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Abstract
The reflector on an impulse radiating antennas (IRAs) is normally designed to be

paraboloidal in shape, and are oriented so that the electrical feed point of the TEM
feed line coincides with the focal point of the paraboloid. In many practical cases,
the feed point and focal points are not exactly aligned, producing some defocus of
the reflector. There are two types of defocus that can be analyzed exactly in the
geometric optics approximation: converting the paraboloid into either a hyperboloid
or a prolate spheroidal (elliptical cross-section) reflector. The paraboloidal reflector
converts the spherical wave emanating from the feed point into a plane wave (i.e. a
spherical wave focused at ∞). The hyperboloid converts the expanding spherical wave
into a second expanding wave which appears to emanate from the second focal point
of the hyperboloid (which is behind the reflector); the prolate spheroid converts the
expanding spherical wave into a second spherical wave that converges on the second
focal point of the spheroid (which is in front of the reflector). The two cases are
roughly equivalent to moving the electrical feed closer to the reflector (hyperboloid)
or further from the reflector (prolate spheroid). In this paper, we examine the effect
of hyperboloidal defocus. Previously [1], we derived the E- and H-plane responses
from an in-focus IRA, and demonstrated that these responses are symmetric with
respect to the center of the response. The results shown here demonstrate that the
defocusing causes these responses to become asymmetric. These results explain the
responses that have been measured from supposedly in-focus IRAs in the past.

This work was supported by the Air Force Research Lab, Directed Energy Directorate.
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Figure 1: Schematic of a generic 4-arm IRA. The aperture plane is shown here. Various
sizes and shapes of apertures can be considered in the physical optics theory.

1 Introduction

The reflectors on an impulse radiating antennas (IRAs) are normally designed to be paraboloidal
in shape, and are oriented so that the electrical feed point of the TEM feed line coincides
with the focal point of the paraboloid. Geometric optics dictates that such a configuration
will convert the spherical wave expanding from the focus into a plane wave in the near field.
Physical optics theory can then be employed to predict the prompt radiated field on- and
off-boresight from the focused aperture of the IRA [2]. In fact, the solution computed by
this method is more accurate than physical optics suggests. For a finite time determined
by the size of the aperture and the distance, the geometric optics solution of the aperture
fields is exact. Causality dictates that the fields act as if the reflector were infinite until
enough time has passed for the edge of the reflector to affect the fields.

We take the aperture A shown in fig. 1 to lie in the z = 0 plane and use the source
coordinates (x′, y′) to describe the position in the aperture. Standard aperture theory
dictates that we only need to consider the tangential field components on the aperture [3].
Furthermore, the typical feed configurations used in IRAs virtually always have reflection
symmetry about the vertical axis [2, 4], allowing us to consider only the principal field
component. Without loss of generality, we assume that the principal field component is
aligned with the y axis. On-boresight, as well as in the E-plane, the x component of
the electric field does not contribute. In the H-plane, theory predicts a contribution from
the x-component that is orders of magnitude smaller than the principal component [1].
In practice, the cross polarized radiation is dominated by manufacturing imperfections,
especially at the feed point, that are not accounted for in this theory [5].
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We take the y-component of the field illuminating the aperture to be

Ey(z = 0) = Ey(x
′, y′, t). (1)

Using physical optics to integrate over the equivalent currents in the aperture plane results
in co-polarized radiated fields at distance r far from the aperture in the direction (θ, φ)
given by [1, 6]

Eco =
1

2πrc

(
φ̂ cos θ cos φ + θ̂ sin φ

) d

dt

∫∫
A

Ey

(
x′, y′, t′ +

sin θ cos φx′

c
+

sin θ sin φy′

c

)
dx′dy,

(2)
where t′ = t − r/c is the retarded time at the center of the aperture. Eqn. (2) can be
used to determine the radiated fields from an aperture A with arbitrary spatiotemporal
illumination 1.

IRAs that have parabolic reflectors with coincident electrical feed and optical focal
points and excited by a unit step function u(t) have an aperture illumination which is
given in the geometric optics approximation as

Ey,ideal(x
′, y′, t) = Ey(x

′, y′)u(t), (3)

in which case (2) predicts that the boresight radiated field is

Eco(θ = 0) =
δa(t)V0ha

2πrcfg

, (4)

where

ha =
fg

V0

∫∫
A

Ey(x
′, y′)dx′dy′ (5)

is the aperture height of the antenna, fg = Zfeed/η0 is the geometric impedance factor, and
V0 is the magnitude of the applied step voltage [7]. Off boresight the radiated fields are
given as [1]

Eh
φ(r, θ, t) =

V0 cot θ

2πr
Φh

(
− ct′

sin θ

)
. (6)

in the H-plane and

Ee
θ(r, θ, t) =

V0

2πr sin θ
Φe

(
− ct′

sin θ

)
. (7)

in the E-plane. The quantities Φh and Φe in (6) and (7) are given as

Φh(x) = (1/V0)
∫ ymax

ymin

Ey(x, y′)dy′. (8)

and
Φe(y) = (1/V0)

∫ xmax

xmin

Ey(x
′, y)dx′. (9)

1This assumes that the spatial symmetry of the illumination meets the conditions discussed above to
ignore the cross polarized radiation. If these conditions aren’t met, then the integral in (2) must be modified
to account for the x-component of the field.
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In section 2 we discuss the defocusing of the IRA. In section 3, we present the aperture
integration theory for the defocused case. Section 4 contains the discussion of the results
and a comparison with experimental data. Section 5 has the conclusions. Appendix A
presents the geometry of the hyperboloids considered here.

2 Defocusing the Reflector

In applications where the IRA is to be used to generate large peak fields in a narrow beam
centered on boresight, a focused paraboloid is ideal. However, such an antenna is known
to have an extremely narrow beam width, especially at high frequencies [1, 8]. Actual
IRA measurements indicate 3 dB peak power beam widths on the order of 1◦ for aperture
radii on the order of a few meters [9, 10]. For many applications, including ultra wideband
(UWB or hyperband) synthetic aperture radar, such a narrow beam width is undesirable
and methods should be taken to broaden the beam. Furthermore, precise collocation of the
electrical feed and optical focus is difficult to obtain in practice. The results presented in
section 4 below demonstrate that nominally “in focus” IRAs are often slightly out of focus.

General considerations for pulse shaping in aperture antennas have been presented
previously [11, 12], and Baum has presented a specific strategy for defocusing an IRA
by using a deformed hyperboloidal reflector to produce a pulse with desirable spectral
content on boresight [13]. Farr, et al., designed and built the multi function IRA which
had a mechanism that could move the electrical feed away from the optical focus [14]. In
this paper, we examine only the first order perturbations from the paraboloidal reflector.
Specifically, we consider a hyperboloidal reflector, which is loosely equivalent to moving
the electrical feed closer to a paraboloidal reflector. In a future paper we will examine the
use of a prolate spheroidal reflector, which is equivalent to moving the feed away from a
paraboloidal reflector2.

Geometric optics considerations can be used to determine the spatial and temporal
variations of the fields that illuminate the aperture as the aperture is assumed to be close
to the reflector. Fig. 2 shows the standard ray tracing for the three conic sections mentioned
above. We see that a spherical wave that emanates from one focus of the prolate spheroid
is converted to a spherical wave that converges on the second focus. As the second focus
moves towards −∞, the prolate spheroid approaches a paraboloid, where the second focus
is at ∞. Once the second focus starts to move in from +∞, the paraboloid becomes a
hyperboloid. Radiation emanating from one focus of the hyperboloid is converted to an
expanding spherical wave that appears to emanate from the second focus. In this way, we
see that we have three cases: 1) focus in front of the reflector, 2) focus at ∞, 3) virtual
focus behind the reflector.

In all of the analyses that follow, we will start from a paraboloidal reflector of focal
length F and diameter D. We can parameterize the defocus by the angle φ0 shown in
fig. 3.

If we take step function excitation of a hyperboloidal reflector as shown in fig. 2, ray

2We say loosely equivalent because hyperboloidal and prolate spheroidal reflectors are aberration free,
as opposed to the defocused paraboloid.
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Figure 2: A hyperboloidal reflector converts a spherical wave emanating from one focus of
the reflector into a spherical wave that appears to emanate from the second focus. The
effect of this is to convert the short TEM feed structure in front of the reflector into an
effectively longer TEM horn, at least as far as the prompt response is concerned.

Parabola

Hyperbola
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y

Figure 3: The hyperboloidal reflector is flatter than the corresponding parabolic reflector.
The parameter φ0 gives the deviation of the extreme ray in the hyperboloidal case from
the direction of focus in the parabolic case.
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tracing dictates that we will illuminate an expanding circle in the aperture of radius Ψa(t)
given as

Ψa(t) =
√

(2a + ct)2 − x2
0, (10)

where a is major axis length of the hyperboloid and x0 is the distance of the aperture plane
from the apex of the reflector. All of the parameters of the hyperboloid are derived in
Appendix A. We can modify (1) to

Ey(x
′, y′, t) = Ey(x

′, y′)u(Ψa(t) − ρ′), (11)

where ρ′ =
√

x′2 + y′2 is the cylindrical radius in the aperture plane. Using (11) in (2) and
specializing to the H-plane (φ = 0, π) produces

Eφ(r, θ, φ; t) =
cos θ

2πrc

d

dt

∫∫
A

Ey(x
′, y′)u

(
Ψa

(
t′ +

sin θx′

c

)
− ρ′

)
dx′dy′. (12)

Moving the time derivative inside the integral and changing the variables of integration
from (x′, y′) to (ρ′, φ′) produces

Eφ(r, θ, φ; t) =
cos θ

2πrc

∫∫
A

Ey(x
′, y′)δ

(
Ψa

(
t′ +

sin θx′

c

)
− ρ′

)
∂Ψa

(
t′ + sin θx′

c

)
∂t

ρ′dρ′dφ′.

(13)
The integral over the radial coordinate trivially provides

Eφ(r, θ, φ; t) =
cos θ

2πrc

∮
C

Ey

∂Ψa

(
t′ + sin θx′

c

)
∂t

Ψa

(
t′ +

sin θx′

c

)
dφ′, (14)

where C is the contour that satisfies

ρ′ = Ψa

(
t′ +

sin θx′

c

)
. (15)

Substituting (10) in (15) and carrying through the algebra produces(
x′ − sin θ

cos2 θ
(ct′ + 2a)

)2

(
(ct′+2a)2−(x0 cos θ)2

cos4 θ

) +
y′2(

(ct′+2a)2−(x0 cos θ)2

cos2 θ

) = 1. (16)

Eqn. (16) is clearly the equation for an ellipse. The center of this ellipse is at

h =
sin θ

cos2 θ
(ct′ + 2a), (17)

and the lengths of the major and minor axes of the ellipse are

a =
(ct′ + 2a)2 − (x0 cos θ)2

cos4 θ
, (18)

b =
(ct′ + 2a)2 − (x0 cos θ)2

cos2 θ
, (19)

On boresight (θ = 0), this ellipse is centered at the origin, but for off-boresight angles,
the center of the ellipse starts at some finite position and moves away from the origin
linearly as time progresses. Likewise, the lengths of the major and minor axes increase
quadratically with time. On boresight, the ellipse collapses to a circle as a = b in (16). As
the off-boresight angle θ increases, the ellipse becomes more and more eccentric.
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Table 1: Parameters of IRAs discussed in this paper. The aperture configurations are S:
standard (focused circle of symmetry), NF: non-floppy (focused circle corresponding to the
outer edge of the feed arms), NFE: non-floppy with exclusion (same as NF with trimming).
All antennas analyzed here assume that the radius of the focused aperture is 1 m.

Zfeed [Ω] # of arms feed angle [◦] aperture

400 2 90 S
400 2 90 NF
200 4 60 S
200 4 60 NFE

3 Aperture Plane Contours and Step Responses

In this section, we will demonstrate the effects of (16) – (19) in predicting the radiated
step response from IRAs. The cases analyzed here are for the development of the compact
IRA, and the parameters are given in table 1. The first configuration is a 400 Ω, two-
arm configuration corresponding to one polarization in the dual polarization IRA [15]. The
second configuration is a 200Ω, 4-arm feed structure with the non-floppy configuration that
is necessary when the reflector is not self supporting [1]. The S (standard) aperture is when
the entire circle of symmetry of the IRA is focused. The NF (non-floppy) configuration is
when the entire circle inside the feed arms is focused. The NFE configuration is the same
size as the NF configuration, but the destructively contributing portions of the aperture
are eliminated by trimming [16, 17]. Examples of these apertures are shown in fig. 4.

3.1 H-Plane Responses

Fig. 5, fig. 7, and fig. 9 show the progression of the contour C in (14) when the defocus
parameter is φ0 = 0.01◦ (approximately in focus) , 5◦, and 10◦, respectively. The curves are
plotted for θ = 0◦, 2.5◦, and 5◦ in the H-plane. The specific configuration corresponding to
these figures is the 400 Ω, 2-arm IRA with the standard (S) aperture configuration. The
contours traced out for the other cases are identical, only the aperture fields are slightly
changed. Fig. 6, fig. 8, and fig. 10 show the radiated signal in response to a 25-ps-rise time
step for each of these cases. The vertical axis units are arbitrary, but correspond to [V/m],
and all three figures are presented with the same arbitrary units.

Analysis of fig. 5 - fig. 10 provide insight about how defocusing alters the radiated step
response. For the nearly in-focus case (fig. 5 and fig. 6), the expanding circle on boresight
rapidly fills up the aperture. The ideal step response is less than 4 ps in duration (data not
shown), and the corresponding boresight response to the 25-ps-rise step is almost exactly
equal to the derivative of the applied voltage waveform [18]. As the observation direction
moves off boresight, the center of the expanding ellipse given by (17) is far from the origin.
The portion of the ellipse that intersects the focused aperture is approximately a straight
line, making the step response proportional to Φ(h) and Φ(e) in (8) and (9).
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Figure 4: Three aperture configurations considered in this study. The outer boundary is
the same for the NF and NFE configurations, but the portions of the NFE aperture above
the “ideal contour” are trimmed away.
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t′ = 0.004 ps t′ = 0.121 ps t′ = 66 ps t′ = 132 ps
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Figure 5: Snapshots of the contour of integration for three viewing angles for an in-focus
IRA (φ0 =0.01◦). The three rows (from top to bottom) are at θ = 0◦, 2.5◦, and 5◦. The
configuration analyzed here has the NF aperture and 400 Ω, 2-arm feed.
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Figure 6: Radiated step response to a 25-ps-rise time step for cases in fig. 5.
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t′ = 0 ps t′ = 70 ps t′ = 140 ps t′ = 210 ps
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Figure 7: Snapshots of the contour of integration for three viewing angles for an IRA with
φ0 =5◦. The three rows (from top to bottom) are at θ = 0◦, 2.5◦, and 5◦. The configuration
analyzed here has the NF aperture and 400 Ω, 2-arm feed.
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Figure 8: Radiated step response to a 25-ps-rise time step for cases in fig. 7.
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t′ = 0 ps t′ = 80 ps t′ = 160 ps t′ = 240 ps
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Figure 9: Snapshots of the contour of integration for three viewing angles for an IRA
with φ0 =10◦. The three rows (from top to bottom) are at θ = 0◦, 2.5◦, and 5◦. The
configuration analyzed here has the NF aperture and 400 Ω, 2-arm feed.
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Figure 10: Radiated step response to a 25-ps-rise time step for cases in fig. 9.
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For the out of focus cases, the boresight response is governed by an expanding circle that
covers the aperture much more slowly than for the focused IRA. The radiated responses to
the 25-ps-rise time steps in fig. 8 and fig. 10 are much lower in amplitude and much larger
in width (which is necessary to keep the integrated area constant, as predicted by Baum
[7]. As the observation direction moves off boresight, the center of the expanding ellipse is
much closer to the origin than is the case for the in-focus IRA. The contour C therefore
has much more curvature, giving rise to step responses that are asymmetric in time. Φ(h)

and Φ(e) are symmetric, as are the responses shown in fig. 6. Similar step response data
(presented on the same vertical scales) for the other configurations in table 1 are presented
in fig. 11 - fig. 13. A detailed analysis of amplitudes, pulse widths, and gain in the frequency
domain are presented in section 4.

3.2 E-Plane

The behavior of this system in the E-plane is qualitatively similar to that in the H-plane.
Namely the roles of x and y are reversed in (16) – (19). The contour C in (14) is once
again an ellipse that expands, but it is centered on the y-axis instead of the x-axis. The
expanding contour for the case of the 200 Ω IRA with 4 feed arms at 60◦ and the NF
aperture configuration is shown in fig. 14. The radiated step response for this case is shown
in fig. 15. The step responses for all other configurations are shown in fig. 16 – fig. 18.

One of the most important features to note about the E-plane response as compared with
the H-plane response is that the response can actually become negative without trimming.
Referring to fig. 14, note that as the integration contour C sweeps across the aperture
from the top, it first overlaps with regions that are dominated by an Ey that contributes
destructively to the integral in (5). We see this manifested in several of the untrimmed E-
plane responses in fig. 16 – fig. 18. However, once the destructively contributing portions of
the aperture have been trimmed [16, 17], the responses are once again completely positive,
as expected [1].
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Figure 11: Responses to the 25-ps-rise time step for Z = 400 Ω with the NF configuration
and 2 feed arms.
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Figure 12: Responses to the 25-ps-rise time step for Z = 200 Ω with the NF configuration
and 4 feed arms.

0 100 200 300 400 500
0

0.5

1

1.5

φ
0
 = 0°

time (ps)

R
ad

ia
te

d 
E

 F
ie

ld
s 

(a
rb

 u
ni

ts
)

θ = 0°

θ = 2.5°

θ = 5°

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

φ
0
 = 5

time (ps)

R
ad

ia
te

d 
E

 F
ie

ld
s 

(a
rb

 u
ni

ts
)

θ = 0°

θ = 2.5°

θ = 5°

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

φ
0
 = 10

time (ps)

R
ad

ia
te

d 
E

 F
ie

ld
s 

(a
rb

 u
ni

ts
)

θ = 0°

θ = 2.5°

θ = 5°

Figure 13: Responses to the 25-ps-rise time step for Z = 200 Ω with the NFE configuration
and 4 feed arms.
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Figure 14: Snapshots of the contour of integration for three viewing angles for an IRA with
φ0 =5◦. The three rows (from top to bottom) are at θ = 0◦, 2.5◦, and 5◦ in the E-plane.
The configuration analyzed here has the NF aperture and 200 Ω, 4-arm feed.
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Figure 15: Radiated step response to a 25-ps-rise time step for cases in fig. 14.
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Figure 16: Responses to the 25-ps-rise time step for Z = 200 Ω with the NF configuration
and 4 feed arms. Responses are for angles in the E-plane
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Figure 17: Responses to the 25-ps-rise time step for Z = 200 Ω with the NF configuration
and 4 feed arms. Responses are for angles in the E-plane
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Figure 18: Responses to the 25-ps-rise time step for Z = 200 Ω with the NFE configuration
and 4 feed arms. Responses are for angles in the E-plane
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Figure 19: H-plane responses predicted for a 1-m diameter half IRA with φ0 = 0◦ (left) and
φ0 = 1.6◦ (right) compared with measurements. The solid curve represents the theoretical
predictions and the points are from the measured response of a nominally in focus 1-m-
diameter half IRA. The curves are at θ = 0◦, 1.25◦, 2.5◦, 3.75◦, 5◦.

4 Discussion

4.1 Comparison With Experimental Data

As yet, we have not completed any new experiments with precisely controlled defocus as
described here. However, the results presented above can be used to analyze radiation
patterns measured from IRAs in order to determine how far out of focus they might be.
In an earlier paper [1], we presented a comparison between theoretical predictions and
experimental measurements of off boresight radiation from a nominally focused IRA. Fig. 19
shows a comparison of the measured H-plane responses from a nominally in focus, 1-m-
diameter, Half IRA compared with the in focus responses predicted by responses predicted
for an IRA with φ0 = 0◦ and φ0 = 1◦ (6). The details of this physical antenna that
was measured and the experimental configuration are described elsewhere [10]. The theory
assumes a Gaussian-rise step with σ = 17 ps. The slightly out-of-focus theory does a better
job of predicting the radiated response. With φ0 = 1◦ the magnitude of the first peak and
the rising portion of the waveform are extremely accurately reproduced. The magnitude
of the second peak is overpredicted by the theory, but the defocused theory matches the
experiment more faithfully.

Fig. 20 shows similar response curves for the E-plane. The E-plane predictions are
remarkably accurate. Note that the amount of defocus that fits the data in the E-plane
and the H-plane are different. This is plausible, since the half IRA was formed by physically
cutting a paraboloidal reflector in half, which could lead to different distortions in the two
planes. However, no attempt has been made to characterize the curvature of this antenna.

The modification of the theory discussed in this paper capture many of the salient
features of the experimentally measured response. First and most importantly, the asym-
metric response in the H-plane is predicted. In addition, the theory predicts the faster rise
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Figure 20: E-plane responses predicted for a 1-m diameter half IRA with φ0 = 0◦ (left) and
φ0 = 1.6◦ (right) compared with measurements. The solid curve represents the theoretical
predictions and the points are from the measured response of a nominally in focus 1-m-
diameter half IRA. The curves are at θ = 0◦, 1.2◦, 2.2◦, 3.2◦, 4.2◦, and 5.2◦.

time and slower fall time that is measured off boresight than is predicted by (6) and (7).
Based on this comparison, we can draw the conclusion that the nominally in focus half
IRA is as much as 1◦ out of focus. It is this defocus that provides the final upper limit to
the high frequency performance of the IRA.

4.2 Defocused IRA Gain

When the IRA is to be used as a broadband antenna, then frequency domain parameters
such as gain are important to consider. Fig. 21 presents the absolute gain of a nominally in
focus IRA with completely perfect construction in the H- and E-planes. The IRA considered
here is the 200 Ω IRA with four feed arms and the NFE aperture. The colormap used is
that proposed by Rappaport, et al.. [19]. Fig. 22 presents the same data, only normalized
so that the gain on boresight is constant as a function of frequency. This is equivalent to
looking at the step transmit response in the frequency domain. The data in fig. 21 and
fig. 22 are clearly unrealistic. The perfect focus and construction predict that the gain will
increase on boresight like f 2. In reality, manufacturing imperfections, including defocus,
limit this performance. As the gain increases, the beam width correspondingly decreases,
giving rise to a beam width that is often less than 1◦ wide [1, 5].

In contrast, fig. 23 presents the absolute gain for the same IRA that is now assumed
to have a hyperboloidal defocus with φ0 = 5◦. Fig. 25 shows the normalized gain. Fig. 24
presents the absolute gain for the same IRA that is now assumed to have a hyperboloidal
defocus with φ0 = 10◦. For the defocused IRA, we see several things. First, there is
an expected reduction in absolute boresight gain at high frequencies. The gain at low
frequencies is unmodified. The decreased gain on boresight also gives rise to a broadening
of the antenna beam width. In fact, this antenna appears to be approximately constant
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Figure 21: Absolute gain of an ideal IRA. This IRA has no defocus, and no low-frequency
cutoff. The left panel is the H-plane, the right panel is the E-plane.

Figure 22: Normalized gain of an ideal IRA. This IRA has no defocus, and no low-frequency
cutoff. The left panel is the H-plane, the right panel is the E-plane.
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beam width over a large range of frequencies. Such performance should be expected, as the
hyperboloidal reflector converts the short TEM feed structure in fig. 1 into the effectively
longer image TEM structure as depicted in fig. 2. TEM horns have gain that increases like
f 2 at low frequencies before rolling over and appearing as constant gain over a fairly broad
frequency range [20]. In addition, it is well known that the beam width from a TEM horn
is closely related to the flare angle, especially in the E-plane.

Fig. 26 shows the normalized gain.

5 Conclusions

In this paper, we have developed the theory for radiation from defocused IRAs. The theory
is based on a general time domain physical optics formalism that has been simplified to deal
with the specific case of an IRA fed by a balanced, TEM feed structure. Radiation from
general aperture illuminations that are not solutions to the TEM mode are also possible,
but require moving back to the full physical optics formalism.

The theory as developed in this paper provides a basis for the previously unexplained
off-boresight responses recorded from fabricated IRAs. Previously it was conjectured that
the asymmetric H-plane response as presented in fig. 19 might be due to aperture blockage
or other effects. The current theory seems to explain the experimental results, especially in
the E-plane. In the H-plane, the agreement is not quite as good. It was found that allowing
φ0 = 1◦ does an excellent job of matching the first peak amplitude and the risetime, but
misses the second peak. Allowing for more defocus does a better job of predicting the
relative amplitudes of the first and second peaks, but overpredicts the amplitude of the
response off boresight. Some poten

The current paper considers only the case of aberration-free, hyperboloidal reflectors.
In real systems, the defocus could be due to deviations of the parabolic reflector from the
specified shape, or it could be due to a misalignment between the electric and optical feed of
the IRA. Both of these cases would create defocus with aberrations, and those aberrations
might have an effect on the off-boresight fields (or more specifically, the off axis fields). In
a future paper we will consider the effects of elliptical defocus, which causes the IRA to
be focused at a specific location in front of the reflector. It remains to be seen what the
effects of this type of defocus are for the far radiated fields.
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Figure 23: Absolute gain of defocused IRA with φ0 = 5◦. The analysis of this antenna does
not include the low frequency cutoff. The left panel is the H-plane, the right panel is the
E-plane.

Figure 24: Absolute gain of defocused IRA with φ0 = 10◦. The analysis of this antenna
does not include the low frequency cutoff. The left panel is the H-plane, the right panel is
the E-plane.
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Figure 25: Normalized gain of defocused IRA with φ0 = 5◦. The analysis of this antenna
does not include the low frequency cutoff. The left panel is the H-plane, the right panel is
the E-plane.

Figure 26: Normalized gain of defocused IRA with φ0 = 10◦. The analysis of this antenna
does not include the low frequency cutoff. The left panel is the H-plane, the right panel is
the E-plane.
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A Hyperbola

In this appendix, we present the algebraic derivations of the parameters of the hyperboloidal
reflector that is deviated from a paraboloidal reflector by the parameter φ0 as depicted in
fig. 3.

The parabola that gives the reflector is given by the equation

y =
1

4F
x2. (20)

The hyperbola is given by the general expression(
y − k

a

)2

−
(

x − h

b

)2

= 1. (21)

In our case, we will take the apex of one of the hyperboloidal sheets to be at the origin
yielding

k = −a
h = 0.

(22)

We choose the parameters such that the distance c from the center of the hyperbola to
one of the focal points is

c = a + F, (23)

which makes the distance from the apex of the two reflectors to their respective focal points
the same. The general relationships between a, b, and c yield

a2 + b2 = c2 (24)

b2 = c2 − a2 (25)

b2 = F (2a + F ) (26)

From fig. 27 we see that

tan φ0 =
(D/2)

y0 + a + c
(27)

At the edge of the reflector x0 = D/2 and we have

y0 + a = a

√√√√1 +
(D/2)2

F (2a + F )
. (28)

Combining (27) and (28) we find that

q =
D/2

a
√

1 + (D/2)2

F (2a+F )
+ a + F

, (29)

where q = tan φ0. If we define the parameter w = D/2 − qF we can write the following
quadratic equation to compute the length of the major axis a of the hyperbola:((

qD

2

)2

+ 4Fqw

)
a2 + (2qwF 2 − 2Fw2)a − F 2w2 = 0. (30)
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