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Abstract 
 
 

 This paper considers the placement of four electrodes at a dielectric interface (e.g., skin surface) to produce 
a nearly uniform electric field at a near-surface target (e.g., a tumor). 
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1. Introduction 

 

 In some biomedical applications one desires to put a large electric field on a target near a skin surface.  One 

can do this with two electrodes (needles) stradling the target, but the electric field near the target has significant 

nonuniformity.  One may wish for a more uniform electric-field exposure of the target.  So let us consider a 4-

electrode system. 

 

 One approach is that of four wires as discussed in [1].  In that case consider the diagram in Fig. 1.1.  Let the 

four wires be parallel to the z axis with equal radii er  and with 

 

 ( ) ( ), ,x y a b= ± ±  (all combinations of + and - ) (1.1) 

 

These wires are considered infinitely long for the moment.  With voltages V±  as indicated on the wires we find [1] 

that if we choose (for small er ) 

 

 1/ 23 0.577 , 60a
b

ψ−= =  (1.2) 

 

the electric field near (x, y) = (0, 0) is oriented in the y direction.  By symmetry all odd derivatives are zero, and also 

the second derivative is zero.  This is a two-dimensional analog of a Helmholtz coil which is useful in EMP-

simulator design. 

 

 The two-dimensional case, while giving a simple answer, is not the same as the three dimensional case. 

 

 As in Fig. 1.2, consider a three-dimensional geometry using spherical (or hemispherical) electrodes of 

small radius er .  There are now two uniform, isotropic media separated by the z = 0 plane which forms a symmetry 

plane, the electric field on this plane being parallel to the plane.  This simplifies the analysis, allowing us to calculate 

the fields as though the electrodes were in a uniform medium.  The target is situated in medium 1 near 0r→ = .  This 

medium may be a conducting dielectric, but we can analyze this as an electrostatic problem.  Medium two might be 

air, or some other medium one chooses to apply. 

 

 Referring back to Fig. 1.1, this gives the coordinates of our four spherical electrodes as seen normal to z = 0. 
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Fig. 1.1  Four-Electrode System 
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Fig 1.2  Four Electrode Three-Dimensional System:  Side View 
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2. Field of Four Electrodes 

 

 Assuming small electrodes ( ,er b a<< ), we can write the electric field as a sum of the fields from the four 

electrodes.  For large electrodes, the case of two electrodes is considered in [2]. 

 

 Due to the symmetry of the geometry and excitation, the expressions simplify on the three axes:  (x, 0, 0),  

(0, y, 0), and (0, 0, z).  In these cases there is only a y component of the electric field.  This effectively scalarizes the 

problem.  By symmetry the first derivative (as well as all odd derivatives) is zero.  So let us consider the second 

derivatives along the three axes as a measure of field nonuniformity. 
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3. z-Axis Field 

 

 Let us first consider the field along the z axis.  This is 

 

 

( )

12 2 2
1/ 22 2 2

3/ 22 2 2

2

1/ 22 2

4 2
4 4

2

2sin                    at origin

y
Q b QE a b z

a b z

b a b z

h

h a b

πε πε

ψ

−

−

−

⎡ ⎤= − + + = − Χ⎢ ⎥⎣ ⎦⎡ ⎤+ +⎢ ⎥⎣ ⎦

⎡ ⎤Χ = + +⎢ ⎥⎣ ⎦

Χ =

⎡ ⎤≡ +⎢ ⎥⎣ ⎦

 (3.1) 

 

Differentiating we have 

 

 

( )

5/ 22 2 2

2 5/ 2 7 / 22 2 2 2 2 2 2
2

2
4

2

6

6 30

6sin           at origin

d bz a b z
dz

d b a b z bz a b z
dz

d h
dz

ψ

−

− −

−

Χ ⎡ ⎤= − + +⎢ ⎥⎣ ⎦

Χ ⎡ ⎤ ⎡ ⎤= − + + + + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Χ
= −

 (3.2) 

 

 From this we find that at 0r→ =  (the origin) we have 

 

 
2

2
2

1 3y

y

E
h

E z
−∂

= −
∂

 (3.3) 

 

which is independent of ψ .  We find that the electric field decreases for both positive and negative z, as expected.  

For finite h we cannot make the above expression zero.  We must live with this, if the electrodes are all on the z = 0 

plane. 
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4. y-Axis Field 

 

 Along the y axis we have 

 

 

[ ]
[ ]

[ ]
[ ]

[ ] [ ] [ ] [ ]

122
1/ 222

122
1/ 222

3/ 2 3/ 22 22 2

2
4

2
4

2
4

y
Q b yE a b y

a b y

Q b y a b y
a b y

Q

b y a b y b y a b y

πε

πε

πε

−

−

− −

− ⎡ ⎤= − + −⎢ ⎥⎣ ⎦⎡ ⎤+ −⎢ ⎥⎣ ⎦

+ ⎡ ⎤− + +⎢ ⎥⎣ ⎦⎡ ⎤+ +⎢ ⎥⎣ ⎦

= − Χ

⎡ ⎤ ⎡ ⎤Χ = − + − + + + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (4.1) 

 

Differentiating we have 

 

 

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

3/ 2 5/ 22 2 22 2
2

3/ 2 5/ 22 2 22 2

2 5/ 2 7 / 22 3 22 2
2

5/ 2 7 / 22 3 22 2

2

2

3

3

9 15

9 15

18

d a b y b y a b y
dy

a b y b y a b y

d b y a b y b y a b y
dy

b y a b y b y a b y

d bh
dy

− −

− −

− −

− −

−

Χ ⎡ ⎤ ⎡ ⎤= − + − + − + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤+ + + − + + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Χ ⎡ ⎤ ⎡ ⎤= − − + − + − + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤− + + + + + + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Χ
= −

( ) ( )

5 3 7

3 4

30           at origin

18sin 30sin

b h

hψ ψ

−

−

+

⎡ ⎤= − +⎢ ⎥⎣ ⎦

 (4.2) 

 
 At the origin we have 
 

 ( )
2

2 2
2

1 9 15siny

y

E
h

E y
ψ −∂ ⎡ ⎤= − +⎢ ⎥⎣ ⎦∂

 (4.3) 

 
Since this is a function of ψ  we can set this to zero at 
 

 ( )
1/ 23sin , 50.8

5
ψ ψ⎡ ⎤= ⎢ ⎥⎣ ⎦

 (4.4) 

 
For smaller ψ  (4.3) is negative, while for larger ψ  it is positive. 
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5. x = Axis Field 

 

 Along the x axis we have 

 

 

[ ]
[ ]

[ ]
[ ]

[ ] [ ]

122
1/ 222

122
1/ 222

3/ 2 3/ 22 22 2

2
4

2 2
4 4

y
Q bE b a x

b a x

Q b Qb a x
b b x

b b a x b b a x

πε

πε πε

−

−

− −

⎡ ⎤= − + −⎢ ⎥⎣ ⎦⎡ ⎤+ −⎢ ⎥⎣ ⎦
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⎡ ⎤ ⎡ ⎤Χ = + − + + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (5.1) 

 

Differentiating we have 

 

 

[ ] [ ] [ ] [ ]

[ ] [ ] [ ]
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( )

5/ 2 5/ 22 22 2

2 5/ 2 7 / 22 2 22 2
2

5/ 2 7 / 22 2 22 2

2
5 2 7

2

3 3

3 15
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6 30               at origin

6sin

d b a x b a x b a x b a x
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d b b a x b a x b a x
dx

b b a x b a x b a x

d bh ba h
dx

ψ

− −

− −

− −

− −

Χ ⎡ ⎤ ⎡ ⎤= − + − − + + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Χ ⎡ ⎤ ⎡ ⎤= − + − + − + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤− + + + + + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Χ
= − +

= − + ( ) ( )2 430sin cos hψ ψ −⎡ ⎤
⎢ ⎥⎣ ⎦

 (5.2) 

 

 At the origin we have 

 

 ( )
2

2 2
2

1 3 15cosy

y

E
h

F x
ψ −∂ ⎡ ⎤= − +⎢ ⎥⎣ ⎦∂

 (5.3) 

 

This can be set to zero at 

 

 ( )
1/ 21cos , 63.4

5
ψ ψ⎡ ⎤= ⎢ ⎥⎣ ⎦

 (5.4) 

 

For smaller ψ  (5.3) is positive, while for larger ψ  it is negative. 
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6. Balancing x and y Variation 

 

 We can see from (4.3) and (5.3) that the x and y second derivatives cannot be simultaneously zero.  Perhaps 

some compromise is called for ψ  between the two values above.  One approach is to minimize the magnitude of the 

sum of the two second derivatives (noting their opposite variation with ψ ).  We find 

 

 ( ) ( )
2 2 2

2 2 2 2 2
2 2 2

1 1 13 15cos 9 15sin 3y y y

y y y

E E E
h h h

E E Ex y z
ψ ψ− − −∂ ∂ ∂⎡ ⎤ ⎡ ⎤+ = − + + − + = =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∂ ∂ ∂

 (6.1) 

 

So the sum of the three second derivatives is zero. 

 

 Another approach is to minimize the sums of the squares of the x and y second derivatives as 

 

 

( ) ( ) ( ) ( )

( ) [ ] ( ) ( ) ( )

( ) ( )

( )

( )

22 2

2 2

2 2

1/ 2

0 12 15sin 9 15sin
sin sin

2 12 15sin 30 sin 2 9 15sin 30sin

0 12 15sin 9 15sin

21 30sin

7sin , 56.8
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d d
d d

ψ ψ
ψ ψ

ψ ψ ψ ψ

ψ ψ

ψ

ψ ψ

⎡ ⎤ ⎡ ⎤= − + − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= − − + − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤= − − + − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= − +

⎡ ⎤= ⎢ ⎥⎣ ⎦

 (6.2) 

 

which is between the two previous values.  In this case we have 

 

 

2
2 2

2

2
2 2

2

1 21 312
2 2

1 21 39
2 2

y

y

y

y

E
h h

E x

E
h h

E y

− −

− −

∂ ⎡ ⎤= − =⎢ ⎥⎣ ⎦∂

∂ ⎡ ⎤= − + =⎢ ⎥⎣ ⎦∂

 (6.3) 

 

The two second derivatives are equal, each being half the magnitude of the second z derivative. 
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7. Concluding Remarks 

 

 Unlike the two-dimensional case, there is not a special value of ψ  to make all the second derivatives zero 

with respect to the coordinate axes.  The result of Section 6 can be considered a balanced design. 
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