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Abstract

The 4:1 equal-delay transformer/balun integral to some impulse radiating antenna

(IRA) designs is analyzed including the effects of non-commensurate constituent trans-

mission lines. Specifically, we develop a 2-port Thévenin equivalent source represen-

tation of the feed structure that is compatible with most numerical simulations. It is

shown that the non-commensurate nature of the balun manifests itself in quasi-periodic

frequency-domain ripple in the power transfer of the balun as well as excitation of

the common mode. A representative, practical IRA is analyzed by combining the

analytically-derived 2-port Thévenin equivalent source with a commercial finite ele-

ment analysis in order to include many details of the radiating structure. Despite the

anomalous behavior of the non-commensurate balun, the impulse radiating antenna is

shown to produce almost no significant common mode radiation even when the electri-

cal lengths of the constituent transmission lines are significantly non-commensurate.

1

0



1 Introduction

The Impulse Radiating Antenna (IRA) [1] has been proven to be very useful in radiat-

ing and receiving fast-rise-time impulses. The antenna employs a reflector and a unique,

terminated Tranverse-ElectroMagnetic (TEM) feed structure which, in principle, provides

a distortionless transfer function. The overall reflector/feed system then produces a radi-

ated impulse on its principal axis that is proportional to the time-derivative of the input

time-domain voltage waveform. Finally, the PxM nature of the feed system provides a uni-

directional pattern well below the efficient operating frequency range of the reflector and

produces an electromagnetic field that exhibits a ratio of transverse electric to magnetic

components nearly equal to that of a plane wave even in its near field region [2]. Thus,

the IRA is an excellent candidate for some electromagnetic susceptibility testing applica-

tions. Because of the inherent impedance level of the system, that is, the characteristic

impedance of the self-complementary transmission line feed, and the balanced nature of

the antenna, it is advantageous to employ an impedance transformer to transform from 50

Ohms to 200 Ohms. Also, due to the balanced nature of the system, some sort of balancing

network (balun) must be employed. Thus, a very commonly-used feed network topology

intrinsically contains a 4:1 (impedance transformation) equal-delay or Guanella balun [3]

as described in [4] and shown schematically in Fig. 2. The constituent transmission lines

in this balun are necessarily electrically long over most of the operating frequency range

of the antenna. As was shown in [5], when the electrical lengths of the two constituent

transmission lines are not commensurate, anomalies in the response occur at odd-integer

multiples of the average quarter-wave frequency of the two constituent lines. These anoma-

lies involve undulations in the power transfer, peaks in the return loss of the system, and

excitation of the common mode of the radiating structure. Because of the extremely broad

operating frequency range of such an antenna, many such anomalies should manifest them-

selves in the antenna’s response. Here we present a rigorous approach for the modeling of

the non-ideal balun as well as details of the anomalous behavior. Finally, we examine the

response of a commercially-produced IRA for such anomalies. Although feed structures

for IRAs have been presented elsewhere [4], we believe this is the first such detailed anal-

ysis of the feed structure and its impact on the performance of the IRA. This note includes

material originally presented at the EMC Zürich 2007 Symposium in München. in ref. [6].

The practical IRA considered here is, to the extent possible, based on the Farr Research

model IRA-3M. This IRA has a reflector diameter of 18 inches and an F/D ratio of .5. A

solid model of the antenna used in the finite element simulation is given in Fig. 1 which

also shows the coordinate system used throughout this note. In this coordinate system, the
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z axis is taken as the bore-sight direction and the co-polarization direction on the principal

axis is taken as the x-direction.

X Axis

Z Axis (bore-sight)

Y Axis

Figure 1: Solid model representing the Farr Research model IRA-3M.

2 Model for Feed Network

2.1 Equal-delay Balun/Transformer

The equal-delay topology provides a convenient, broadband, 4:1 impedance transforma-

tion as well as balancing action. With perfectly efficacious choking action, and absent any

parasitic mechanisms, such a balun is, in some regards, truly frequency independent [3].

Nevertheless, this component of the IRA is one of the principal sources of non-ideal be-

havior. As shown in Fig. 3, this topology consists of the parallel-series connection of two

constituent transmission lines for which the common mode of each line has been effec-

tively choked off. In practice the common mode cannot be completely choked off. For

an electrically-large transformer, the common mode can radiate, as is the case with the
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Figure 2: Schematic drawing of feed structure for IRA incorporating 4:1 impedance trans-

forming balun.

feed of an IRA. As was shown in ref. [7], a 2-port, 3-terminal load such as a Y/T or Π/∆

network is the appropriate network model for the radiating portion of the IRA. In Fig. 3,

such a generalized 2-port, 3-terminal load is shown. As discussed in [7], the load repre-

senting an antenna is, in general, asymmetric. For the purpose of discussion, we assume

the IRA is symmetric with Y ∆
A = Y ∆

C . The differential-mode (DM) admittance of the load,

YDM = YB +
(

1
Y ∆

A

+ 1
Y ∆

C

)

−1

, represents the IRA feed driven in the differential mode. The

common-mode (CM) admittance, YCM = Y ∆
A + Y ∆

C , is the admittance seen by driving all

four feed arms together against the center plate (if there is no center plate, against the shield

of the center coaxial feed line) and reflector.

In [5], an idealized equal-delay transformer was examined in order to show how the

anomalies occur. It was noted that these fluctuations are exacerbated, perhaps counter-

intuitively, by increased CM impedance. In the ideal case of infinite CM impedance and

an isolated load (Y ∆
A = Y ∆

C = 0), they manifest themselves as transmission zeros of the

system. That is, at odd integer multiples of the average quarter-wave frequency, the system

will not transmit at all. In the case of the IRA, the CM impedance is not necessarily high

and the load cannot be represented by an isolated, 2-terminal impedance. This case is

intermediate and the CM structure is complicated. It was also shown in [5] that connection

of the terminal labeled sum (because it is the sum port of the hybrid) is central to the
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Figure 3: Guanella 4:1 impedance transformer with generalized load. The sum port is

equivalent to the sum port of the hybrid described in [3].

behavior of the non-commensurate transformer.

In such an impedance transformer or balun, it is necessary to transpose the conductors

of one of the constituent transmission lines at one end of the transformer or the other.

That is, one of the constituent transmission lines must serve as a phase inverter. Thus, if

the unit is implemented with coaxial cables, the shield must be broken at one end of the

transformer or the other. In [8] a more typical coaxial implementation of this transformer is

given with the shield broken on the low impedance side. In the IRA, the parallel connection

of transmission lines is implemented with a simple shielded unmatched “T” connection.

That is, a 50 Ohm coaxial cable splits into two 100 Ohm cables in parallel. Thus, up to

the point at which the series connection is made, this transformer is simply the unmatched

T with two nominally commensurate coaxial transmission lines attached. Therefore, with

absolutely no loss in rigor, at least this much of the overall system can be modeled as a

2-port Thévenin source.

A central assumption in this analysis is that the feed region is electrically small and cur-

rent continuity can be assumed for each connection. This assumption is reasonable in that

the lengths of the feed transmission lines are long and retardation in the feed structure will

manifest itself well before the finite size of the feed region (the region of the series con-

nection) does. In order for the Thévenin source representation to be sound, it is necessary

to unequivocally define the reference node. Here it is taken as the point at which the break

in the shield of the center coaxial feed line is made and also where the center conductor

of the other coaxial feed line is attached to the H-plane symmetry plate. When the feed

region is electrically small, the transposition of conductors can be modeled as an ideal 1:1,

phase-inverting transformer. This, in turn, can be absorbed into the 2-port model by invert-
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ing one of the two independent sources and the sign of the transfer impedance. This affects

all three of the passive impedances in the Thévenin equivalent source. We emphasize that

the principal assumption here is that Kirchoff’s current law holds in the feed region. All of

the characteristics of the CM structure are thus included as part of the external problem.

2.2 The Generalized Thévenin Equivalent Network

When there is a clear break in the system such that the non-radiating and radiating portions

of the system can be separated, it is useful and possible to represent the non-radiating

portion of the system with an equivalent Thévenin or Norton source. This simplifies the

numerical modeling of the system in that the shielded part of the feed network need not

be simulated simultaneously with the radiating structure. Furthermore, it also provides

some physical insight into the operation and limitations of this system. The existence of

such a 2-port equivalent source was proven in [9], where a general derivation technique

was presented. The use of such an equivalent source with so-called “calculable” dipole

antennas has been examined in some detail in [10]. We note here that because of the shunt

connection at the splitter, the equivalent 2-port source cannot consist of two uncoupled

independent voltage sources. Coupling between the sources must be included in the model.

It is this coupling combined with non-commensurate transmission line lengths that causes

the anomalous behavior. The Thévenin equivalent network is shown in [9] to consist of

a passive 2-port network with two independent voltage sources in series at its two ports

as shown in Fig. 4. The passive 2-port network is obtained by shorting the independent

voltage source at the input of the shunt splitter, retaining, of course, the source impedance.

Note that any length of intervening coaxial line between the source and the shunt splitter

serves only to provide an overall phase shift to the independent sources in the Thévenin

equivalent model; only the lengths of the transmission lines between the splitter and the

antenna feed point affect the performance of the system. If we were to consider only this

shunt splitter and coaxial transmission lines without the transposition, the 2-port impedance
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Figure 4: Thévenin Equivalent Model for 3-port consisting of unmatched splitter and 100-

Ohm coaxial transmission lines. The “ground” symbol in this schematic indicates a single

point or reference node, the point in Fig. 3 at which the center conductor of the coaxial line

labeled as 2 (inverting) connects to the shield of the coaxial line labeled 1 (non-inverting).

In Fig. 2, this is where the center conductor of the coaxial line on the right connects to

the shield of the center coaxial line parallel to the bore-sight direction. Essentially, this

implements the series connection of the two coaxial lines.

representation would be:

Z ′

22 = Z01
Y01 − Y02 tan θ1 tan θ2 + jYg tan θ1

Yg + jY02 tan θ2 + jY01 tan θ1
(1)

Z ′

33 = Z02
Y02 − Y01 tan θ2 tan θ1 + jYg tan θ2

Yg + jY01 tan θ1 + jY02 tan θ2
(2)

Z ′

23 = Z ′

32

=
1

jY01 sin θ1 cos θ2 + Yg cos θ1 cos θ2 + jY02 cos θ1 sin θ2

=
sec θ1 sec θ2

Yg + jY01 tan θ1 + jY02 tan θ2
, (3)

where the prime notation indicates that these parameters apply to the shunt splitter without

the transposition. Now, with a 1:1, ideal, phase-inverting transformer inserted between port
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Figure 5: Thévenin Equivalent Model for 3-port consisting of unmatched splitter and in-

vertin transformer.

3′ and port 3 as shown in Fig. 5, the impedance parameters become:

Z22 = Z ′

22, (4)

Z33 = Z ′

33, and (5)

Z23 = Z32 = −Z ′

23. (6)

That is, the phase-inverting transformer inverts V3 and I3 thus leaving the diagonal (self)

impedance matrix elements unchanged, while changing the sign of the off-diagonal (trans-

fer) elements. The circuit elements in Fig. 4 can be immediately derived from the impedance

parameters:

ZA = Z22 − Z23, (7)

ZB = Z23, and (8)

ZC = Z33 − Z23. (9)

As can be seen, all three of these equivalent T network elements are affected by the presence

of the phase-inverting transformer. Thus, the Thévenin 2-port equivalent source consists of
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the following component impedances and independent source voltages:

ZA = Z01
Y01 − Y02 tan θ1 tan θ2 + jYg tan θ1 + Y01 sec θ1 sec θ2

Yg + jY02 tan θ2 + jY01 tan θ1
, (10)

ZB = −
sec θ1 sec θ2

Yg + jY01 tan θ1 + jY02 tan θ2
, (11)

ZC = Z02
Y02 − Y01 tan θ2 tan θ1 + jYg tan θ2 + Y02 sec θ1 sec θ2

Yg + jY01 tan θ1 + jY02 tan θ2
, (12)

V2OC =
VgYg sec θ1

Yg + jY01 tan θ1 + jY02 tan θ2
, and (13)

V3OC = −
VgYg sec θ2

Yg + jY01 tan θ1 + jY02 tan θ2
. (14)

It is reasonable to consider the special case of equal characteristic impedances, Z01 =

Z02 = Z0 = 2Rg, since the characteristic impedance of a coaxial transmission line is a

logarithmic function and can typically be very well controlled. Setting Z0 = 2Rg pro-

vides optimum performance in the equal-delay balun as shown in ref. [8]. In this case, the

expressions for the components of the equivalent Thévenin source reduce to:

ZA → Z0
1 − tan θ1 tan θ2 + j2 tan θ1 + sec θ1 sec θ2

2 + j tan θ2 + j tan θ1

= Z0
ej(θ1+θ2) + j sin(θ1 − θ2) + 1

ej(θ1+θ2) + cos(θ1 − θ2)
, (15)

ZB → −Z0
sec θ1 sec θ2

2 + j tan θ1 + j tan θ2

= −Z0
1

ej(θ1+θ2) + cos(θ1 − θ2)
(16)

ZC → Z0
1 − tan θ2 tan θ1 + j2 tan θ2 + sec θ1 sec θ2

2 + j tan θ1 + j tan θ2

= Z0
ej(θ1+θ2) + j sin(θ2 − θ1) + 1

ej(θ1+θ2) + cos(θ1 − θ2)
, (17)

V2OC → Vg

2 sec θ1

2 + j tan θ1 + j tan θ2

= Vg

2 cos θ2

ej(θ1+θ2) + cos (θ1 − θ2)
(18)

V3OC → −Vg

2 sec θ2

2 + j tan θ1 + j tan θ2

= −Vg

2 cos θ1

ej(θ1+θ2) + cos (θ1 − θ2)
. (19)
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When the transmission lines are also commensurate (θ1 = θ2 = θ), ZA and ZC become

frequency independent, but ZB does not:

ZA → Z0, (20)

ZB → −Z0
1

ej2θ + 1
, (21)

ZC → Z0 (22)

V2OC → Vg

2 cos θ

e2jθ + 1
, and (23)

V3OC → −Vg

2 cos θ

e2jθ + 1
. (24)

It was noted in [3] that the 4-port equal-delay hybrid is not truly frequency independent.

Here it can be seen that the 3-port balun does not provide frequency independent behavior

either, in that the Thévenin equivalent network is frequency dependent even in the ideal,

commensurate case. It is useful to notice that when the line lengths are negligible, the

source configuration is identical to that associated with a voltage balun as shown in [11].

However, when the line length is 90◦, the balun behaves as a current balun, at least in the

sense that ZB → ∞.

Fig. 6 depicts the magnitude of DM and CM voltages across the generalized load in

Fig. 3 under three special conditions: (1) ZDM = 200 Ω and ZCM = open circuit, (2)

ZDM = 200 Ω and ZCM = 50 Ω, and (3) ZDM = 200 Ω and ZCM = 250 Ω. Thus, case (1)

corresponds to Y ∆
A = Y ∆

C = 0 and Y ∆
B = 1

200
S; case (2) corresponds to Y ∆

A = Y ∆
C = 1

100
S

and Y ∆
B = 0; and case (3) corresponds to Y ∆

A = Y ∆
C = 1

500
S and Y ∆

B = 1
250

S. If

the load behaves as an isolated 2-terminal impedance (case 1), the behavior would be as

described in [5] with perfect nulls occurring at the odd integer multiples of the average

quarter-wave frequency. In Fig. 6, it would appear that the CM voltage becomes large

for the isolated load when the average electrical length is an odd integer multiple of one-

quarter wavelength. However, no power is transferred to the load since in this case the CM

impedance is an open circuit.

It is worthwhile to compare this Thévenin equivalent network with that of a feed net-

work consisting of an ideal hybrid and two non-commensurate coaxial transmission lines.

That is, consider the system with the shunt coaxial splitter replaced by a hybrid network.

In this case, the Thévenin equivalent network would simply consist of two isolated inde-

pendent sources each with a section of transmission line between the source and output.

Thus, the two sources are decoupled by the isolating behavior of the hybrid. (Note that an

equal-delay hybrid implemented with non-commensurate transmission lines would not ex-

hibit perfect isolation.) The extent to which the behavior of this source differs from that of
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Figure 6: CM and DM Voltages produced by Non-commensurate Balun with +/- 5% phys-

ical length difference in constituent transmission lines. The characteristic impedances of

the lines are equal with Y01 = Y02 = Yg/2.

the above described source depends strongly on the nature of the 2-terminal load to which

it is connected. Thus, the remainder (the external structure) of the IRA comes into play.

The hybrid coupler decouples the sources at the near (source) end. When the load configu-

ration in Fig. 3 consists as in case (2) of only the two shunt admittances to ground, YA and

YC , the two lines are decoupled at the load. Under these ideal conditions, coupling at the

source end cannot cause an anomaly. Only when coupling at both ends occurs can these

anomalies occur.

2.3 Equivalent Common-mode Structure of the IRA

The 2-port, 3-terminal load in Fig. 3 representing the IRA would, in the most general

case, be an asymmetric network with Y ∆
A 6= Y ∆

C . This is because a slight asymmetry is

introduced by the series connection in the feed network. Here we are primarily concerned

with the symmetric approximation to the general case. That is, we will consider the antenna

to be symmetric but the balun to be non-commensurate and hence asymmetric. In this

case the excitation and load can be considered as composed of differential mode (DM)

and common-mode (CM) components. At low frequencies the CM impedance would tend
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asymptotically to ZCM → RL

4
= 56.25 Ω where RL is the terminating resistance for each

of the four transmission line conductors. Because of its symmetry, the IRA excited in the

common mode should exhibit a radiation null on its principal axis. The pattern has been

computed using a commercial FEM simulation. In very general terms, the CM excitation

is similar to a quadrupole composed of two loop currents driven out of phase. Thus, if the

antenna bore-sight is aligned with the z axis, the feed is aligned with the x-axis so the co-

polarization of the antenna on the bore-sight is in the x direction, then the maximum CM

radiation should be in the x direction as shown in Fig. 7. This is a typical low frequency CM

pattern (100 MHz) where the constituent loop currents are electrically small. Of course,

this pattern becomes much more complex as the antenna becomes electrically large. The

DM and CM impedances of a typical IRA, the Farr Research model IRA-3M, have been

computed using a commercial finite element simulation and are presented in Fig. 8. As can

be seen, this 2-port,3-terminal load is quite different from an isolated impedance. The CM

input impedance tends asymptotically to 56.25 Ohms as the frequency approaches zero.

Near 140 MHz, the common mode exhibits a damped series resonance. Near 310 MHz, the

common mode structure exhibits a damped parallel resonance. With the exception of the

frequency region near this parallel resonance, the driving point impedance for the common

mode at the feed point is very small. It will be seen that very little power is transferred to

the common mode.

Given the numerically determined values for the differential and common mode impedances

of the IRA, it is possible to compute the proportions of the available source power converted

into differential and common modes in the antenna structure. It should be remembered that

this power is not the radiated power, but rather the power in differential and common modes

at the feed point. In the case of both the differential and common mode, some of the power

is dissipated in the loads located at the bases of the four feed arms. Referring to Fig. 9, the

impedance matrix of the passive network portion of the Thévenin equivalent representation

of the balun and signal source is:

[Z] =

[

Z11 Z12

Z21 Z22

]

. (25)

The impedance matrix of the 2-port antenna model is:

[ZL] =

[

Z11L Z12L

Z21L Z22L

]

. (26)

It is more straightforward to use a T/Y equivalent network to represent the antenna here.
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These are related to the network elements in Fig. 3 by the Y-∆ transformation: ZAL =
Y ∆

A

Y ∆

A
Y ∆

B
+Y ∆

B
Y ∆

C
+Y ∆

C
Y ∆

A

, ZBL =
Y ∆

B

Y ∆

A
Y ∆

B
+Y ∆

B
Y ∆

C
+Y ∆

C
Y ∆

A

, ZCL =
Y ∆

C

Y ∆

A
Y ∆

B
+Y ∆

B
Y ∆

C
+Y ∆

C
Y ∆

A

, The “L”

subscript is used to distinguish the components of this network from their counterparts in

the equivalent network of the balun/source. In terms of the “T” network elements in Fig. 9,

the elements of the impedance matrix are given by:

Z11L = ZAL + ZBL, (27)

Z12L = ZBL, (28)

Z21L = ZBL, and (29)

Z22L = ZCL + ZBL. (30)

These elements in turn, are derived from the computed common and differential mode

impedances plotted in Fig. 8:

ZAL =
ZDM

2
, (31)

ZBL = ZCM −
ZDM

4
, and (32)

ZCL =
ZDM

2
. (33)

Now, we can write:

(Z11 + Z11L) I1L + (Z12 + Z12L) I2L = V1OC (34)

(Z21 + Z21L) I1L + (Z22 + Z22L) I2L = V2OC . (35)

These equations can be solved simultaneously for I1L and I2L. The differential mode volt-

ages and currents are then:

VDM = V1L − V2L, and (36)

IDM =
I1L − I2L

2
. (37)

The common mode voltages and currents are then:

VCM =
V1L + V2L

2
, and (38)

ICM = I1L + I2L. (39)
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The differential mode power is:

PDM = VDMI∗

DM . (40)

The common mode power is:

PCM = VCMI∗

CM . (41)

In Fig. 10, the fraction of the available source power carried by each mode is plotted. It

should be kept in mind that these are the differential and common modes associated with

the feed structure, not the radiated power. Some of this power is delivered to the loads at

the base of the feed structure. In particular, most of the common-mode power is dissipated

by the loads. The average quarter-wave frequency of the the constituent transmission lines

is about 120 MHz. As can be seen from Fig. 10, the maximum common mode power for

the frequency range examined here occurs near the average three-quarter wave frequency

of the constituent transmission lines.

3 Numerical Simulation of Representative IRA with

Non-commensurate Balun.

From the data concerning the percentage of power transferred to the differential and com-

mon modes plotted in Fig. 10, it is apparent that, for the frequency range examined here,

the greatest departure from ideal operation occurs near the average 3/4 wavelength fre-

quency of the constituent transmission lines. This is approximately 357.4 MHz for the IRA

considered here which corresponds (roughly) to the Farr IRA-3M. Ideally VA = 1 V and

VC = −1V; ZA = 100 Ohms, ZC = 100 Ohms, and ZB = −50 Ohms (Voltage Balun

representation). Now consider a non-commensurate balun with ±5% physical line length

difference. Element values for an average electrical length of 270 degrees (357.4 MHz)

were computed. This degree of disparity results in the following component values for the
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numerical source model:

VA = −4.284 V, (42)

VC = −4.284 V (Note signs for voltage sources), (43)

ZA = 416.53j Ohms, (44)

ZC = −416.53j Ohms, and (45)

ZB = 917.49 Ohms (T network is anti-symmetric). (46)

At first glance, these values might seem unusual, or perhaps incorrect. For example the

independent source voltages appear to represent pure common-mode excitation. Some

explanation is warranted. Consider the expression for the independent source voltage in

Eqns. 18 and 19 evaluated at an integer multiple of the average quarter-wave frequency:

V2OC → Vg

2 cos θ1

e2jθavg + 1
, and (47)

V3OC → −Vg

2 cos θ2

e2jθavg + 1
. (48)

Since in order to be at an integer multiple of the average quarter-wave frequency, the

values θ1 and θ2 are symmetrically situated about a zero of the cosine function and thus

cos θ1 = − cos θ2. Therefore, V2OC = V3OC . Perhaps it should be kept in mind that the

elements of the equivalent network do not each alone correspond to a physical component

or phenomenon. The anti-symmetric nature of ZA and ZC results in the flow of differential

mode current and hence power. In fact, as can be seen from Fig. 10, much more power is

delivered to the differential more than is delivered to the common mode even at the average

three-quarter wave frequency.

A numerical simulation of an IRA with a non-commensurate balun was carried out for

a representative model of the Farr IRA-3M using these 2-port Thévenin equivalent source

values. The far-field co- and cross-polarization Ludwig-3[12] components are plotted in

Fig. 11. Specifically, the quantity that is plotted is:

R
∣

∣

∣

~E (R, θ, φ) · âco

∣

∣

∣
for co-polarization, and (49)

R
∣

∣

∣

~E (R, θ, φ) · âcross

∣

∣

∣
for cross-polarization (50)
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where

âco = âθ cos φ − âφ sin θ, (51)

âcross = âθ sin φ + âφ cos θ, (52)

and ~E (R, θ, φ) is the far-field radiated electric field. Since only the far field is being consid-

ered R · ~E (R, θ, φ) is independent of R. As can be seen, even for this degree of disparity in

the electrical lengths of the constituent transmission lines, the cross polarization rejection

is approximately 30 dB.

4 Experimental Investigation of Common-mode Radiation

We have carried out preliminary measurements of the characteristics of a commercially-

available IRA in order to support the thesis that the equal-delay feed topology is the source

of some anomalous behavior. Fig. 14 depicts a time-domain-reflectometer (TDR) charac-

terization of the reflection coefficient at the input port of the antenna. As can be seen from

from the cursors, the round-trip time between the small reflection at the shunt splitter and

that at the series connection is about 4.2 nanoseconds. Thus, the equivalent air-line distance

between these two points is 629.58mm giving a quarter-wave frequency of 119.13 MHz.

In Fig. 15, it can be seen that this is reflected (slightly) in the return loss of the system.

Periodic peaks in the response on and off axis are apparent in the vicinity of 120 and 240

MHz and to a lesser extent near 480 MHz. These peaks are due in part simply to impedance

mismatch within the IRA. While this preliminary data is not calibrated gain data but rather

simply insertion loss data, the other antenna is known to have a relatively flat gain over this

frequency range. It is clear that the peak in the off-axis response in the vicinity of 240 MHz

is greater than that of the on-axis response. The PxM pattern still provides some gain even

at 90◦ off of the main axis and the peak is undoubtedly due in part to impedance mismatch.

However, impedance mismatch cannot account for the frequency variation being greater

off axis than on axis. Clearly some excitation of the common mode exists.

5 Conclusions

We have examined in some detail the effects of non-commensurate constituent transmission

lines in the equal-delay balun on the performance of the impulse radiating antenna. While

the two constituent transmission lines may be made very similar to one another, it is never

possible to make them identical in length and thus, such an investigation is warranted. The
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generalized Thévenin equivalent network proposed here for the source should be useful in

more comprehensive numerical simulations of the IRA and also provides physical insight

to the operation of the equal-delay balancing feed. Also, the approach can be applied to the

analysis other antennas using other types of numerical models.

The equal-delay balun exhibits anomalies in its behavior at odd integer multiples of the

average quarter-wave frequency of the two constituent transmission lines. The anomalies

consist of peaks in the common-mode and dips in the differential mode power transfer.

Thus, a non-commensurate balun should cause the IRA to exhibit peaks in common-mode

radiation near these frequencies. However, it must be conceded that, even in the case of

highly non-commensurate transmission lines, the numerical model predicts little common

mode radiation. Moreover, the spurious CM radiation from the commercially-available

IRA antenna is so small as to be difficult to measure. Moreover, the most visible anomalies

occur below the published lower limit of the antennas operating frequency range. There

are several specific reasons for this behavior:

1. The impedance match into the common mode is very poor.

2. The radiation efficiency of the common mode is very low; most of the common mode

power is dissipated in the loads.

3. The common mode exhibits a radiation null on the bore-sight of the antenna.
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Figure 7: Rendition of the numerically-simulated (with the HFSS finite element simulation

program) CM far-field radiation pattern of IRA at 100 MHz. The numerical model is

intended to represent an IRA similar to the Farr Research model IRA-3M, although certain

simplifications were employed in developing the solid model. The null in the far-field

on the bore-sight is clearly visible, however other features of the pattern are somewhat

obfuscated by the rendering. It can be seen that the maximum radiation intensity is in

the direction of the positive and negative x-axes as would be expected of the quadrupolar

configuration of two loops driven out of phase. Nulls does not exist on the y-axes as would

for true quadrupole radiation, but the radiation intensity is significantly smaller in the y
direction than it is in the x direction.
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Figure 12: Rendition of the numerically-simulated (with the HFSS finite element simula-

tion program) far-field Ludwig-3 co-polarized component of the radiation pattern of IRA

at 360 MHz. The IRA geometry corresponds to the Farr Research model IRA-3M with

a ±5% disparity in the electrical lengths of the constituent transmission lines of the feed

structure. It can be seen that the maximum radiation intensity is in the z direction.
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Figure 13: Rendition of the numerically-simulated (with the HFSS finite element simu-

lation program) far-field Ludwig-3 cross-polarized component of the radiation pattern of

IRA at 360 MHz. The IRA geometry corresponds to the Farr Research model IRA-3M with

a ±5% disparity in the electrical lengths of the constituent transmission lines of the feed

structure. It can be seen that the radiation intensity the z direction is very small compared

to that generally in the back lobe.
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