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Abstract 
 
 

 This paper considers the scattering of an inhomogeneous spherical TEM wave emitted from one of two foci 
of a prolate spheroid (special case of an ellipsoid of revolution).  The wave scatters on the inside of a perfectly 
conducting prolate spheroidal surface to produce an exact inhomogeneous spherical TEM wave propagating toward 
the second focus.  This solution is exact for a clear time based on other scattering (e.g., from feed arms) reaching the 
observer. 
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1. Introduction 

 

 Previous papers [2-4] have established that inhomogeneous TEM waves in a uniform, isotropic medium 

(e.g., free space) are exactly transformed by stereographic projection into second such waves in the case of 

paraboloidal and hyperboloidal scatterers, provided the incident wave is centered on an appropriate focal point 

(including infinity) of these quadric surfaces.  One spherical or planar TEM wave is then transformed into another 

with an exact matching of the boundary conditions on the (perfectly conducting) reflector.  This gives exact 

solutions of the Maxwell equations, valid up until some time related to a signal arriving at the observer from some 

truncation of the reflector, or from some waveguiding structure used to guide the incident wave (i.e., conical or 

cylindrical perfectly conducting transmission lines).  These “early-time” exact solutions (valid up to some “clear 

time” are examples of partial geometric symmetries as discussed in [7]. 

 

 Keeping with bodies of revolution, which give focal points, another quadric surface to consider is the 

prolate spheroid, a special case of an ellipsoid.  In this case both focal points are inside the volume enclosed by the 

surface pS .  So our consideration is to launch an inhomogeneous plane wave from one focus, and reflect it toward 

the second.  
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2. Polate Spheroid 

 

 The geometry is as discussed in [5].  Summarizing we have pS  defined by 
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 a ≡  major radius 

 b ≡  minor radius 

 ( , , )zφΨ ≡  cylindrial coordinates (2.1) 

 ( , , )x y z ≡  Cartesian coordinates 

 ( ) ( ) 2 2 2cos , sin ,x y x yφ φ= Ψ = Ψ Ψ = +   

 

As in Fig. 2.1 there are two foci at 
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Each ray from 0r→−  to 0r→  travels a distance  
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 (2.3) 

 

At the surface pS , the angle of incidence equals the angle of reflection.  

 

 Of course, only pS ′  [5], a portion of pS  is the actual reflector but this need not concern us here.  From 

0r→−  there is a spherical TEM wave guided by two (or more) perfectly conducting conical conductors toward the 

reflector.  A second wave is reflected toward 0r
→ .  This is a transformation of the first wave. 
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Fig. 2.1  Prolate-Spheroid Cross Section (Ellipse). 
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3. Matching Spherical TEM Waves 

 

 In spherical coordinates ( 1 1 1, ,r θ φ ) centered on 0r→− , with 1 0θ =  pointing along the negative z axis 

(toward the stereo graphic-projection plane), we have an outward propagating (from 0r→− ) inhomogeneous 

transient TEM wave as 
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 [ ] 1/ 2c με −= ≡ speed of light in medium 

This is guided by two or more perfectly conducting cones (with apices at 0r→− ) toward the reflector. 

 

 The stereographic transformation relating spherical TEM waves to cylindrical TEM waves takes the form  

 

 [ ] 1
0 0 0 12 tan ,

2
a z θ φ φ φ⎛ ⎞Ψ = − = = −⎜ ⎟

⎝ ⎠
 (3.2) 

 

The projection plane is here taken as z = - a, tangential to the reflecting surface.  Note that for purposes of this 

transform the projection plane extends to ∞, corresponding to 1θ π= .  Note that 0 0( , )φΨ  corresponds to a point 

on the projection plane.  In this projection 1V  satisfies the Laplace equation in cylindrical 0 0( , )φΨ  coordinates. 
 

 Here we are imagining a wave launched to the “left”, to be reflected on pS ′  [5] (the portion of pS  on 

which a reflector is built).  The portion to the “right”, around the target location, is assumed not used for the 

reflector, allowing access to the target vicinity.  However, the symmetry at the geometry allows one to interchange 

the roles of source and target. 
 

 Let us consider a second spherical TEM wave, centered (incoming) on 0r→  of the form 
 

 ( )2 2
22 , 2 2 2
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⎝ ⎠
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The projection formula for this wave is 

 

 [ ] 2
0 0 0 22 tan ,

2
a z θ φ φ φ⎛ ⎞Ψ = + = − = −⎜ ⎟

⎝ ⎠
 (3.4) 

 

The formulas in (3.1) also apply, substituting subscripts 2 for 1. 

 

 Now let 

 

 ( ) ( )2 0 0 1 0 0, ,V Vφ φΨ = − Ψ  (3.5) 

 

on the projection plane.  Since 1V  satisfies the Laplace equation there, so does 2V .  Going through the projection 

formula (3.4), then 2 2 2( , )V θ φ  satisfies the spherical Laplace equation ((3.1) using 2 subscripts).  This double 

stereographic transformation is of the same general form as in [4 (Section IV)] with a few sign changes.  Here we 

have a diverging wave reflected into a converging wave.  Note that the waveforms are the same f(t) for these two 

waves. 
 

 We merely need now that 2 1 0V V+ =  (or its tangential derivative, i.e., tangential E-field) on the reflector.  

On the reflector we have, due to the stereographic transforms 

 

 ( ) ( )2 2 2 1 1 1, ,V Vθ φ θ φ= −  (3.6) 

 

The two waves match in time as well on the reflector due to (2.3).  Differentiating the potential (net zero) on the 

reflection gives zero tangential electric field, the required boundary condition.   This gives an exact solution of the 

Maxwell equations for times (clear times) before scattering from feed arms, and pS  truncation to pS ′  is seen by the 

observer.  Such clear time is observer-position dependent.  For analytical convenience we can take the time-domain 

waveform as a step function 
 

 ( ) ( )f t u t=  (3.7) 

 

applying to both transmitted and reflected wave. 
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 The feed arms also fit into the spherical Laplace equation.  Their electrical “centers” have been considered 

in the case of impulse-radiating antennas (IRAs) {2, 6], allowing for placement which in some sense is optimal.  

Consider that these intersect pS  at some pz .  The double stereographic transform then has “image” feed arms 

pointing to 0r→  from the intersection at pz .  This leads to an interesting symmetry concept by setting 
 

 0pz =  (3.8) 

 

This makes  z = 0 a symmetry plane between the wave launching side (z < 0) and the wave receiving side (z > 0).  In 

practice (inverse) feed arms are not included on the receiving side (at least not down to the focal point at 0r→ ). 
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4. Separation of Two TEM Waves Incident on Target 

 

 The foregoing is limited in that it includes the wave reflected from pS ′ .  There is also a direct wave from 

0r→−  to 0r→ .  This is a step function in the simple case (3.7).  It arrives at a time 
 

 02p
zt
c

=  (4.1) 

 

It is analogous to the prepulse from a reflector IRA.  The reflected wave arrives at 0r→  at a time 
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p
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The length of the prepulse is then 

 

 [ ] 1/ 20 2 22 2
p

a z
t a a b

c c
⎡ ⎤− ⎡ ⎤Δ = = − −⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

 (4.3) 

 

provided there are no guiding arms for the reflected waves to interfere with this.  

 

 Assuming that the prepulse is a negative xE , corresponding to a positive potential on the upper feed arms 

(positive x in Fig. 2.1), the reflected pulse reaching toward 0r
→  has a positive sign.  The waveform, however, is 

quite different.  In [1] the case of the guiding arms is considered by use of an aperture integral.  The field at 0r→  has 

a delta-function pact and a step-function part.  A detailed treatment of this may appear in the future. 
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5. Concluding Remarks 

 

 As expected, the spherical TEM wave from one focus sends a second spherical TEM wave toward the other 

focus.  For a clear time (position dependent) the second wave has the same waveform as the first wave.  The spatial 

part is found from the double stereographic transform. 

 

 This paper is the third describing an inhomogeneous TEM wave reflecting off a quartic-surface reflector 

(paraboloid, hyperboloid, and prolate spheroid) to produce exactly a second inhomogeneous TEM wave. 
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