrt{\xi n}$ along the $Z$-direction before the scaling. Also the medium that fills the scaled waveguide between $\rho=a$ and $\rho=b$ has the following scaled constitutive parameters in the $\left(p,-z, c_{3} \phi\right)$ coordinate system

$$
\frac{\varepsilon}{\xi}=\frac{\stackrel{\mu}{z}}{n}=\left(\begin{array}{ccc}
\frac{c_{3}}{\rho} & & 0 \\
& \frac{c_{3}}{\rho} & \\
& 0 & \frac{\rho}{c_{3}}
\end{array}\right)
$$

Notice that the arbitrary length constant $c_{3}$ provides a degree of freedom to regulate the angular $\Delta \phi$ bend of the concentric parallel plates from a given section length $\Delta z$ of the original problem.

We conclude this Chapter by several remarks. First we see that there is a certain degree of freedom in the scaling which can be used to match boundary connections between different scalings. Second, there are conditions for the scaled fields to satisfy such as periodicity and boundary condition matches. Third, only the part of the scaled medium's properties which are relevant to the fields considered are needed; e.g., only the $\varepsilon^{(\theta)(\theta)}, \mu^{(\phi)(\phi)}$, and $\sigma^{(\theta)(\theta)}$ in (3-34) are needed for the TEM propagation in that example. All these details on freedoms and restrictions have to be properly taken care of in applications.
4. MATCHING SECTION WITH VARIABLE $\mu$ and $\varepsilon$ BETWEEN CYLINDRICAL AND CONICAL COAXIAL WAVEGUIDES
A. The Problem

Consider a cylindrical coaxial waveguide described in the
usual cylindrical coordinate system ( $(\hat{y}, \phi, z)$ with inner conductor surface at $\rho=B$. and outer conductor surface at $\beta=B$. Also a homogeneous simple medium with constant $\mu, \varepsilon$, and $\sigma \equiv 0$ fills the coaxial region in this waveguide and a TEM wave is propagating along the z-direction in it (see fig. 1)

$$
\begin{equation*}
E^{(\rho)}=\sqrt{\frac{\mu}{E}} H^{(\phi)}=\frac{1}{\rho} e^{i \omega \sqrt{\mu \varepsilon} z-i \omega t} \tag{4-1}
\end{equation*}
$$

Now this cylindrical coaxial waveguide is to be connected to a conical waveguide filled with the same simple medium in such a way that a TEM wave in the cylindrical guide propagates into
the conical guide without any reflection and distortion. The problem is whether such a transition section exists and how one will go about finding it.
B. The Application of Scaling in the Cylindrical Part

Denote the cylindrical part as region $I$, the transitional part to be found as region $I I$, and the conical part region III. To find the matching section region $I I$, we first realize that it will likely be a coaxial structure since both I and III are coaxial. Further, since only TEM waves propagate in $I$ and III, so probably the simplest matching structure In II carries also TEM wave only. Since for such a TEM
wave the longitudinal medium properties along the axial direction play
no role, only transverse medium parameters are of importance. Moreover, whether the TEM wave is reflected or not depends on the matching of the transverse wave impedances. Therefore we are naturally led to consider a transverse isotropic scaling of III- 32 which preserves the transverse wave impedance. With all these in mind, we can try to investigate in this way the probable simplest scaling for the desired matching section. Even if one such section is obtained, it may only be a convenient one and is not at all necessarily the unique one.

Now the problem of finding the desired matching section of region II is really tantamount to finding the common Cartesian problem $P^{\prime}$ that is common to all regions I, II, and III. For such a $P^{\prime}$, different scalings in different regions should then scale the $P^{\prime}$ into the different configurations of our problem $P$ as required, namely, a cylindrical coaxial waveguide filled with uniform simple medium in $I$, an appropriately loaded perfect matching section in II, and the final conical coaxial waveguide filled with the same uniform simple medium as in region I. A TEM wave propagates in all regions and should be connected smoothly without reflection, for both $P$ and $P^{\prime}$.

Now the $p$ in the region $I$ is given. Hence fixed in region $I$ is the scaled $P^{\prime}$ which can be obtained easily. First use the $(\rho, \phi, z)$ as the $\left(v^{1}, v^{2}, v^{3}\right)$ to get the $\left(x^{1}, x^{2}, x^{3}\right)$, as was done in $(3-32)$ to $(3-24)$; we get for region I

$$
\left\{\begin{array}{l}
x^{1} \equiv c_{1} \ln \frac{\rho}{\rho_{0}}  \tag{4-2}\\
x^{2} \equiv c_{1} \phi \\
x^{3} \equiv z
\end{array}\right.
$$

and the metric georetry for the cocrdinate syatem ( $x^{1}, x^{2}, x^{3}$ )

Then in region $I$, the given cyindrical problem $P$ in this coordinate frame $\left(x^{1}, x^{2}, x^{3}\right) \equiv\left(c_{1} \ln \left(\rho / \rho_{0}\right), c_{1} \phi, z\right)$ has, from (4-1), fields

$$
\begin{align*}
E^{(1)}= & \frac{e^{i \omega \sqrt{\mu \varepsilon x^{3}}}}{\rho_{0} \exp \left(\frac{x^{1}}{c_{1}}\right)}  \tag{4-4a}\\
H^{(2)}= & \frac{\sqrt{\frac{\varepsilon}{\mu}} e^{i \omega \sqrt{\mu \varepsilon x^{3}}}}{\rho_{0} \exp \left(\frac{x^{1}}{c_{1}}\right)}
\end{align*}
$$

and has conducting boundaries at $x^{1}=c_{1} \ln \left(A / \rho_{0}\right)$ and $x^{1}=c_{1} \ln \left(B / \rho_{0}\right)$. Also, it of course has the same constant $\mu, \varepsilon$ simple medium. Up to here we have only rewritten $P$ in the region $I$. Now we scale the $P$ described above into a parallel-plate $P^{\prime}$ by

$$
\begin{equation*}
\left(\mathrm{x}^{1}, \mathrm{x}^{2}, \mathrm{x}^{3}\right) \leftrightarrow(\mathrm{X}, \mathrm{Y}, \mathrm{Z}) \tag{4-5}
\end{equation*}
$$

i.e., we take these $\left(x^{1}, x^{2}, x^{3}\right)$ to be a Cartesian coordinate frame after the scaling. Then the $P^{\prime}$ is a parallel-plate waveguide with the plates located at $X=c_{1} \ln \left(A / \rho_{0}\right)$

$$
\begin{equation*}
X=c_{1} \ln \left(B / \rho_{0}\right) \tag{4-6}
\end{equation*}
$$

and with a TEM wave in this parallel-plate waveguide given by

$$
\begin{align*}
& e^{(1)} \equiv e^{(X)}=\frac{e^{i \omega \sqrt{\mu \varepsilon} x^{3}}}{c_{1}}  \tag{4-7a}\\
& n^{(2)}=n^{(1)}=\frac{\sqrt{\frac{\varepsilon}{\mu}} e^{i \omega \sqrt{\mu \varepsilon}} x^{3}}{c_{1}} \tag{4-7b}
\end{align*}
$$

This is obtained by using the inverse of (3-3) and (3-6). The medium scaled to fill this parallel-plate waveguide is neither homogeneous nor isotropic, but has constitutive parameters in this Cartesian-taken frame $\left(X^{1}, x^{2}, x^{3}\right) \leftrightarrow(X, Y, Z)$

$$
\begin{align*}
& \underset{\sim}{\sum}=0  \tag{4-8a}\\
& \underset{\varepsilon}{\xi}=\frac{\eta}{\mu}=\left(\begin{array}{cc}
1 & 0 \\
& 1 \\
0 & \frac{0_{0}^{2}}{c_{1}^{2}}
\end{array}\right) \tag{4-8b}
\end{align*}
$$

This $P^{\prime}$ should be the problem comon to all the regions $I$, $I$, and III if the original perfect matching problem has a solution. The constant $0_{0}, c$ should be determined later by matching conditions.

Now, for $P^{\prime}$ the TEM wave (4-7) propagating in the parallelplate waveguide with plates (4-6) and medium (4-8) certainly satisfies Maxwell's equations and the relevant boundary conditions, and propagates in the $x^{3}$ direction of the $\left(x^{1}, x^{2}, x^{3}\right)$ Cartesian-taken frame without reflection and without distortion. The task next is to inversely scale this $P^{\prime}$ by different ways for region II and III into our original problem.
C. The Scaling and Design of the Matching Section In region II, from the original problem we see that we need a
rotational frame that carries its constant $x^{3}$-surfaces from plane surface to spherical surfaces. Looking at the table, we see that a toroidal coordinate system $(n, \phi, \theta)$ does that very simply. ${ }^{[17]}$ so in region II we choose this toroidal coordinate frame ( $\eta, \phi, \theta$ ) as the $\left(v^{1}, v^{2}, v^{3}\right)$ and obtain, by using (3-23) and (3-24), for region II (see Fig. 1)

$$
\left\{\begin{array}{l}
x^{I}=a \ln \left(\operatorname{th} \frac{\eta}{2}\right)+c_{2}  \tag{4-9}\\
x^{2}=a \phi \\
x^{3}=a F(\theta)
\end{array}\right.
$$

with metric coefficients

$$
\left.\mathrm{d} Q^{2}=\frac{\sinh ^{2}}{(\cosh \eta+\cos \theta)^{2}}\left[\left(\mathrm{dx}^{1}\right)^{2}+(\mathrm{dx})^{2}\right)^{2}\right]+\frac{(\mathrm{dx})^{2}}{\left[F^{\prime}(\theta)(\cosh \eta+\cos \theta)\right]^{2}}
$$

As a footnote, we remind ourselves that the toroidal coordinate frame ( $\eta, \phi, \theta$ ) has the metric Iength

$$
d \ell^{2}=\frac{a^{2}}{(\cosh n+\cos \theta)^{2}}\left[d n^{2}+\sinh ^{2} n d \phi^{2}+d \theta^{2}\right] \quad, \quad(4-11)
$$

$$
0 \leqslant n<\infty
$$

$$
0 \leqslant \phi \leqslant 2 \pi
$$

$$
-\pi \leq \theta \leq \pi
$$

If we identify the z-axis of our cylindrical coordinate frame in region $I$ as the $\eta=0$ straight line, then the toroidal ( $\eta, \phi, \theta$ ) has a rotational symmetry about the z-axis and has constant coordinate surfaces given by

$$
\begin{equation*}
\eta=\text { constant: } z^{2}+(p-a \operatorname{coth} \eta)^{2}=a^{2} \operatorname{csch}^{2} \eta \tag{4-12a}
\end{equation*}
$$

which is a toroidal surface obtained by rotating the circle of radius a csch $\eta$ and centered at a distance a coth $\eta$ from the $z$-axis and on the azimuth $\theta=\pi$ plane. Also we have

$$
\begin{equation*}
\phi=\text { const: half plane intersecting z-axis } \tag{4-12b}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta=\text { const: } \rho^{2}+(z+a \cot \theta)^{2}=\frac{a^{2}}{\sin ^{2} \theta} \tag{4-12c}
\end{equation*}
$$

which are spheres centered at $z=a \cot \theta$ on the $z$-axis and of radius $a /|\sin \theta|$. Notice that the constant a regulates the ( $n, \phi, \theta$ ) coordinate frame by changing the radius of the circle to which the toroidal surface converge as $n \rightarrow \infty$.

Thus in region II, the inverse scaling

$$
\begin{equation*}
(x, Y, z) \leftrightarrow\left(x^{1}, x^{2}, x^{3}\right) \leftrightarrow\left(a \ln \left(\text { th } \frac{n}{2}\right)+c_{2}, a \phi, a F(\theta)\right) \tag{4-13}
\end{equation*}
$$

will give the shape of the matching section and the whole description of desired problem $P$ in that region. Before we write out the fields
and medium properties in region II for $P$, we first have to make sure the ( $x^{1}, x^{2}, x^{3}$ ) of region $I$ and II as given by ( $4-2$ ) and (4-9) respectively join smoothly. This smooth joint will then ensure matching of the boundary conditions for the scaled fields. Thus at the boundary surface $z=0$ or $\theta=0$ between regions $I$ and $I I$, we require

$$
x^{1}(I) \equiv x^{1}(I I) \leftrightarrow c_{1} \ln \frac{\rho}{p_{0}} \equiv a \ln \operatorname{th} \frac{n}{2}+c_{2} \Rightarrow c_{2}=a \ln \frac{a}{\rho}
$$

$$
\left\{\begin{array}{ll} 
\\
x^{2}(I) \equiv x^{2}(I I) \Leftrightarrow c_{1} \phi=a \dot{4} \Leftrightarrow c_{1}=a \\
(4-14 b) \tag{4-14c}
\end{array}\right\}
$$

where the final $\Rightarrow$ in ( $4-14 a$ ) is obtained by the help of (4-14b). Also the scaled medium in region II for our matching section has the transverse aielectric constant

```
\varepsilon
```

which, if for realizability purpose is required to be greater than or equal to $\varepsilon$, implies
$F^{\prime \prime}(\theta) \geqslant \frac{1}{(\cosh n+\cos \theta)}$

This condition (4-16) can be satisfied by choosing

$$
\begin{equation*}
F^{\prime}(\theta)=\frac{1}{1+\cos \theta} \geqslant \frac{1}{\cosh n+\cos \theta} \Rightarrow F(\theta)=\tan \frac{\theta}{2} \tag{4-17}
\end{equation*}
$$

From the above, we obtain the inversely scaled matching section in region II. It is a toroidal coaxial waveguide with boundaries at $n=2 \tanh ^{-1} A / a, \eta=2 \tanh ^{-1} B / a$
obtained by using (4-6), (4-9) and (4-13). The purely TEM fields in the matching section, by means of the inverse of (3-3) and (3-6), are

$$
\begin{equation*}
E^{(n)} \equiv E^{(1)}=\frac{(\cosh \eta+\cos \theta) e^{i \omega \sqrt{\mu \varepsilon} a \tan \frac{\theta}{2}}}{a \sinh \eta} \tag{4-19}
\end{equation*}
$$

$$
\begin{equation*}
H^{(\phi)} \equiv H^{(2)}=\sqrt{\frac{\varepsilon}{\mu}} \frac{(\cosh \eta+\cos \theta)}{2 \sinh \eta} e^{i \omega \sqrt{\mu \varepsilon}} a \tan \frac{\theta}{2} \tag{4-20}
\end{equation*}
$$

in the matching region II. And the medium in the matching section has constitutive parameters

$$
\begin{align*}
& \underset{Z}{\sigma}=0  \tag{4-2la}\\
& \frac{\stackrel{\varepsilon}{\Xi}}{\varepsilon}=\frac{\stackrel{\mu}{z}}{\mu}=\left(\begin{array}{cc}
\frac{\cosh n+\cos \theta}{1+\cos \theta} & 0 \\
0 \quad \frac{\cosh n+\cos \theta}{1+\cos \theta} & \left(\cosh \frac{n+\cos \theta)(1+\cos \theta)}{(\cosh n+1)^{2}}\right.
\end{array}\right) \tag{4-21b}
\end{align*}
$$

where the dyadic components are expressed in the ( $n, \phi, \theta$ ) coordinate
frame or the $\left(x^{1}, x^{2}, x^{3}\right)$ of (4-9). These are obtained by using the Inverse of $(3-10)$ to (3-13) for the present $\left(x^{1}, x^{2}, x^{3}\right)$ of (4-9) and scaling relation (4-13).

The purely TEM propagation from the cylindrical region $I$ to the toroidai region II loaded as (4-21) undergoes no distortion and no reflection. They are just the differently scaled versions of the basic parallel-plate problem $P^{\prime}$ and are smoothly joined such that the tangential TEM fields $\underset{\sim}{E}$ and $\underset{\sim}{H}$ match. Next to be found is how does this toroidal transition section connect to the conical region III by another inverse scaling.
D. From the Matching Section to the Conical Part

Here we want to inversely scale our "basic common" parallelplate problem $P^{\prime}$ into the conical coaxial waveguide in a smooth way. First since the spherical coordinate frame $(\theta, \phi, r)$ satisfies the requirement (3-22), we can take it as the $\left(v^{1}, v^{2}, v^{3}\right)$ to obtain the "transverse isotropic" ( $x^{1}, x^{2}, x^{3}$ ) by (3-23) and get for region III

$$
\left\{\begin{array}{l}
x^{1}=c_{3} \text { 纤 } \tan \frac{x}{2}+c_{4}  \tag{4-22}\\
x^{2}=c_{3} \phi \\
x^{3}=a G(r)
\end{array}\right.
$$

with metric

$$
\begin{equation*}
d l^{2}=\frac{r^{2} \sin ^{2} \theta}{\left(c_{3}\right)^{2}}\left[\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}\right]+\frac{\left(d x^{3}\right)^{2}}{a^{2}\left[G^{\prime}(r)\right]^{2}} \tag{4-23}
\end{equation*}
$$

Again the smooth match of $\left(x^{1}, x^{2}, x^{3}\right)$ at the spherical boundary $\theta=\theta_{1}$ or $r=\frac{a}{\left|\sin \theta_{1}\right|}$ between regions II and III requires

$$
\left\{\begin{array}{l}
x^{I}(I I) \equiv x^{1}(I I I) \Longleftrightarrow a \ln \left(\operatorname{th} \frac{n}{2}\right)+c_{2}=c_{3} \ln \left(\tan \frac{\theta}{2}\right)+c_{4} \\
x^{2}(I I) \equiv x^{2}(I I I) \Leftrightarrow c_{3} \phi=a \phi \Leftrightarrow c_{3}=a  \tag{4-24b}\\
x^{3}(I I) \equiv x^{3}(I I I) \Leftrightarrow a G\left(a /\left|\sin \theta_{I}\right|\right)=a \tan \frac{\theta_{1}}{2}
\end{array}\right.
$$

from which the first two conditions and (4-14a) imply

$$
\begin{equation*}
c_{4}=a \ln \left(\frac{a}{\rho_{0} \tan \frac{\theta_{1}}{2}}\right) \tag{4-25}
\end{equation*}
$$

Thus for region III, we use the scaling

$$
\begin{equation*}
(X, Y, Z) \leftrightarrow\left(X^{I}, X^{2}, X^{3}\right) \leftrightarrow\left(a \ln \left(\frac{\tan \frac{\theta}{2}}{\frac{\tan ^{\theta} \frac{1}{2}}{}}\right)+a \ln \frac{a}{\rho_{0}}, a \phi, a G(r)\right) \tag{4-26}
\end{equation*}
$$

Notice that the $G(r)$ is not restricted by our scaling itself. But the scaled medium in the conical region III has the following transverse dielectric constant, obtained by using (3-18a) from the common $P^{\prime}$,

$$
\begin{equation*}
\left.\varepsilon_{(I I I,} \text { transverse }\right)=\varepsilon a G(r) \tag{4-27}
\end{equation*}
$$

Now since also in our original problem we require the conical section to be filled with the same uniform simple medium as the cylindrical part in region $I$, then we need

$$
\begin{equation*}
\varepsilon a G^{\prime}(r)=\varepsilon \tag{4-28}
\end{equation*}
$$

Thus the $G(5)$, implied by $(4-28)$ and ( $4-24 a$ ), is

$$
\begin{equation*}
G(I)=\frac{I}{a}-\cot \theta_{1} \tag{4-29}
\end{equation*}
$$

With the scaling geometry completed, the scaling (4-26)
itself then gives the propagating fields in region III

$$
\begin{align*}
& E^{(1)} \equiv E^{(\Theta)}=\frac{1}{r \sin \theta} e^{i \omega \sqrt{\mu \varepsilon}\left(r-a \cot \theta_{1}\right)}  \tag{4-30}\\
& H^{(2)} \equiv H^{(\phi)}=\sqrt{\frac{\varepsilon}{\mu}} \frac{e^{i \omega \sqrt{\mu \varepsilon}\left(r-a \cot \theta_{1}\right)}}{r \sin \theta}
\end{align*}
$$

by using again the inverse of (3-3) and (3-6) for the present scaling (4-26). The resulting conical wave gutde then has boundaries, described in the spherical coordinates, at

$$
\begin{align*}
& \theta=2 \tan ^{-1}\left(\frac{A}{a} \tan \frac{\theta_{1}}{2}\right)  \tag{4-32a}\\
& \dot{\theta}=2 \tan ^{-1}\left(\frac{B}{a} \tan \frac{\theta_{1}}{2}\right) \tag{4-32b}
\end{align*}
$$

The scaled medium to be filled in this conical coaxial region III expressed in the spherical $(\theta, \phi, r)$ or the $\left(x^{1}, x^{2}, x^{3}\right)$ of ( $4-26$ ) is simply

$$
\begin{align*}
& \stackrel{\sigma}{z}=0  \tag{4-33a}\\
& \frac{\underset{\varepsilon}{\varepsilon}}{\varepsilon}=\frac{\dot{\mu}}{\mu} \quad=\left(\begin{array}{cc}
1 & 0 \\
1 & a^{2}\left(1+\cos \theta_{1}\right) \\
0 & \frac{r^{2}(I+\cos \theta)^{2}\left(1-\cos \theta_{1}\right)}{}
\end{array}\right) \tag{4-33b}
\end{align*}
$$

E. Conclusion of the $\mu, \varepsilon$ Loaded Matching Section

We have achieved an appropriately loaded perfect matching section between the cylindrical and the conical coaxial guides by using the scaling method. Before summarizing the whole result of this chapter IV in a convenient table, we here make several remarks again. First, the underlying basic problem $P^{\prime}$ common to all regions I, II, and III is simply a parallel plate wave guide with TEM propagation. Second; the scaling geometry in different regions are connected smoothly and ensure the continuity of the tamgential fields which are the only fields. Third, the no-reflection at junction surfaces is very clear because of the nomreflection for $P^{\prime}$. along its propagation and the smoothness of different scaling geometry at their junctions. Another way of looking into this property is that the scaling chosen possesses the transverse isotropy and preserves the transverse wave impedances. Such constancy of transverse impedances, in adaition to the smoothness of the joining scaling geometries clearly guarantees no reflection and no distortion for the TEM
mode considered. Fourth, to realize the problem we need only an isotropic medium in II with its isotropy given by $\varepsilon^{\eta \eta}$ and $\mu^{\theta \theta}$ as in (4-21b), since only a coaxial TEM wave exists. Fifth, the solution so found is by no means inique. It periaps is the simplest one. Because any orthogonal rotational coordinate frame $\left(v^{1}, v^{2}, v^{3}\right)$ that can carry its constant coordinate surfaces from a plate to spherfical surfaces curved away relative to that plane can be used in II to join the cyinndrical I at the left side and the conical III at the right side for the $P^{\prime} \rightarrow P$ scaling, Of course, each such choice needs its different accompanying inhomogeneous loading medium in II. Sixth, the free parameters in the solution we obtained are the cylindrical radil $A$ and $B$, the toroidal pole distance $2 a$, and the constant $\theta_{1}$ on the spherical boundary surface dividing region II and III. These parameters are bounded to the extent

$$
\begin{align*}
& 0<A<B<a  \tag{4-34}\\
& 0<\theta_{1}<\pi \tag{4-35}
\end{align*}
$$

Seventh, we emphasize that the toroidal $(\eta, \phi, \theta)$ is only one of the many admissible $\left(v^{1}, v^{2}, v^{3}\right) .[15]$

Here is the table 1 sumarizing all the results. We remind ourselves again that for the toroidal coordinate $(\eta, \theta, \phi)$ the $\eta=$ const. toroidal surfaces are described by ( $4-12 \mathrm{a}$ ) and the $\theta=$ const. spherical surfaces are described by (4-12c). (See Fig. 1).

TABLE 1

| Regions Quaneities | I $z=0+$ | $\begin{array}{rlr} \theta=0 & \text { II } & \theta=\theta_{1} \\ & 0<\theta_{1} & <\pi \end{array}$ | $F_{I}=\frac{a}{\sin \theta_{I}} I I I$ |
| :---: | :---: | :---: | :---: |
| $x^{1}$ $x^{2}$ $x^{3}$ | $a \ln \left(\rho / p_{0}\right)$ <br> a申 <br> 2 | $\begin{gathered} a \ln \left(\tanh \frac{\pi}{2}\right)+a \ln \left(\frac{a}{\rho_{0}}\right) \\ a \phi \\ (\equiv \operatorname{aF}(\theta))=a \tan \frac{\theta}{2} \\ \text { and } F(0)=0 \end{gathered}$ | $\begin{gathered} a \ln \left(\frac{\tan \frac{\theta}{2}}{\tan \frac{\theta_{1}}{2}}\right)+a \ln \left(\frac{a}{\rho_{0}}\right) \\ a \phi \\ (\equiv a G(r))=r-a \cot \theta_{1} \\ \text { and } G\left(a / \sin \theta_{1}\right)=\tan \frac{\theta_{1}}{2} \end{gathered}$ |
| $8_{1}=g_{2}$ | ( $\frac{0}{a}$ ) | $\frac{\sinh \eta}{(\cosh n+\cos \theta)}$ | $\frac{I \sin \theta}{a}$ |
| 83 | 1 | $\left(\begin{array}{c} \left(\equiv \frac{1}{(\cosh \eta+\cos \theta) F^{\prime}(\theta)}\right) \\ =\frac{1+\cos \theta}{\cosh \eta+\cos \theta} \end{array}\right.$ | $\left(\equiv \frac{1}{a G^{\prime}(\Sigma)}\right)$ |
| Boundaries $\begin{gathered} x^{1}=a \ln \frac{A}{P_{0}} \\ \text { to } \\ x^{2}=a \ln \frac{B}{P_{0}} \end{gathered}$ | $\rho=A$ <br> to $\rho=B$ $0<A<B<a$ | $\begin{aligned} & \eta= 2 \tanh ^{-1} \frac{A}{a} \\ & t o \\ & \eta= 2 \tanh ^{-1} \frac{B}{A} \end{aligned}$ | $\begin{aligned} \theta & =2 \tan ^{-1}\left(\frac{A}{a} \tan \frac{\theta_{1}}{2}\right) \\ \theta & =2 \tan ^{-1}\left(\frac{B}{a} \tan \frac{\theta_{1}}{2}\right) \end{aligned}$ |



Notice again that in the above table $F(\theta), G(r)$ in general are dimensionless arbitrary smooth functions that satisfy $F(0)=0, G\left(a / \sin \theta_{1}\right)=\tan \frac{\theta_{1}}{2}$, and the choices as shown are the results of requiring the $\varepsilon_{\text {(transverse) }} \geqslant \varepsilon$ in II and the $\varepsilon_{\text {(transverse) }} \equiv \varepsilon$ in III. Also arrows indicated at the top of the table denote boundary surfaces that divide the regions.
5. $\underset{\sim}{\sigma}, \varepsilon$ Loaded Matching Section Between Two Cylindrical Coaxial Waveguides

The matching section found in the previous Chapter requires a loading material with tapered $\mu$ and $\varepsilon$. Such a tapering of inhomogeneous $\mu$ is difficult to realize. In this chapter we shall consider a matching section loaded with fixed $\mu$, but with inhomogeneous $\varepsilon$ and anisotropic $\stackrel{\sigma}{\underline{\sigma}} \cdot$
A. The Problem

Consider, in a cylindrical coordinate frame ( $\rho, \phi, z$ ), two cylindrical coaxial waveguides with different sizes. The first one has inner and outer cylindrical conducting radii $\rho=A$ and $\rho=B \equiv \lambda_{t} A$, and the second one has its respective radii $\rho=A^{\prime}$ and $\rho=B^{\prime} \equiv \lambda_{t}^{\prime} A^{\prime}$. Here the transverse outer-to-inner ratios $\lambda_{t}>1$ and $\lambda_{t}{ }^{\prime}>1$. Also we assume $A<A$ ' so the second one has larger size. Let both waveguides be filled with the same simple uniform medium of constant $\varepsilon$, constant $\mu$, and $0 \equiv 0$. (See Fig. 3).

Now the problem is to find a perfect matching section of the conical coaxial shape between these two cylindrical coaxial waveguides such that a TEM wave incident from the left side in the first smaller one can propagate into a TEM wave in the second larger one without reflection and without distortion. We allow ourselves to have variaile $\varepsilon(x)$ and anisotropic conductivity $\underset{=}{\sigma}$ in the matching section, but we require the matching section to have the same fixed $\mu$ as in the cylindrical regions.

The task is to see if such a matching is possible, to find it if it exists, and to look into ways of generalizing it to matchings of
other kinds by the differential geometry method (DGM). As before, we denote as region $I$ the left side smaller cylindrical part, as region II the matching part to be found, and as region III the right side larger cylindrical part. Also the TEM wave in the cylindrical I is

$$
\begin{align*}
& E^{(\rho)} \equiv E^{(1)}=\frac{e^{i \omega \sqrt{\mu \varepsilon z}}}{\rho}  \tag{5-1}\\
& H^{(\phi)} \equiv H^{(2)}=\sqrt{\frac{\varepsilon}{\mu}} \frac{e^{i \omega \sqrt{\mu \varepsilon z}}}{\rho} \tag{5-2}
\end{align*}
$$

B. Approach With Impedance Concept

Before launching into full detail of EM field consideration, we examine the problem by a rough impedance concept by looking at Fig. 2. For a perfect matching, we need the impedance to be matched all the way for regions $I$, II, and III. This can be achieved by inserting many coaxial conducting layers in all the regions with appropriately shaped boundary interfaces, with their spacings $d$ and the thickness $\hat{0}$ of.each such sheath satisfying

$$
\begin{equation*}
\delta \ll d \ll \lambda \tag{5-3}
\end{equation*}
$$

where $\lambda$ is the wave length of the TEM wave, and with the conductivity $\sigma$ of each sheath satisfying

$$
\begin{equation*}
\frac{1}{\sqrt{\omega \mu \sigma}} \ll \quad \text { and } \quad \sqrt{\frac{\mu E}{\sigma}} L \ll \quad d \tag{5-4}
\end{equation*}
$$

where $L$, is the longitudinal dimension of the matching section.

The condition (5-3) "ensures" no reflection and (5-4) "ensures" only the TEM field exists. Moreover, for a TEM wave to propagate from I, through II, and into III without distortion, a plane wave frone in $I$ should go into a plane wave front in III and the traveling time should be the same for waves following paths of different radii. These two requirements are intuitively necessary for our matching to exist. We shall see if they will indeed give such a matching in the following.

B1. Conditions for Shape and Medium of the Matching Section Now, referring to Fig. 2, we see that if we require equal traveling time along $M M^{\prime \prime}$ ' and its infinitesimally changed version 00'0', we obtain

$$
\begin{equation*}
\sqrt{\mu \varepsilon(\theta)}\left[r_{2}(\theta)-r_{1}(\theta)\right]+\sqrt{\mu \varepsilon} \Delta_{1}=\left[r_{2}(\theta+d \theta)-r_{1}(\theta+d \theta)\right] \sqrt{\mu \varepsilon(\theta+d \theta)}+\sqrt{\mu \varepsilon \Delta_{2}} \tag{5-5}
\end{equation*}
$$

where
$\Delta_{1} \equiv r_{1}(\theta) \cos \theta-r_{1}(\theta+d \theta) \cos (\theta+d \theta)=\left[r_{1}(\theta) \sin \theta-r_{1}^{\prime}(\theta) \cos \theta\right] d \theta$
$\Delta_{2} \equiv r_{2}(\theta) \cos \theta-r_{2}(\theta+d \theta) \cos (\theta+d \theta)=\left[r_{2}(\theta) \sin \theta-r_{2}^{\prime}(\theta) \cos \theta\right] d \theta$

Here $r=r_{1}(\theta)$ and $r=r_{2}(\theta)$ describe the boundary intersurfaces $\Gamma_{1}$ connecting I to II and $\Gamma_{2}$ connecting II to III respectively. These eqs. (5-5) anc (5-6), as a result of equal traveling time sequirement, reiate the boundary intersurfaces $\Gamma_{1}: r_{1}(\theta)$ and $\Gamma_{2}: r_{2}(\theta)$ and the inhomogeneous loading
$\varepsilon(\theta)$ In the conical II by

$$
\left[r_{2}^{\prime}(\theta)-r_{1}^{\prime}(\theta)\right]\left(\cos \theta-\sqrt{\frac{\varepsilon(\theta)}{\varepsilon}}\right)-\left[r_{2}(\theta)-r_{1}(\theta)\right]\left[\sin \theta+\frac{(\varepsilon(\theta) / \varepsilon)^{\prime}}{2 \sqrt{\varepsilon(\theta) / \varepsilon}}\right]=0
$$

Now consider the matching of impedances for each of the thin coaxial layers. First notice that the impedance for the TEM wave of a cyindrical coaxial waveguide is (see Fig. 2)

$$
\begin{equation*}
z_{\text {cyl. }} \equiv \frac{V}{I}=\frac{\sqrt{\frac{\mu}{\varepsilon}} \ell n\left({ }^{( } \text {outer } / \rho_{\text {inner }}\right)}{2 \pi} \tag{5-8}
\end{equation*}
$$

and of a conical coaxial waveguide is

$$
\begin{equation*}
Z_{\text {con. }} \equiv \frac{V}{I}=\frac{\sqrt{\varepsilon}}{2 \pi} \ln \left|\frac{\tan \left(\frac{\theta_{\text {outer }}}{2}\right)}{\tan \left(\frac{\theta_{\text {inner }}}{2}\right)}\right| \tag{5-9}
\end{equation*}
$$

This infinitesimal impedance matching on $\Gamma_{1}$ then becomes

$$
\begin{equation*}
\sqrt{\frac{\mu}{E}} \ln \frac{\rho+d \rho}{\rho}=\sqrt{\frac{\mu}{E(\theta)}} \ln \left(\frac{\tan \left(\frac{\theta+d \theta}{2}\right)}{\tan \left(\frac{\theta}{2}\right)}\right) \tag{5-10}
\end{equation*}
$$

which gives the differential eq.

$$
\begin{equation*}
\frac{r_{1}{ }^{\prime}(\theta)}{r_{I}(\theta)}+\frac{1}{\sin \theta}\left(\cos \theta-\frac{I}{\sqrt{\varepsilon(\theta) / \varepsilon}}\right)=0 \tag{5-1I}
\end{equation*}
$$

by expanding and using $0 \equiv r_{1}(\theta) \sin \theta$ in (5-10). Then (5-11) can be readily integrated to relate $\Gamma_{1}(\theta)$ and $\varepsilon(\theta)$ on $\Gamma_{1}$ by

$$
\begin{equation*}
r_{1}(\theta)=\text { const. } \exp \left[\int \frac{d \theta}{\sin \theta}\left(\frac{1}{\sqrt{\varepsilon(\theta) / \varepsilon}}-\cos \theta\right)\right] \tag{5-12}
\end{equation*}
$$

Here we immediately see that the $\Gamma_{2}(\theta)$ of $\Gamma_{2}$ must behave similarly and can differ from $r_{1}(\theta)$ only by a multiplicative amplification constant $\lambda_{a}$

$$
\begin{equation*}
r_{2}(\theta)=\lambda_{a} r_{1}(\theta) \quad, \quad \lambda_{a}>1 \tag{5-13}
\end{equation*}
$$

where $\lambda_{a}$ is greater than one because III is larger than $I$.
Therefore, with both impedance matchings and equal traveling time requirements, we have from (5-13) and (5-7) the differential equation

$$
\begin{equation*}
I^{\prime}(\theta)\left(\cos \theta-\sqrt{\varepsilon(\theta) / \varepsilon)}-r(\theta)\left(\sin \hat{\theta}+\frac{(\varepsilon(\theta) / \varepsilon)}{2 \sqrt{\varepsilon(\theta) / \varepsilon}}\right)=0\right. \tag{5-14}
\end{equation*}
$$

and from (5-13) and (5-11) the differential equation

$$
\begin{equation*}
\frac{r^{\prime}(\theta)}{r(\theta)}+\frac{1}{\sin \theta}\left(\cos \theta-\frac{1}{\sqrt{\varepsilon(\theta) / \varepsilon}}\right)=0 \tag{5-15}
\end{equation*}
$$

Both the $r_{1}(\theta)$ of $\Gamma_{1}$ and the $r_{2}(\theta)$ of $\Gamma_{2}$, which are related by an amplification constant $\lambda_{a}$ as in (5-13), should satisfy these two equations.

We here make several remarks before we proceed to solve (5-14) and (5-15). First, we choose $\varepsilon(\theta)$ being a function of $\theta$ only in II because the TEM propagation is independent of $\phi$ and any r-dependence as longitudinal inhomogeneity will give rise to unwanted reflection. Second, the relation (5-13) for the intersurfaces $\Gamma_{1}$ and $\Gamma_{2}$ implies that the transverse dimension ratios $\lambda_{t}$ for $I$ and $\lambda_{t}{ }^{\prime}$ for III are the same

$$
\begin{equation*}
\lambda_{t}^{\prime}=\lambda_{t} \tag{5-15}
\end{equation*}
$$

since

$$
\begin{equation*}
\lambda_{t} \equiv \frac{B}{A} \equiv \frac{r_{1}\left(\theta_{B}\right) \sin \theta_{B}}{r_{1}\left(\theta_{A}\right) \sin \theta_{A}} \equiv \frac{\lambda_{a} r_{1}\left(\theta_{B}\right) \sin \theta_{B}}{\lambda_{a} r_{1}\left(\theta_{A}\right) \sin \theta_{A}}=\frac{r_{2}\left(\theta_{B}\right) \sin B}{r_{1}\left(\theta_{B}\right) \sin A} \equiv \frac{B^{\prime}}{A} \equiv \lambda_{t}^{\prime} \tag{5-16}
\end{equation*}
$$

This constancy of the transverse dimension ratios indeed checks as it should because the impedance of the matched cylindrical coaxial lines should be equal no matter what happens in the transition matching section. Third, that the relation (5-13) itself should hold is intuitively clear if we require the voltage on each layered conductor sheath be constant throughout regions $I, ~ I I$, and III, and if we already require the $\lambda_{t}=\lambda_{t}^{\prime}$ from a direct impedance matching concept for I and III. Because then the layered sheaths in $I$ and III must have a similar geometrical outlay and differ only by a scale length. That each of such sheaths
should be linked by a sheath of constant $\theta$ means the two intersurfaces $\Gamma_{1}$ and $\Gamma_{2}$ must be similar and differ by the same scale length. Fourth, we must point out that the cylindrical coaxial conducting sheaths in I and III are only conceptual and need not be realized. Because the TEM wave in them does not see such sheaths. Fifth, the conical coaxial conductor sheaths in II are needed to ensure TEM wave there. When (5-3) and (5-4) are satisfied, such property in region II can formally be treated as though it has an anisotropic conductivity

$$
\stackrel{\sigma}{\approx}=\left(\begin{array}{ll}
0 & 0  \tag{5-17}\\
0 & \infty
\end{array}\right)
$$

in the spherical coordinate frame $(\theta, \phi, r)$ in region II.

B2. Shape of the Matching Section
Now we will solve (5-14) and (5-15) to determine the loading $\varepsilon(\theta)$ and the boundary shapes $\Gamma_{1}$ and $\Gamma_{2}$ for the conical region II. From (5-14), we have

$$
\begin{equation*}
\frac{r^{\prime}(\theta)}{r(\theta)}+\frac{(\sqrt{\varepsilon(\theta) / \varepsilon})^{\prime}+\sin \theta}{\sqrt{\varepsilon(\theta) / \varepsilon}-\cos \theta}=0 \tag{5-18}
\end{equation*}
$$

which can be integrated to give

$$
\begin{equation*}
y \sqrt{\varepsilon(\theta)}=\sqrt{\varepsilon} \frac{c_{1}+r(\theta) \cos \theta}{r(\theta)} \tag{5-19}
\end{equation*}
$$

where $c_{I}$ is a constant with dimension of length. Inserting (5-19) into
(5-15), we get

$$
\begin{equation*}
\frac{r^{\prime}(\theta)}{r(\theta)} \sin \theta+\left(\cos \theta-\frac{r(\theta)}{C_{1}+r(\theta) \cos \theta}\right)=0 \tag{5-20}
\end{equation*}
$$

which is a non-linear first order ordinary differential eq. for $r(\theta)$. To solve (5-20), we try first to rewrite it as

$$
\begin{equation*}
\frac{d}{d \theta}(r(\theta) \sin \theta)=\frac{r^{2}(\theta)}{\left(c_{1}+r(\theta) \cos \theta\right)} \tag{5-2I}
\end{equation*}
$$

which leads us further trying to separate variables for $r(\theta) \cos \theta$ by using
$\frac{d}{d \theta}(r(\theta) \sin \theta) \equiv \frac{d}{d \theta}(r(\theta) \cos \theta \tan \theta)=\tan \frac{d}{d \theta}(r(\theta) \cos \theta)+\frac{r(\theta) \cos }{\cos ^{2} \theta}$

Now substituting (5-22) into (5-21) gives

$$
\begin{equation*}
\left(\frac{I}{I(\theta) \cos \theta}+\frac{I}{c_{1}}\right) \frac{d}{d \theta} r(\theta) \cos \theta=\frac{-I}{\sin \theta \cos \theta} \tag{5-23}
\end{equation*}
$$

which can imediately be integrated to give

$$
\begin{equation*}
r(\theta) \sin \theta=c_{2} e^{\frac{-r(\theta) \cos \theta}{c_{1}}} \tag{5-24}
\end{equation*}
$$

that gives the boundary intersurface function $r(\theta)$ implicitly by a
transcendental algebraic eq. Here $c_{2}$ is another constant length to be determined. Notice that on either boundaries $\Gamma_{1}$ or $\Gamma_{2}$, (5-24) can be rewritten in terms of the cylindrical coorinates

$$
\begin{equation*}
\rho(z)=c_{2} e^{\frac{-z}{c_{1}}} \tag{5-25}
\end{equation*}
$$

which states that the $\Gamma_{1}$ dividing $I$ and $I I$ and the $\Gamma_{2}$ dividing $I I$ and .III are mothing more complicated than two exponentially-shaped boundary intersurfaces.

Now for $\Gamma_{1}$, which can be described by either $r=r_{1}(\theta)$ or $\rho=\rho_{1}(z)$, we have (see Fig. 3)

$$
\begin{align*}
& A \equiv \rho_{1}\left(z_{A}\right)=c_{2} e^{\frac{-z_{A}}{c_{1}}} \equiv c_{2} e^{\frac{-a c o t}{} \theta_{A}}{c_{1}}^{-2}  \tag{5-26a}\\
& \lambda_{t} A \equiv B=\rho\left(z_{B}\right)=c_{2} e^{\frac{-z_{B}}{c_{1}}} \equiv c_{2} e^{\frac{-\lambda_{\ell} z_{A}}{c_{1}}} \tag{5-26b}
\end{align*}
$$

Here $z_{A}$ and $z_{B}$ are the abscissas, along the coaxial axis from the confcal origin, of the points where the innermost and outermost conical surfaces meet the $\rho=A$ and $\rho=\lambda_{t} A$ cylindrical waveguide surfaces respectively. (See Fig. 3). Üsing the inner cylindrical radius $A$ of I, the cransverse dimension ratio $\lambda_{t}$ of $I$, the inner conical angle $\theta_{a}$ of II, and the longitudinal abscissa ratio for ' $I_{I}$

$$
\begin{equation*}
\lambda_{\ell} \equiv z_{B} / z_{A} \tag{5-27}
\end{equation*}
$$

As parameters, we have from (5-26)

$$
\begin{align*}
& c_{1}=\frac{\left(1-\lambda_{\ell}\right) A \cot \theta_{A}}{\ell n \lambda_{t}}  \tag{5-28a}\\
& c_{2}=A e^{\frac{\ell n \lambda_{t}}{1-\lambda_{\ell}}} \tag{5-28b}
\end{align*}
$$

Thus, with the $c_{1}$ and $c_{2}$ so determined, the intersurface $r_{1}$ between regions $I$ and $I I$ can be described either by $r=r_{I}(\theta)$ with $r_{1}(\theta)$ determined by (5-24), or described by $\rho=\rho_{1}(z)$ using (5-25) and (5-28).

For the $\Gamma_{2}$ that divides regions $I I$ and III, we have already found its relation to $\Gamma_{1}$ by (5-13), i.e. $r=r_{2}(\theta) \equiv \lambda_{a} I_{1}(\theta)$. Thus the description of $\Gamma_{2}$ in terms of the cylindrical coordinates in III can be obtained easily
$\rho=\rho_{2}(z)=r_{2}(\theta) \sin \theta=\lambda_{a} r_{1}(\theta) \sin \theta=\lambda_{a} c_{2} e^{\frac{-\lambda_{a} r_{1}(\theta) \cos \theta}{\lambda_{a} c_{1}}}=\lambda_{a} c_{2} e^{\frac{-z}{\lambda_{2} c_{1}}}$
which differs from the $\rho_{1}(z)$ only by replacing $c_{1}$ and $c_{2}$ by $\lambda_{a} c_{1}$ and $\lambda_{a} c_{2}$ respectively.

Notice that the $r_{1}(\theta)$ or $\rho_{1}(z)$ of $\Gamma_{1}$ and the $r_{2}(\theta)$ or $\rho_{2}(z)$ of $\Gamma_{2}$ relate all corresponding lengths in $I$ and III by the amplification factor $\lambda_{a}$ of (5-13). Now in terms of the independent free parameters $A \equiv$ inner radius of $I, \lambda_{t} \equiv$ transverse dimension ratio of $I, \theta_{A} \cong$ inner half-conical angle of $I I, \lambda_{\ell} \equiv$ longitudinal abscissa ratio of $\Gamma_{1}$, and $\lambda_{a} \equiv$ amplification factor of III relative to $I$, we
refer to Fig. 3 and summarize here the results on geometrical shapes for all regions $I$, II, and III.

$$
\begin{gather*}
\text { I: } \quad B=\text { outer cylindrical radius of } I=\lambda_{t} A, I<\lambda_{t}  \tag{5-30a}\\
\Gamma_{1}: \quad r=r_{1}(\theta) \text { where } r_{1}(\theta) \sin \theta=c_{2} e^{\frac{-r_{1}(\theta) \cos \theta}{c_{1}}}, 0<\theta_{A}<\theta<\theta_{B}<\frac{\pi}{2} ; \text { or } \\
\rho=\rho_{I}(z)=c_{2} e^{\frac{-z}{c_{1}}}, 0<z_{B}<z<z_{A} \\
z_{A}=A \cot \theta_{A} \text { and } z_{B}=\lambda_{Q} z_{A}=\lambda_{Q} A \cot \theta_{A}
\end{gather*}
$$

$$
\text { II: } \quad \theta_{B} \equiv \text { outer half-conical angle of } I I=\tan ^{-1}\left(\frac{B}{z_{B}}\right)=\tan ^{-1}\left(\frac{\lambda_{t}}{\lambda_{\ell}} \tan \theta_{A}\right)
$$

$$
\Gamma_{2}: \quad r=r_{2}(\theta)=\lambda_{a} r_{1}(\theta) ; \text { or } \rho=\rho_{2}(z)=\lambda_{a} c_{2} e^{\frac{-z}{\lambda_{a} c_{1}}}, \lambda_{a} z_{B}<z<\lambda_{a} z_{A}
$$

$$
\text { III: } \begin{align*}
A^{\prime} & \equiv \text { inner cylindrical radius of III }=\lambda_{a} A, \lambda_{a}>1 \\
B^{\prime} & \equiv \text { outer cylindrical radius of III }=\lambda_{t} \lambda_{a} A \tag{5-30e}
\end{align*}
$$

We remark that the $\lambda_{\ell} \leqslant 1$ of $(5-30 b)$ will be explained in the following Chapter 5-B3.

B3. Medium of the Matching Section
From (5-19), the inhomogeneous dielectric constant $\varepsilon(\theta)$ in
II is

$$
\begin{equation*}
\varepsilon(\theta)=\varepsilon\left[\frac{c_{1}+r_{1}(\theta) \cos \theta}{r_{1}(\theta)}\right]^{2} \tag{5-3I}
\end{equation*}
$$

where $c_{1}$ is given by (5-28a). Notice that if we insert $r_{2}(\theta)$ and fts. $\lambda_{a} c_{1}$ instead of $c_{1}$ for $\Gamma_{2}$ into (5-19), we get the same $E(\theta)$ as a function of the conical angle $\theta$ in region II.

To study the behavior of $\varepsilon(\theta)$, of course we can plot it
numerically. But we can get some insight by examining it amalytically without any difficulty. Now on $\Gamma_{1}$ and from (5-30b) we have

$$
\begin{equation*}
\lambda_{t}=\frac{B}{A}=\frac{\rho_{I}\left(z_{B}\right)}{\rho_{I}\left(z_{A}\right)}=e^{\frac{-\left(z_{B}-z_{A}\right)}{c_{1}}}>1 \tag{5-32}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\frac{z_{A}-z_{B}}{c_{1}}>0 \tag{5-33}
\end{equation*}
$$

Also fram (5-31) we have

$$
\begin{equation*}
c_{1}=r_{1}(\theta)\left[\sqrt{\frac{\varepsilon(\theta)}{\varepsilon}}-\cos \theta\right] \tag{5-35}
\end{equation*}
$$

Now in order to have an easy realization of the required $\varepsilon(\theta)$ in II, we require

$$
\begin{equation*}
\varepsilon(\theta) \geqslant \varepsilon \text { for } 0<\theta_{A} \leqslant \theta_{B}<\frac{\pi}{2} \text { in II } \tag{5-35}
\end{equation*}
$$

because $\varepsilon$ may often be just the $\varepsilon_{0}$ of the vacuum. Thus with the requirement (5-35); we have from (5-34) and (5-33) the relations

$$
\begin{gather*}
c_{1}>0  \tag{5-36}\\
z_{A}>z_{B} \quad \text { or } \lambda_{\ell} \equiv \frac{z_{B}}{z_{A}}<1 \tag{5-37}
\end{gather*}
$$

which explains the inequaiity in (5-30b). This guarantees that the $\Gamma_{1}$ and $\Gamma_{2}$ are both of expontially decreasing shape for $\rho$ as a function of $z$ on these intersurfaces.

To see more of the $\theta$-dependence of $\varepsilon(\theta)$, let us rewrite
(5-31) on $\Gamma_{1}$ and express $\varepsilon(\theta)$ as a function of $z$

$$
\begin{equation*}
\varepsilon(\theta(z))=\varepsilon \cdot \frac{\left(c_{1}+z\right)^{2}}{z^{2}+\rho_{1}^{2}(z)} \quad, \quad 0<\lambda_{\ell} z_{A} \leqslant z \leqslant z_{A} \tag{5-38}
\end{equation*}
$$

or

$$
\begin{equation*}
\varepsilon(\theta(v))=\frac{(v+\tau)^{2}}{v^{2}+\tan ^{2} \theta_{A} e^{\frac{2(1-v)}{\tau}}} \quad \cdot \varepsilon \quad, \quad \lambda_{Q} \leqslant v \equiv \frac{z}{z_{A}} \leqslant 1 \tag{5-39}
\end{equation*}
$$

by using the $\rho_{1}(z)$ for $\Gamma_{I}$ explicitly. Here $v$ is just the $z_{A}$ normalized coordinate of points on $\Gamma_{1}$ and

$$
\begin{equation*}
\tau \equiv \frac{1-\lambda_{l}}{2 \pi \lambda_{t}}>0 \tag{5-40}
\end{equation*}
$$

Taking $E(\theta(v))$ as a Eunction of $v$, the requirement $\varepsilon(\theta) \geqslant \varepsilon$ for $\theta$ becomes

$$
\begin{equation*}
\varepsilon(\theta(v)) \geqslant \varepsilon \text { for } 0<\lambda_{\ell} \leqslant v \leqslant I \tag{5-41}
\end{equation*}
$$

which is equivalent to

$$
\tan ^{2} \theta_{A} \leqslant \tau \quad(\tau+2 v) e^{\frac{2(v-1)}{\tau}}, \quad \lambda_{\ell} \leqslant v \leqslant 1
$$

The right hand side of (5-42) is a monotomically increasing function of $v$, therefore the $\theta_{A}$ should be chosen to satisfy

$$
\begin{equation*}
\tan ^{2} \theta_{A} \leqslant \tau \quad\left(\tau+2 \lambda_{\ell}\right) e^{\frac{2\left(\lambda_{\ell}-1\right)}{\tau}} \tag{5-43}
\end{equation*}
$$

or in terms of $\lambda_{t}$ and $\lambda_{2}$ for $\theta_{B}$

$$
\begin{equation*}
\tan ^{2} \theta_{B} \leqslant \frac{\left(1-\lambda_{l}\right)\left[1-\lambda_{l}+2 \lambda_{\ell} \ell n \lambda_{t}\right]}{\left(\lambda_{\ell} \ell n \lambda_{t}\right)^{2}} \tag{5-44}
\end{equation*}
$$

So the requirement of $\varepsilon(Q) \geqslant \varepsilon$ in II imposes restrictions on the independent parameters $\lambda_{\ell}, \lambda_{t}$, and $\theta_{A}$ by (5-37) and (5-44). For simplicity of the results, let us choose $\theta$ to satisfy the equality of (5-44), i.e.

$$
\begin{equation*}
\tan ^{2} \theta_{B}=\frac{\left(1-\lambda_{\ell}\right)\left[\left(1-\lambda_{\ell}\right)+2 \lambda_{\ell} \ell n \lambda_{t}\right]}{\left(\lambda_{\ell} \ell n \lambda_{t}\right)^{2}} \tag{5-55}
\end{equation*}
$$

Then the $\varepsilon(\theta(v))$ satisfies

$$
\begin{align*}
& \varepsilon\left(\theta\left(\lambda_{\ell}\right)\right)=\varepsilon  \tag{5-56a}\\
& \varepsilon(\theta(I))=\varepsilon \cdot \frac{\lambda_{t}^{2}(1+\tau)^{2}}{\lambda_{t}^{2}+\tau\left(\tau+2 \lambda_{\ell}\right)}>\varepsilon \tag{5-56b}
\end{align*}
$$

$$
\text { Examining } \varepsilon(\theta(v)) \text { for } \theta_{A}<\theta<\theta_{B} \text { or for } \lambda_{\ell}<v<1 \text {, we see }
$$ that

$$
\frac{\mathrm{d} \varepsilon(\theta(v))}{\mathrm{dv}} \cdot(+)\left[(2 \tau+v)\left(\tau+2 \lambda_{\ell}\right)\left(\lambda_{t}\right)^{\frac{2\left(\lambda_{\ell}-v\right)}{1-\lambda_{\ell}}}-\tau v\right]
$$

$$
\begin{equation*}
\geqslant(+)\left[2 \tau^{2}+4 \lambda_{2} \tau+\tau v+4 \lambda_{i} v\right]>0 \tag{5-57}
\end{equation*}
$$

Therefore $\varepsilon(\theta(v))$ is a monotomically increasing function of $v$ for $\lambda_{\ell} \leqslant v \leqslant 1$. In terms of $\theta$, these results $(5-56)$ and (5-57) are equivalent to

$$
\begin{align*}
& \varepsilon\left(\theta_{B}\right)=\varepsilon  \tag{5-58a}\\
& \varepsilon\left(\theta<\theta_{B}\right)>\varepsilon \tag{5-58b}
\end{align*}
$$

and,
$\varepsilon(\theta) \equiv$ monotonically decreasing function of $\theta$ for $\theta_{\max } \leqslant \theta \leqslant \theta_{B}$ (5-59) where $\theta_{\text {max }}$ is the place the maximum of $\varepsilon(\theta)$ occurs and is described in Fic. 5. This is clearly so because on $\Gamma_{1}$, as given by (5-30b), $z$, is a strictly decreasing function of $\rho$ and therefore a strictly decreasing function of $\theta$ for $\theta_{\max } \leqslant \theta \leqslant \theta_{B}$. Looking at Fig. 2, this should be obvious because the outer geometrival length $00^{\prime} 0^{\prime \prime}$ is longer than the inner geometrical length $M M^{\prime \prime} M^{\prime \prime}$. Therefore for $O M$ and $O^{\prime \prime} M^{\prime \prime}$ to have the same constant phase front the wave in II at $\theta+d \theta$ should travel faster than the wave at $\theta$, and this precisely requires $\varepsilon(\theta+d \theta)<\varepsilon(\theta)$ for $\theta_{\max } \leqslant \theta \leqslant \theta_{B}$.

B4. Fields and Their Matchings on $\mathrm{F}_{1}$
Up to here we have only treated the matching geometry and the matching medium using a rough impedance approach. Now we want to see if the matching so obtained indeed matches a reflectionless and distortionless TEM wave from I to III.

In the cylindrical region $I$, the medium has constant simple parameters $\mu$ and $\varepsilon$, and the TEM fields are given by (5-1) and (5-2). In the conical region $I$, the medium has a constant $\mu$, an $\varepsilon(\theta)$ implicitly given by (5-31) and (5-30b), and an anisotropic conductivity
(5-17), which in reality can be replaced by conical coaxial conducting sheaths satisfying (5-3) and (5-4), in the spherical coordinate system ( $\theta, \phi, r$ ) . In such a $I I$, we can easily verify that a TEM wave

$$
\begin{equation*}
E^{(\theta)}=\frac{e^{i \omega \sqrt{\mu \varepsilon(\theta) r}}}{r \sin \theta} f(\theta) \tag{5-60a}
\end{equation*}
$$

$$
\begin{equation*}
H^{(\phi)}=\sqrt{\frac{\varepsilon(\theta)}{\mu}} \frac{e^{i \omega \sqrt{\mu \varepsilon(\theta)} r}}{r \sin \theta} f(\theta) \tag{5-60b}
\end{equation*}
$$

can exist and satisfy Maxwell eq̧s. provided an induced current density

$$
\begin{equation*}
J^{(r)}=\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left[\sqrt{\frac{\varepsilon(\theta)}{\mu}} e^{\dot{j} \omega \sqrt{\mu \varepsilon(\theta)} r} f(\theta)\right] \tag{5-61}
\end{equation*}
$$

exist also. But the anisotropic conductivity (5-17) in II does have a $\sigma^{(r)(r)}=\infty$ in the radial direction and can suppress the electric field to be transverse by providing such a current. So the fields (5-60) and current density (5-61) are legitimate in region II. Here the $f(\theta)$ is an arbitrary smooth function of $\theta$ to be used for matching conditions on $\Gamma_{1}$ and $\Gamma_{2}$.

To match the field on $\Gamma_{1}$ between $I$ and II, we need these components of $(5-1),(5-2)$ and $(5-50)$ tangential to $\Gamma_{I}$ to be equal on the intersurface $\Gamma_{1}$. Referring to Fig. 4, we see that the tangent to $\Gamma_{1}$ makes an angle $\Psi$ with the axial $z$-axis and

$$
\begin{equation*}
\tan \psi=\frac{c_{2}}{c_{1}} e^{\frac{-r_{1}(\Theta) \cos \theta}{c_{1}}} \tag{5-62}
\end{equation*}
$$

by using (5-30b). Thus we have on $\Gamma_{1}$
$E_{I}^{(\rho)} \cos \left(\frac{\pi}{2}-\psi\right)=E_{I I}^{(\theta)} \cos \left(\frac{\pi}{2}-\psi-\theta\right) \Rightarrow E_{I}^{(\rho)}=E_{I I}^{(\theta)}(\cos \theta+\sin \theta \cot \psi)$

$$
\begin{equation*}
H_{I}^{(\phi)}=H_{I I}^{(\phi)} \tag{5-63b}
\end{equation*}
$$

$$
\Rightarrow \quad E_{I}^{(\rho)}=\sqrt{\frac{\varepsilon(\theta)}{\varepsilon}} E_{I I}^{(\theta)}
$$

where the subscripts I and II just emphasize the regions the fields are in. From (5-62) and (5-63), we see that the (5-63a) and (5-63b) can be consistent if and only if

$$
\begin{equation*}
\sqrt{\frac{\varepsilon(\theta)}{\varepsilon}}=\left(\cos \theta+\frac{c_{1} \sin \theta}{c_{2} e^{-r_{I}(\theta) \cos \theta / c_{1}}}\right) \tag{5-64}
\end{equation*}
$$

on $\Gamma_{1}$. But the $\varepsilon(\theta)$ we found in (5-31) satisfies this relation (5-64) precisely. So with our appropriately shaped $\Gamma_{1}$ and inhomogeneous $E(\theta)$, the matching of the tangential components of the TEM field on $\Gamma_{I}$ can be achieved by one condition (5-63a) or equivalently (5-63b). This one condition then detemines the arbitrary function $f(\theta)$ and gives

$$
\begin{equation*}
f(\theta)=\frac{e^{-i \omega \sqrt{\mu \varepsilon} c_{1}}}{\cos \theta+\left(c_{I} / r_{I}(\theta)\right)} \tag{5-65}
\end{equation*}
$$

To sumarize, the matched fields in I on II are

I: $\quad\left\{\begin{array}{l}E_{I}^{(\rho)}=\frac{e^{i \omega \sqrt{\mu \varepsilon} z}}{\rho} \\ H_{I}(\phi)=\sqrt{\frac{\xi}{\mu} \frac{e^{i \omega \sqrt{\mu \varepsilon}} z}{\rho}}\end{array}\right.$

B5. Fields and Their Matchings on $\Gamma_{2}$
Since the $\Gamma_{2}$ that divides regions II and III is of similar shape to $\Gamma_{1}$, the fields just obtained from $\Gamma_{1}$ matchings have no difficulty to be matched on $\Gamma_{2}$.

First, the tangent angle $\dot{\psi}_{2}$ on $\Gamma_{2}$ is the same as the one on $\Gamma_{1}$, aamely $\psi$. This is easily seen by using the $\rho_{2}(z)$ in (5-30d):

$$
\begin{equation*}
\tan \psi_{2}=-\frac{d \rho_{2}(z)}{d z}=\frac{c_{2}}{c_{1}} e^{\frac{-z}{\lambda^{c_{1}}}}=\frac{c_{2}}{c_{1}} e^{\frac{-r_{1}(\theta) \cos \theta}{c_{1}}} \tag{5-67}
\end{equation*}
$$

Therefore, the TEM fields in III that match tangentially on $\Gamma_{2}$ the fields in II are

$$
E_{I I I}^{(0)}=\frac{e^{i \omega \sqrt{\mu \varepsilon}\left[2+\left(\lambda_{e^{-1}}\right) c_{1}\right]}}{0}
$$

TABLE 2

| $\underbrace{\text { Regions }}_{\text {Description }}$ | Region I | Reglon II. | Region III |
| :---: | :---: | :---: | :---: |
| Coordinate System | cylindrical ( $\rho, \phi, z$ ) | spherical ( $0, \phi, \mathrm{r}$ ) | cylindrical ( $\rho, \phi, z$ ) |
| Waveguide | $\begin{aligned} & \rho=A \text { to } \rho=\lambda_{t} A \\ &\left(\lambda_{t}>1\right) \end{aligned}$ | $\begin{aligned} & \theta=\theta_{A} \text { to } \theta=\tan ^{+}\left(\frac{\lambda_{t}}{\lambda_{l}} \tan \theta_{A}\right) \\ & \left(0<\theta_{A} \leq \theta \leq \theta_{B}<\frac{\pi}{2}, \quad \lambda_{l}<1\right) \end{aligned}$ | $\begin{gathered} \rho=\lambda_{a} A \quad \text { to } \quad \rho=\lambda_{t} \lambda_{a} A \\ \left(\lambda_{a}>1\right) \end{gathered}$ |
| Intersurface dividing regions described by each coordinate system | $\begin{gathered} \Gamma_{1} \text { dividing } I \text { and II: } \\ \rho=\rho_{1}(z) \equiv c_{2} e^{-z / c_{1}} \text { for } \\ \lambda_{\ell} z_{A} \leq z \leq z_{A} \text { where } \\ z_{A} \equiv A \cot \theta_{A} \end{gathered}$ | $\begin{aligned} & \Gamma_{1}: r=r_{1}(\theta) \\ & \Gamma_{2}: r=r_{2}(\theta) \equiv \lambda_{a} r_{1}(\theta) \end{aligned}$ <br> where $r_{1}(\theta)$ is detemined by $\begin{aligned} & r_{1}(\theta) \sin \theta=c_{2} e \\ & \text { for } 0<\theta_{A} \leq \theta \leq \theta_{B} \end{aligned}$ | $\Gamma_{2}$ dividtang II and III: $\rho=\rho_{2}(z) \equiv \lambda_{a} c_{2} e^{-z / \lambda_{a} c_{1}}$ for $\lambda_{l} \lambda_{\mathrm{a}} z_{\mathrm{A}} \leq z \leq \lambda_{\mathrm{a}} z_{\mathrm{a}}$ |
| Constitutive parameters for medium | ```Constant }\mu\mathrm{ and E, and \sigma\equiv0``` | Same constant $\mu$, but $\varepsilon(\theta)=\varepsilon\left[\cos \theta+\frac{c_{1}}{r_{1}(\theta)}\right]^{2} \geq \varepsilon$ <br> such that $\varepsilon\left(\theta_{A}\right)>E, \quad \varepsilon\left(\theta_{B}\right)=E,$ <br> and $\varepsilon(\theta)$ monotonically decreasing for $\theta$ in $\left[\theta_{A}, \theta_{B}\right]$, and $\underset{\sim}{g}=\left(\begin{array}{cc} 0 & 0 \\ 0 & \infty \\ \infty \end{array}\right)$ | Constant $\mu$ and $\varepsilon$. and $\sigma \equiv 0$ |

TABLE 2 (continued)

| Regions <br> bescriptio | ns Region I | Region II | Region III |
| :---: | :---: | :---: | :---: |
| Fields | $E^{(\rho)}=\frac{e^{\mathrm{f} \omega \sqrt{\mu E} z}}{\rho}$ $H^{(\phi)}=\sqrt{\frac{\varepsilon}{\mu}} \frac{e^{i \omega \sqrt{\mu E}} z}{\rho}$ | $\begin{aligned} & E^{(\theta)}=\frac{e^{i \omega \sqrt{\mu E}\left[\left(c_{1}+r_{1}(\theta) \cos \theta\right) r / r_{l}(\theta)-c_{1}\right]}}{\left(\cos \theta+\frac{c_{1}}{r_{1}(\theta)}\right) r \sin \theta} \\ & H^{(\phi)}=\sqrt{\frac{\varepsilon}{\mu}} \frac{e^{\omega \sqrt{\mu \varepsilon}\left[\left(c_{1}+r_{1}(\theta) \cos \theta\right) r / r_{1}(\theta)-c_{1}\right]}}{r \sin \theta} \end{aligned}$ | $E^{(\rho)}=\frac{e^{i \omega \sqrt{\mu E}\left[2+\left(\lambda_{a}-1\right) c_{1}\right)}}{\rho}$ $H^{(\phi)}=\sqrt{\frac{\varepsilon}{\mu}} \frac{e^{i \omega \sqrt{\mu E}\left[z+\left(\lambda_{a}-1\right) c_{1}\right]}}{\rho}$ |
| Current | 0 | $\left.J(r)=\sqrt{\frac{E}{\mu}} \frac{1}{L^{2} \sin \theta} e^{-i \omega \sqrt{\mu \varepsilon} c_{1}} \frac{\partial}{\partial \theta} \mathrm{e}^{ \pm \omega / \mu \varepsilon(\theta) \mathrm{r}}\right]$ | 0 |
| Constants | $c_{1} \equiv \frac{\left(1-\lambda_{\ell}\right) \operatorname{Acot} \theta}{\ln \lambda_{t}}$ | $c_{2} \equiv A e^{\frac{\ln \lambda_{t}}{\left(1-\lambda_{\ell}\right)}}$ <br> (See caption of | $\text { ig. } 5 \text { on p. 82) }$ |

$$
\begin{equation*}
H_{I I I}(\phi)=\frac{\varepsilon}{\mu} \frac{e^{i \omega \sqrt{\mu \varepsilon}\left[z+\left(\lambda_{a}-1\right) c_{1}\right]}}{\rho} \tag{5-68b}
\end{equation*}
$$

B6. Sumary of the Matching Problem between Two Cylinders

We sumarize the solution of the fixed-म perfect matching problem in Table 2.

We remind ourselves that in this table we use $A, \lambda_{t}(>1), \theta_{B}$ (from (5-55), which in general should satisfy (5-54)), $\lambda_{Q}$ ( $<1$ as implied by $\lambda_{t}>1$ and $\left.\varepsilon(\theta) \geq \varepsilon\right)$, and $\lambda_{a}(>1)$ as the free parameters of our problem. Also the conductivity ${\underset{\sim}{\sigma}}_{\sigma}$ in $I I$ is only needed for its rr radial component and in reality can be replaced by conical coaxial perfectly conducting sheaths or radial conducting wires satisfying (5-3) and (5-4).

## C. Approach with Fields Concept

In the previous Chapter 5-B, we see that the necessary requirements on circuit impedance and ray travelling time indeed result in the field matching. This may seem to be a lucky colncidence. But all these can be understood and expected more easily and obviously from an approach with fields concept for the original matching problem.

First, let the problem $P$ still be described as in Chapter 5-A. Let the anisotropic conductivity in II be described by (5-3), (5-4) and (5-17). Then the reflectionlessness in II obviously dictates the $E(\theta)$ being a function of $\theta$ only in II. Second, requiring the field in III to be distortionless TEM gives

$$
\begin{equation*}
E_{I I I}^{(\rho)}=\frac{e^{i \omega \sqrt{\mu \varepsilon}(z+K)}}{\rho} \tag{5-69a}
\end{equation*}
$$

$$
\begin{equation*}
H_{I I I}^{(\rho)}=\sqrt{\frac{\varepsilon}{\mu} \frac{e^{i \omega \sqrt{\mu \varepsilon}}}{\rho}(z+K)} \tag{5-69b}
\end{equation*}
$$

where $K$ is a phase constant. Third, the use of the $\underset{\sim}{\sigma}$ in II for surpressing mode to be purely $T E M$ as the simplest matching possibility makes the wave form in II as (5-60).

Now, consider the intersurface $\Gamma_{1}$ between $I$ and II. Let this intersurface be described either by $I=r_{1}(\theta)$ or $\rho=\rho_{1}\left(z_{1}\right)$ where the $z_{1}$ emphasizes the description for $\Gamma_{1}$. From the tangential field matching on $\Gamma_{1}$, clearly we must require (5-63) which immediately gives

$$
\begin{equation*}
\sqrt{\frac{\varepsilon(\theta)}{\varepsilon}}=(\cos \theta+\sin \theta \cot \psi(\theta)) \tag{5-70}
\end{equation*}
$$

where $\psi(\theta)$ is the angle $\Gamma_{1}$ makes with the $-z$ axis. Substituting the explicit expressions of the fields in $I$ and II and (5-63) on $\Gamma_{1}$, we obtain

$$
\begin{equation*}
f(\theta)=\frac{e^{-i \omega \sqrt{\mu \varepsilon}} r_{I}(\theta) \sin \theta \cot \psi(\theta)}{\cos \theta+\sin \theta \cot \psi(\theta)} \tag{5-71}
\end{equation*}
$$

Doing the same thing on $\Gamma_{2}$ which is described by $r^{\prime}=I_{2}(\theta)$ or $\rho=\rho_{2}\left(z_{2}\right)$, we get

$$
\begin{equation*}
\sqrt{\frac{\varepsilon(\theta)}{\varepsilon}}=\left(\cos \theta+\sin \theta \cot \psi_{2}(\theta)\right) \tag{5-72}
\end{equation*}
$$

which, with the (5-70), implies

$$
\begin{equation*}
\psi_{2}(\theta)=\psi(\theta) \tag{5-73}
\end{equation*}
$$

where $\psi_{2}(\theta)$ is the angle $\Gamma_{2}$ makes with the $-z$ axis. Similar to (5-71) we also get

$$
\begin{equation*}
f(\theta)=\frac{e^{-i \omega \sqrt{\mu \varepsilon} I I_{2}(\theta) \sin \theta} \cot \psi(\theta)+K I}{\cos \theta+\sin \theta \cot \psi(\theta)} \tag{5-74}
\end{equation*}
$$

in which (5-73) has been used.
To determine the $\psi(\theta), r_{1}(\theta), r_{2}(\theta), \rho_{1}\left(z_{1}\right)$ and $\rho_{2}\left(z_{2}\right)$, we compare (5-71) with (5-74) and get

$$
\begin{equation*}
\left[r_{2}(\theta)-r_{1}(\theta)\right] \sin \theta \cot \psi(\theta)+K=0 \tag{5-75}
\end{equation*}
$$

But on $\Gamma_{1}$ we have $\rho_{1}\left(z_{1}\right)=r_{1}(\theta) \sin \theta$ and $\tan \psi=-\mathrm{d} \rho_{1}\left(z_{1}\right) / \mathrm{d} z_{1}$, and on $\Gamma_{2}$ we have $\rho_{2}\left(z_{2}\right)=r_{2}(\theta)$ sine and $\tan \psi_{2}=-\mathrm{i} \rho_{2}\left(z_{2}\right) / d z_{2}$, therefore (5-75) becomes

$$
\begin{equation*}
\left[\frac{\rho_{2}\left(z_{2}\right)}{\rho_{1}\left(z_{1}\right)}-1\right] d z_{1}=\frac{\mathrm{Kd}_{1}\left(z_{1}\right)}{\rho_{1}\left(z_{1}\right)} \tag{5-76}
\end{equation*}
$$

Since the right hand side of (5-76) is a function of $z_{1}$ only, so must be the left hand side. Thus $\rho_{1}\left(z_{2}\right) / \rho_{1}\left(z_{1}\right)$ can be a function of $z_{1}$ only. Because of (5-73), we can conclude similarly $\rho_{2}\left(z_{2}\right) / \rho_{1}\left(z_{1}\right)$ can be a function of $z_{2}$ only. Thus

$$
\begin{equation*}
\frac{\rho_{2}\left(z_{2}\right)}{\rho_{1}\left(z_{1}\right)} \equiv \lambda_{a} \tag{5-77}
\end{equation*}
$$

where $\lambda_{a}$ is a constant. Combining (5-76) and (5-77), we have for $r_{1}$

$$
\begin{equation*}
\Gamma_{1}: \rho_{1}\left(z_{1}\right)=c_{2} e^{\frac{-z_{1}}{c_{1}}} \text { or } r_{1}(\theta) \sin \theta=c_{2} e^{\frac{-r_{1}(\theta) \cos \theta}{c_{1}}} \tag{5-78}
\end{equation*}
$$

where the constant $c_{2} \equiv K /\left(\lambda_{a}-1\right)$.
Now, from (5-78), the constants $c_{1}$ and $c_{2}$ can be determined just as in (5-26) and are given by (5-28). Then (5-77) yields again (5-30d) as the description $\quad \rho_{2}\left(z_{2}\right)$ or $r_{2}(\theta)$ for the intersurface $\Gamma_{2}$. Also from (5-78) we have

$$
\begin{equation*}
\tan \psi(\theta)=-\frac{d \rho_{1}\left(z_{1}\right)}{d z_{1}}=\frac{c_{2}}{c_{1}} e^{\frac{-z_{1}}{c_{1}}} e^{\frac{-r_{1}(\theta) \sin \theta}{c_{1}}} \tag{5-79}
\end{equation*}
$$

which with (5-70) implies

$$
\begin{equation*}
\varepsilon(\theta)=\varepsilon\left(\cos \theta+\frac{c_{1} \sin \theta}{\frac{c_{1}(\theta) \sin \theta}{c_{1}}}\right)^{2}=\varepsilon\left(\cos \theta+\frac{c_{1}}{r_{1}(\theta)}\right)^{2} \tag{5-80}
\end{equation*}
$$

precisely as obtained in the previous (5-31). Finally, the complete field expressions in regions II and III are obtained by inserting $K=\left(\lambda_{a}-1\right) c_{2}$ and $f(\theta)$ from (5-74) into their respective expressions (5-60) and (5-69). If, furthermore, we require that in region II $\varepsilon(\theta) \geqslant \varepsilon$ and $\varepsilon\left(\theta_{B}\right) \neq \varepsilon$, then we obtain results all identical as listed in table 2 。

In conclusion, we see that a field approach to our original matching problem directly can yield all the results in a logical and
clear way. Besides, along the way it also makes clear why such a matching is possible in reducing the two tangential matchings of $E$ and $\underset{\sim}{H}$ to one condition by an appropriate choice of $f(\theta)$. Also, plots of the boundary surfaces $\bar{\Gamma}_{1}$ and $\Gamma_{2}$ and the $\varepsilon(\theta)$ are shown in Fig. 5 .
D. Scaling into the Parailel Plate Waveguide $P \rightarrow P^{\prime}$

We have already solved the special matching problem $P$ concerning two cylindrical TEM waveguides with fixed - ion load matching in two ways.

Now we want to see whether the $P$ can be solved by using a DGM scaling technique via which a general procedure to obtain matchings of other geometrical shapes may reveal. To be specific, we want to scale $P$ into its simplest parallel plate version $P^{\prime}$. If such $a$ $P^{\prime}$ can be obtained satisfactorily, then it may be possibie to attain various different matchings by the $P^{\prime} \rightarrow P$ scaling each with a different but appropriate geometry of particular choice.

D1. $P \rightarrow P^{\prime}$ in Region $I$
Now for $P$ the region $I$ is described in Chapter 5-A. To get the scaled region $I^{\prime}$ for the scaled $P^{\prime}$, we choose (4-2) again:

$$
\begin{equation*}
(p, \phi, z) \leftrightarrow\left(\alpha \ln \frac{p}{p_{0}}, \alpha \phi, z\right) \leftrightarrow\left(x^{1}, x^{2}, x^{3}\right) \tag{5-81}
\end{equation*}
$$

because such a choice preserves the transverse wave impedance and gives constant transverse $\xi=\varepsilon$ and $\quad \eta=\mu$ for the present $P \rightarrow P^{\prime}$.

The results for the $I^{\prime}$ of $P^{\prime}$ are similar to thoge of Chapter 4. Namely, we have a parallel plate waveguide with plates at

$$
\begin{align*}
& x^{1}=x_{L}^{1}=\alpha \ln \frac{A}{\rho_{0}} \\
& x^{1}=x_{U}^{1} \equiv \alpha \ln \frac{\lambda_{t} A}{0} \tag{5-82}
\end{align*}
$$

with a medium given by

$$
\frac{\xi^{i j}}{\varepsilon}=\frac{n^{i j}}{\mu}=\left(\begin{array}{cc}
1 & 0  \tag{5-83}\\
0 & \left(\frac{p_{0} e^{\frac{x^{1}}{a}}}{a}\right)^{2}
\end{array}\right)
$$

In the Cartesian $\left(x^{1}, x^{2}, x^{3}\right)$ coordinate frame, with a right side boundary intersurface $\Gamma_{1}^{I^{\prime}}$ given by a linear funceion

$$
\begin{equation*}
\Gamma_{1}^{I^{\prime}}: \quad x^{3}=c_{1}\left[\ln \frac{c_{2}}{\rho_{0}}-\frac{x^{1}}{\alpha} j\right. \tag{5-84}
\end{equation*}
$$

and with a scaled TEM wave

$$
\begin{align*}
& e_{I}^{(1)}=\frac{1}{\alpha} e^{i \omega \sqrt{\mu \varepsilon} x^{3}} \\
& {h_{I}^{(2)}}_{L^{(2)}}=\sqrt{\frac{E}{\mu}} e^{i \omega \sqrt{\mu \varepsilon}} x^{3} \tag{5-85b}
\end{align*}
$$

D2. $\quad P \rightarrow P^{\prime}$ in Region II
Now for the $P \rightarrow P^{\prime}$ in II, we choose for II the scaling

$$
\begin{equation*}
(\theta, \phi, r) \leftrightarrow\left(u(\theta), \alpha \phi, \frac{r-k}{3}\right) \leftrightarrow\left(x^{1}, x^{2}, x^{3}\right) \tag{5-86}
\end{equation*}
$$

where the $\phi$-matching results the choice $\alpha \phi$, the orthogonality results $u(\theta)$, and the fixed $\mu$ results the choice of $x^{3}$ as linear function of r. The metric geometry of the scaling is then

$$
\begin{align*}
& d \sigma^{2}=\left(\beta x^{3}+k\right)^{2}\left[\frac{d x^{1}}{u^{\prime}\left(\theta\left(x^{2}\right)\right)}\right]^{2}+\left(\beta x^{3}+k\right)^{2}\left(\sin \theta\left(x^{1}\right)\right)^{2} \frac{\left(d x^{2}\right)^{2}}{\alpha^{2}} \\
& \quad+\beta^{2}\left(d x^{3}\right)^{2} \tag{5-87}
\end{align*}
$$

The $\Gamma_{1}$, described by $r=r_{1}(\theta)$ in $I I$, gives the $\Gamma_{1} I^{\prime}$ as the intersurface between $I^{\prime}$ and II' by

$$
\begin{equation*}
I_{I}^{I I^{\prime}}: I_{I}\left(\theta\left(x^{I}\right)\right)=B x^{3}+k \tag{5-88}
\end{equation*}
$$

in terms of the $\left(x^{1}, x^{3}\right)$ in II', where $\theta=\theta\left(x^{1}\right)$ is the inverse function of $x^{1}=u(\theta)$. Since (5-84) and (5-88) should describe the same boundary intersurface $\Gamma_{1}^{\prime}$, therefore

$$
\begin{equation*}
I_{1}\left(\theta\left(x^{1}\right)\right)=\beta c_{1}\left[\ln \frac{c_{2}}{p_{0}}-\frac{x^{1}}{\alpha}\right]+k \tag{5-89}
\end{equation*}
$$

where $\alpha, \beta, k$ are constants of the scaling. But the $I_{1}(\theta)$ is known implicitly through $(5-30 b)$, thus the $x^{1}=u(\theta)$ or the $\theta=\theta\left(x^{1}\right)$
is determined implicitly by

$$
\begin{equation*}
\left\{\beta c_{1}\left[\ln \frac{c_{2}}{\rho_{0}}-\frac{x^{i}}{\alpha}\right]+k\right\} \sin \theta=c_{2} e^{\frac{-\left\{\beta c_{1}\left[\ln \frac{c_{2}}{\rho_{0}}-\frac{x^{1}}{\alpha}\right]+k\right\} \cos \theta}{c_{1}}} \tag{5-90}
\end{equation*}
$$

Also the $\Gamma_{2}^{\prime}$, scaled from $\Gamma_{2}$, as intersurface between II' and III' becomes

$$
\begin{equation*}
\Gamma_{2}^{I I^{\prime}}: x^{3}=\lambda_{a} c_{1}\left[\ln \frac{c_{2}}{\rho_{0}}-\frac{x^{2}}{\alpha}\right]+\frac{k}{\beta}\left(\lambda_{a}-1\right) \tag{5-91}
\end{equation*}
$$

if it is viewed in II'. Notice that the two exponential intersurfaces
$\Gamma_{1}$ and $\Gamma_{2}$ for $P$ becomes simply two straight line plane intersurfaces $\Gamma_{1}^{\prime}$ and $\Gamma_{2}^{\prime}$ for the scaled parallel plate problem $P^{\prime}$.

D3. $P \rightarrow P^{\prime}$ for Region III
Because the geometrical similarity of I and III, "naturally" we try for the scaling of III

$$
\begin{equation*}
(\rho, \phi, z) \leftrightarrow \quad\left(\alpha n_{n} \frac{\rho}{\lambda_{a} \rho_{0}}, \alpha \phi, \frac{z-p}{s}\right) \leftrightarrow\left(x^{1}, x^{2}, x^{3}\right) \tag{5-92}
\end{equation*}
$$

where the $\alpha \phi$ and the $\lambda_{a} \rho_{0}$ instead of $\rho_{0}$ are obvious choices. Now in III' the $\Gamma_{2}^{\text {III' }}$, scaled from the $\Gamma_{2}: \rho \equiv \rho_{2}(z)$ of the $(5-30 \mathrm{~d})$, becomes

$$
\begin{equation*}
\Gamma_{2}^{I I I^{\prime}}: \frac{s x^{3}+p}{\lambda_{a} c_{1}}+\frac{x^{\prime}}{\alpha}=\ln \frac{c_{2}}{p_{0}} \tag{5-93}
\end{equation*}
$$

Since ( $5-\dot{3} 3$ ) should be identical to (5-91), as they describe different expressions of the same interface $\Gamma_{2}^{\prime}$, we have

$$
\left\{\begin{array}{l}
s=1  \tag{5-94}\\
p=\left(\lambda_{a}-1\right) \frac{k}{\beta}
\end{array}\right.
$$

D4. Determine the Scaling Constants
We have $\rho_{o}, \alpha, k, \beta, s$, and $p$ as constants of scaling. Already (5-94) reduces $s$ and $p$ in terms of $k$ and $B$. To determine the other constants in terms of parameters in $P$ before the scaling, we compare the length along $\theta_{A}$ and $\theta_{B}$ of II in P-to the lengths along $x_{L}^{1}$ and $x_{U}^{1}$ of $I I^{\prime}$ in $P^{\prime}$. We get

$$
\begin{equation*}
\left(\lambda_{a}-1\right) \frac{r_{1}\left(\theta_{A}\right)}{B}=\left(\lambda_{a}-1\right) \frac{k}{B}+\left(\lambda_{a}-1\right) c_{1} \ln \frac{c_{2}}{A} \tag{5-95a}
\end{equation*}
$$

$$
\begin{equation*}
\left(\lambda_{a}-1\right) \frac{r_{1}\left(\theta_{B}\right)}{\beta}=\left(\lambda_{a}-1\right) \frac{k}{B}+\left(\lambda_{a}-1\right) c_{1} \ln \frac{c_{2}}{\lambda_{t} A} \tag{5-95b}
\end{equation*}
$$

$$
\begin{align*}
& \text { which inmediately gives } \\
& \qquad \begin{array}{l}
k=\frac{\left.I_{1}\left(\theta_{B}\right) \ell n \frac{c_{2}}{A}-r_{1}\left(\theta_{A}\right) \ell n n^{\lambda_{2}}\right)}{\ln \lambda_{t}}=A \cdot \frac{\sqrt{\lambda_{l}^{2}+\lambda_{t}^{2} \tan ^{2} \theta_{A}}}{\left(1-\lambda_{\ell}\right) \tan \theta_{A}} \\
B=\frac{r_{1}\left(\theta_{A}\right)-r_{I}\left(\theta_{B}\right)}{\ln \lambda_{t}}=\frac{\sec _{A}-\sqrt{\left(\lambda_{l}^{2}+\lambda_{L}^{2} \tan ^{2} \theta_{A}\right.}}{\left(1-\lambda_{\ell}\right)}
\end{array}
\end{align*}
$$

```
As to \(\rho_{0}\) and \(\alpha\), they are the degrees of parameter freedom left in the \(P \rightarrow P^{\prime}\) scaling.
```

D5. Sumary of the Parallel Plate Problem $P^{\prime}$
We have found a parallel plate Cartesian scaled version $P^{\prime}$ of $P$, the original matching problem and its solution. The regions I', II', and III' become a combined and extended parallel plate region. The scaled media in $I^{\prime}$ and III' are simple and are the same. The scaled medium in $I I^{\prime}$ is complicated with inhomogeneous $\varepsilon_{I I}{ }^{\prime}$, inhomogeneous $\mu_{I I}$ ', and longitudinal perfect conductivity ${ }_{\sim}^{\text {grin }}$.

The scaling geometry itself is given explicitly by (5-8) for $I^{\prime}$, and by (5-92) for III'. The scaling for II' is given implicitly by (5-86) and (5-y0). Also all but two scaling constants of $P$ ' are found in terms of parameters of $P$. The two scaling constants $\rho_{0}$ and $\alpha$ left undertermined represent the degree of parameter freedom in the $P \rightarrow P^{\prime}$.
E. Concluding Remarks

In this report we have investigated and developed the differential geometry scaling method for $E M$ theory and examined its applications. The essence is, at least two of the chree constitutive parameters $\underset{\underset{\sim}{x}}{\underset{\sim}{q}}$, and $\stackrel{g}{\sim}$ have to be allowed to change according to the scaling need. With such accompanying change of scaled medias the scaling method is very powerful in creating an equivalent class of problems and their solutions from a given problem of known solution. Through this we can obtain solutions to many interesting problems from the knowledge of a simple problem.

In the applications we solved two problems. One is a $\mu$ and $E$ loaded matching section between a cylindrical and a conical coaxial TEM waveguide. The other is a fixed- $\mu$ matching section between two cylindrical coaxial TEM waveguides of different dimensions.

In the fixed-y matching, it seems possible that similar matching problems of different geometry can be obtained by some vartance on the inverse scaling of the basic problem $P^{\prime}$ that we have found in Chapter 5D. This will be of interest for further investigations.

Finally, if we relieve the restriction of being in orthogonal scaling, more problems can be treated by the DGM. For example, non-normal incidence and Brewster angle transmission can be used for the reflectionlessness requirement. Also, E-mode or $H$-mode in the waveguide can be treated easily. These and many other aspect of application of DGM will also be of interest for further investigation.

Acknowledgement
We thank Dr. K. S. H. Lee for his interest and helpful comments, Dr. F. Tesche for his interest, and thank Dr. L. Marin for obtaining the data for Fig. 5.

## References

1. See, e.g., L. D. Landau and E. M. Lifshitz, Fluid Dynamics, Pergamon Press (1959), Secs. 19, 53, 118, 119; also, Mechanics, Pergamon Press (1960), Sec. 10; for an earlier example of such transforms, see E. J. Routh, "Some Applications of Conjugate Functions", Proc. Iondon Math. Soc. 12, 73-89 (1881).
2. Some different examples of the electromagnetic scaling can be found in the following. For conformal mapped waveguide see, e.g., F.E. Borgnis and C. H. Papas, "Electromagnetic Waveguides and Resonators" in Handbuch der Physik, Springer-Verlag, Berlis (1958) 16, 358; F. J. Tischer, "Conformal Mapping in Waveguide Considerations" (Correspondence) Proc. IEEE 51, 1050 (July 1963), and "Conformal Mapping Applied to Three-Dimensional Wave Problems", (Correspondence) Proc. IEEE 53, 168 (Feb. 1965); also J. A. Stratton, Electromagretic Theory, McGraw-Hill (1941), 217; also P. Krasnooshkin, "Acoustic and Electromagnetic Waveguides of Complicated Shape", J. Phys. USSR 10, 434 (1946); for an approach using invariance groups in differential forms, see B. K. Harrison and F. B. Estabrook, "Geometric Approach to Invariance Groups and Solution of Partial Differential Systems", J. Math. Phys. 12, 653 (April 1971); for a frequency scaling of reflection
see, J. H. Davis and J。R. Cogdell, "Reflection Efficiency Evaluation by Frequency Scaling", IEEE Trans. AP-19, 58 (Jan. 1971); for a scaing for reducing constantly moving uniform simple media, see R. J. Pogorzelski, "A Technique for Solution of Maxwell's Equations in a Moving Dielectric Medium", IEEE Trans. AP-19, (Communication) 455 (May 1971).
3. See any textbook on basic electromagnetic theory, e.g., see D. T. Paris and F. K. Hurd, Basic Electromagnetic Theory, McGraw-Hill (1969), Chapters 3 and 4.
4. For most recent treatments on scaling, see C. E. Baum, "A Lens Technique for Transitioning Waves between Conical and Cylindrical Transmission Lines", EMP Sensor and Simulation Notes 32, (Jan. 1967), and "A Scaling Technique for the Design of Idealized Electromagnetic Lenses", EMP

Sensor and Simulation Notes 64 (1968), and also Ph.D. Thesis, Caltech Antenna Lab Report 47 (1968), California Institute of Technology. For an example of tapering the dielectric to suit propagation, see $P$. L. Us lenghi, "On the Generalized Luneberg Lenses", IEEE Trans. AP-17 (Communication), 644 (Sept. 1969).
5. T. C. Mo, C. H. Papas, and C. E. Baum, "General Scaling Method for Electromagnetic Fields with Application to a Matching Problem", J. Mathematical Phys, April 1973.
6. See any text on relativistic electrodynamics, e.g., V. Fock, The Theory of Space, Time and Gravitation, Pergamon Press (1964), Sec. 24.
7. Notice that the signature ( $+-\infty$ ) is used, therefore, for special relativity flat spacetime $d S^{2}=d t^{2}-d x^{2}-d y^{2}-d z^{2}$. Also geometrized MKS unit with $\mu_{0}=\varepsilon_{0}=1$ for vacum $1 s$ used for simple formalisms. For retrieval to MKS see, e.g., attached table in T. C. Mo, "Electromagnetic Wave Propagation in a Uniformly Accelerated Simple Medium", Radio Science 6, 673 (June 1971). For any applications in special relativistic EM theory, only fnsert appropriate powers of $c$ ( $3 \times 10^{8}$ meters/sec) in the final answer to fix dimensions right.
8. See, e.g., R. H. Dicke, The Theoretical Significance of Experimental Relativity, Gordon \& Breach, 1964.
9. See any textbook on relativity, e.g., J. L. Synge, General Relativity, Interscience (1960), Sec. 3.
10. T. C. Mo, "Theory of Electrodynamics in Media in Noninertial Frames and Applications", J. Mathematical Phys. 11, 2589 (1970), Sec. 4. Also for 3-vectors, $D^{(l)}-D\left(\mathcal{N}^{(\ell)}\right.$, etc.
11. All notations here are identical to the usual three-dimensional vector analysis ones.
12. See Ref. 10.
13. The problem $p$ can be any $E M$ problem. It consists of fields, media, and boundary geometry. Also for both $P$ and $P^{\prime}$ to be really physical, care must be taken into account to make $x^{i}$ have dimensions of length such that $g_{\mu \nu}$ are dimensionless pure numbers.
14. Wave impedance is always defined as $E / H$. Here it is defined using the transverse $E_{t}$ and $H_{t}$.
15. See also Ref. 4, C. E. Baum, Sensor and Simulation Note 64.
16. See L. P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces, Dover, 1960, P. 449, see also Ref. 15.
17. P. Moon and D. E. Spencer, Field Theory Handbook, Springer-Verlag, Berlin, 1961, p. 112, see also Ref. 15.


Fig. 1; Geometry of Variable $\mu$ and $\varepsilon$ Matching Section for Chapter 4


Fig. 2; Geometry of Infinitesimal Impedance and Travelling Time Considerations for Chapter 5-B


Fig. 3; Geometry of Fixed $\mu$, Varlable $E$, and Anisotropic
Conductivity Matching Section for Chapter 5



Fig. 4; Tangential Field Matchings on $\Gamma_{I}$ Between $I$ and II

Fig. 5 Plots of $r_{1}(\theta), r_{2}(\theta)$ of $\Gamma_{1}, \Gamma_{2}$, and $\varepsilon(\theta)$ as Function of $\theta$ The equations for $r_{1}(\theta)$ of $\Gamma_{1}$ and $r_{2}(\theta)$ of $\Gamma_{2}$ as given in Table 2 on $p$. 62, can be simplified by normalizing them relative to their value at the outer conical angle $\theta_{B}$.
$\frac{r_{1}(\theta)}{r_{1}\left(\theta_{B}\right)}=\frac{r_{2}(\theta)}{r_{2}\left(\theta_{B}\right)} \equiv f(\theta)$
which satisfies
$f(\theta) \sin \theta=\sin \theta_{B} e^{\frac{\cos \theta_{B}-f(\theta) \cos \theta}{1-\cos \theta_{B}}}$
Also, correspondingly the expression for $\varepsilon(\theta)$ is $\frac{\varepsilon(\theta)}{\varepsilon}=$ $\left[\cos \theta+\frac{\left(1-\cos \theta_{B}\right)}{f(\theta)}\right]^{2}$

Notice that there is only one parameter $\epsilon_{B}$ for the curves $f(\theta)$ and $\varepsilon(\theta) / \varepsilon$, and each of the following plots for $f(\theta)$ and $\varepsilon(\theta) / \varepsilon$ is for a different parameter value $\theta_{B}$. Furthermore, we have $f(\theta) \rightarrow \infty$ as $\theta \rightarrow 0$ and $f(\theta) \sin \theta \rightarrow 0$ as $\theta \rightarrow 0$. Also, since $f^{\prime}(\theta) \rightarrow-\infty$ as $\theta \rightarrow 0$ and $E^{\prime}\left(\theta_{B}\right)>0$, therefore the. minimum of $\mathrm{f}(\theta)$ must occur at $\theta_{\text {min }}<\theta_{B}$ and this $\theta_{\text {min }}$ satisfies $f(\theta) \sin \theta \tan \theta=1-\cos \theta_{B}$. Finaliy, since $(\sqrt{\varepsilon(\theta) / \varepsilon})^{\prime}>0$ at $\theta=0$ and $<0$ at $\theta=\theta_{B}$, therefore the maximum for $\varepsilon(\theta)$ must occur at $\theta_{\text {max }}<\theta_{B}$ and this $\theta_{\text {max }}$ satisfies $\mathrm{I}^{2}(\theta) \sin \theta+\left(1-\cos \theta_{B}\right) f^{\prime}(\theta)=0$.











