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Abstract 
 
 

 This paper gives basic physical considerations for the design of a dielectric lens for concentrating the fields 
on a target, thereby increasing the fields and lowering the spot size.  This is used in conjunction with an incoming 
spherical wave centered on the target, such as at the second focus of a prolate-spheroidal reflector. 
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1. Introduction 

 

 Recent papers [1-4] have considered the design of a prolate-spheroidal reflector for concentrating a pulse 

from one of the foci onto a target at the second focus.  Such a pulse is similar to that generated by a reflector impulse 

radiating antenna (IRA) [9], except that now the pulse is focused in the near field, instead of at infinity.  The idea is 

to get a very fast, very intense electromagnetic pulse to illuminate the target (e.g., a tumor).  By very fast we mean 

fast enough to get the spot size at the focus down to the target size, or as close to this as technology allows.  At the 

same time a small spot size also implies large fields. 

 

 One problem with placing fields on the target concerns the dielectric properties of the target medium and its 

surroundings.  If the wave incident on the target is in air, but the target medium has a large relative permittivity (say 

about 81 for water), then there will be a significant reflection of the pulse, leading to a smaller field in the target 

medium.  This paper discusses the addition of a lens to better match the wave to the target, and to reduce spot size, 

thereby increasing the field on the target. 

 

 Figure 1.1 illustrates the concept. We have the prolate sphere with major radius a and minor radius b.  The 

focal points are at 

 

 
0 0
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0

1 zr z
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 (1.1) 

 

The high-voltage pulse is launched at 0r→− , guided by conical conductors to the prolate sphere, intersecting it at 

 

 ( ) ( ), ,p pz zΨ = Ψ  (1.2) 

 

Where the prolate sphere is truncated to surface pS ′ .  As in [4], the TEM wave reflected from pS ′  is evaluated on 

the aperture aS  at pz z= .  Aperture integrals are then performed to find the fields at the target at 0r→+ .  For a fast 

rising pulse at the launch, there is an important delta-function like pulse at the target [4 (5.1)]. 
 

 Let us also consider a lens of radius 1r  centered on 0r→ .  It is this lens we wish to optimize by appropriate 

choice of its permittivity profile ( )rε
→  to maximize this delta-function-like pulse at 0r→ . 
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Fig. 1.1  Addition of Lens With Prolate-Spheroidal Reflector 
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2. Transmission Into Target Medium Without Lens 

 

 Approximating the fields as a plane wave the transmission from one medium to another is 

 

 
1

0
0

2 2 1transmitted t
incident t t

E Z ZT
E Z Z Z

−⎡ ⎤
≡ = = +⎢ ⎥+ ⎣ ⎦

 

 
1/ 2

0Z μ
ε
⎡ ⎤= =⎢ ⎥⎣ ⎦

 wave impedance of reference medium (e.g., free space) 
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 t
rt

εε
ε

≡ ≡  relative permittivity of target medium 

 
11/ 22 1 rtT ε
−⎡ ⎤= +⎢ ⎥⎣ ⎦

 

 

As an example we may have 

 

 81rtε =  (water) 

 T  =  0.2 (2.2) 

 

This is a significant and undesirable reduction of the field. 
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3. Lens With tε ε=  

 

 Suppose now that we choose 

 

 tε ε=  (3.1) 

 

So that the lens has the same relative permittivity as the target medium.  Then the transmission into the lens at its 

boundary 1r r=  is just given by the same previous equations, and nothing is gained. 

 

 However, at the focal point the fields are not a plane wave.  In the spirit of a gedankenexperiment let us 

imagine that we choose 

 

 
1/ 222

1 0p p pr r z z⎡ ⎤⎡ ⎤≡ = Ψ + −⎢ ⎥⎣ ⎦⎣ ⎦
 (3.2) 

 

So that the lens occupies the full aperture area aS .  Then the fields from the refleetor are transmitted with 

coefficient 

 

 
11/ 2

0 1 rtT ε
−⎡ ⎤= +⎢ ⎥⎣ ⎦

 (3.3) 

 

which is 0.2 in the example. 

 

 Now the fields on aS  are 0T  times as much as before.  Turning to our formula for the delta-function part 

of the field at the target [4 (5.1)] we find that this is inversely proportional to 

 

   [ ] 1/ 2 1/ 2v rcμ ε ε− −= =  

        = speed of wave in lens medium 

    [ ] 1/ 2c μ ε −= = wave speed in reference medium (speed of light in vacuo) (3.4) 

 rε ≡  relative permittivity of lens medium 

 

This gives an enhancement factor 

 

 1/ 2 1/ 2
0 rtrF ε ε= =  (3.5) 
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for a net factor for the impulsive part of the field at 0r→  of 

 

 
11/ 2 1/ 2 1/ 2

0 0 2 1 2 1r r rF T ε ε ε
− −⎡ ⎤ ⎡ ⎤= + = +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (3.6) 

 

For our example we have 

 

 rε  = 81    (water)     ,   0F  = 9 

 0 0F T   =  1.8 (3.7) 

 

which is a significant increase in the field. 

 

 Whence does this increase come?  One way to look at this is spot size around the target.  As discussed in 

[(Section 6)], the spot size containing the narrow beam is characterized for positions near 0r→  by 
 

 1/ 2v r
a at c t
b bδ δε −ΔΨ =  

 tδ  width of δ -like pulse (3.8) 

 

So we can define a spot-size factor as 

 

 1/ 2
0 rS ε −=  (3.9) 

 

For our example 

 

 rε  = 81   (water) 

 0S   =  1/9 (3.10) 

 

The power per unit area going as one over the area, the fields go as one over the radius, giving an increase of 1
0S− , 

consistent with (3.7). 
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4. Lens With Intermediate ε  

 

 Next, let our lens of radius 1r  (as in the previous section) be characterized by a constant intermediate value 

of 

 1 r rtε ε< <  (4.1) 

 

Then we have two plane-wave transmission coefficients 
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With a net transmission coefficient 
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This is maximized at 
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For our example this is 

 

 rtε  = 81  (water) 

 rε  = 9 (4.5) 

 T  =  0.25 

 

which is some improvement over (2.2). 

 

 However, the spot size, being proportional to 1/ 2
rε
−  gives an enhancement factor of 
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 1/ 2 1/ 4
1 rtrF ε ε= =  (4.6) 

 

For our example this is 

 

  rtε  = 81   (water)  ,  1F  = 3 

 1F T  = 0.75 (4.7) 

 

which is not as good as in (3.7).  Lowering the ε  in front of the target gives this reduction. 

 

 So, let us keep tε  in front of the target and make our lens in two stages.  For the present discussion let the 

two boundaries be near 1r , separated by a thickness larger than vtδ  in the first ε  medium.  Then the spot size 

reduction is 1/ 2
rtε − , giving 
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rt
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For our example, this is 

 

 rtε  =81   (water) 

 0F T  = 2.25 (4.9) 

 

an increase over (3.7). 

 

 The essential factor is the spot-size reduction suggesting that it is important to surround the target with at 

least a portion of the lens with permittivity tε .  How far out this should extend is an important question. 
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5. Lens With Graded ε  
 
 Extending the results of the previous section we can envision a set of lens media with progressively 

increasing ε  as one goes from 1r r=  back toward 0r =  (the target).  Taking the limit we can have a continuous 

variation of ε  with 
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The wave propagating through this takes the same form as that in a transmission-line transformer.  The high-

frequency/early-time transfer function is 
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 (5.2) 

 
For our example this is 

 
 rtε  = 81  (water) 

 T  =  1/3  ~  0.33 (5.3) 

 
which is a further improvement over (4.5). 
 

 As discussed in [8] an exponential variation of the characteristic impedance of the transmission line (for 

constant wave speed) along the line is somewhat optimal.  It minimizes the droop of the step response after the 

initial rise characterized by (5.2).  This says that 1 2r r−  should be large enough that this droop is insignificant.  The 

profile of rε  can be modified to take account of the variable wave speed v( )r  in terms of a radial coordinate 

based on local transit time in the lens. 
 

 Keeping tε  in the lens after the graded portion, then the spot size is still reduced proportional to 1/ 2
rtε .  

The net transmission improvement is then 
 
 1/ 2 1/ 4 1/ 4

0 rt rt rtF T ε ε ε−= =  (5.4) 

For our example 

 
 rtε  = 81   (water) 

 0F T  = 3 (5.5) 

which is a yet further increase over (4.9).
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6. Reduction of Lens Size 

 

 Thus far we have been considering a rather large lens characterized by 1r  extending into the aperture plane 

as in (3.2).  This could be overly massive and unwieldy.  How much smaller can we make 1r  and still obtain the 

improvements discussed in the previous sections? 
 

 Letting 1r  (lens radius) be less than 0 pz z− , we have the case of a wave which is initially a spherical TEM 

wave passing through aS .  However, since this wave is not being guided toward 0r→  by appropriate conical 

conductors, this complicates the situation.  Initially, the wavefront heading toward 0r
→  inside a cone of half angle 

0θ  is TEM (Fig. 6.1), since the truncation of the wave at the reflector rim propagates a wave behind the wavefront.  

The wave incident on the lens for 0θ θ<  is initially TEM, implying that the previous results hold initially.  

However, for 
 

 0 0ψ θ θ≡ − >  (6.1) 

 

There is a short time, depending on ψ , for which the TEM results hold.  Depending on how small is the width of tδ  

(based on the source risetime (as in 3.8)) there is a portion of the lens for 0ψ >  for which the TEM incident fields 

do not strictly apply.  For the previous results to approximately hold this region of non-TEM wave for a length of 

time tδ  needs to be a small fraction of the lens surface for 0θ θ< . 

 

 What we need then is d in Fig. 6.1 for which we require 
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r z z
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 (6.2) 

 

For this we have 

 

 ( ) ( )
1/ 22 2

1 0 0 1 0sin cosp pd r z z rθ ψ θ ψ⎡ ⎤⎡ ⎤ ⎡ ⎤= Ψ − − + − − −⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦
 (6.3) 

 

Expanding this for small ψ  to second order we find (there also being a quicker way from Fig. 6.1) 
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Fig. 6.1  Ray Paths for Time of Validity of TEM Wave 

pΨ  

,μ ε

1pr r−  

aS  

1r  

r  

θ  

pz  0z  

,μ ε  

, tμ ε  

0θ  

ψ

d 
first ray 

lens 

(target) 

aperture 
plane 

z 

second ray 



12 

 
2 1

1
12

p
p

p

r r
d r r c t

r r δ
ψ −

− + <  (6.4) 

 

 We need 

 

 
0

1ψ
θ

<<  (6.5) 

 

for the TEM result to approximately hold.  Thus we need 
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The smallness of 0/ψ θ  gives some measure of how well the TEM approximation works. 

 

 How small might the lens be?  For this we have 
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 (6.7) 

 

So, we need 1r c tδ>>  for good performance.  Since we may wish to have a small lens then we may wish a 

progression of dimensions as 

 

 1pr r c tδ>> >>  (6.8) 

 

in the overall design. 
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7. Embeded Target 

 

 Suppose, now, that the target is embeded in a medium of the permittivity tε  at some depth td  as indicated 

in Fig. 7.1.  In this case, one can apply the previous results by adding a segment of a sphere of radius tr  and 

permittivity tε  centered on the z axis.  Its largest thickness is t tr d− .  Its angular extent is 0θ≥  (Fig. 6.1) so that 

the incoming spherical wave propagates through a region with a permittivity independent of θ .  The lens then 

continues out to a radius 1r  centered on the target at 0r→  with permittivity profile as discussed in previous sections. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.1  Embeded Target 
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8. Concluding Remarks 

 

 As we can see, there are many considerations for the design of a lens focused on a target, in conjunction 

with the focusing prolate-spheroidal reflector.  How large should the lens be, and what permittivity profile should be 

used?  This is strongly influenced by the risetime of the pulser since this determines the width tδ  of the impulsive 

part of the waveform incident on the target. 

 

 In synthesizing an appropriate lens there is the problem of selecting appropriate materials with desirable 

permittivities to approximate the desired ( )r rε .  Not only must these materials be able to withstand the large 

electric fields, but also they must maintain a nearly constant real permittivity over the frequency range of interest for 

the impulsive part of the waveform.  Some measurements of the frequency characteristics have been made [5-7].  

More such measurements need to be made, including for artificial dielectrics that one might synthesize. 

 

 One might also contemplate a more exact analysis of the wave propagation to the target.  This might take 

the form of a direct numerical simulation of the Maxwell equations.  Alternately one might expand the incoming 

wave in spherical vector wave functions, propagate each of these through the spherically stratified media, and sum 

the terms at the target. 

 

 As one can see, the present paper only begins the design process for such a lens. 
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