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Abstract 

 

 Antenna impulse response was defined in Sensor and Simulation Note 555 in terms of 

50-Ω source and load impedances. While this makes the equations very simple, it is useful to 

extend the equations to arbitrary source and load impedances. This allows one to apply antenna 

impulse response to all situations. It also demonstrates that antenna impulse response, along with 

antenna input impedance, is sufficient to fully characterize an antenna for all sources and loads. 

This provides a simple way to characterize antenna performance in the time domain, analogous 

to the role that antenna gain serves in the frequency domain.  
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I.  Introduction 

 

 The concept of antenna impulse response was introduced in [1] with 50-Ω source and 

load impedances. However, it is of interest to generalize the antenna equations to arbitrary source 

and load impedances, so the newly defined antenna impulse response can apply to all situations. 

We derive those equations here. In doing so, we confirm that the antenna impulse response, 

along with antenna input impedance, provides all the information that is necessary to fully 

describe antenna performance. Thus, antenna impulse response can serve the same role in the 

time domain that antenna gain does in the frequency domain.  

 

 By characterizing an antenna's  performance with its impulse response, we simplify our 

understanding of antenna physics–especially in the time domain. For example, consider the time 

domain response of an Impulse Radiating Antenna (IRA), as sketched in Figure 1.1. It is 

common to characterize its performance differently in transmission and reception, and for 

different risetimes or pulse widths. On the top is the received voltage when the IRA is excited by 

an impulse-like electric field, with two different pulse widths. On the bottom is the radiated field 

when the IRA is driven by an impulse-like voltage, with two different pulse widths. Note that the 

bottom waveforms are proportional to the derivatives of the corresponding top waveforms. In 

this formulation, four waveforms are required to fully describe antenna performance. However, it 

was shown in [1] that a single waveform, the antenna impulse response, contains all the 

information in these four waveforms.  

 

 

   

 

   

 

 
 

   

 

   

 

 
 

Figure 1.1. Characterizing an Impulse Radiating Antenna with four different waveforms for 

receive (top) and transmit (bottom), and at two different pulse widths (left and right). Note that 

tFWHM is the Full-Width Half Max of the source voltage or incident field.  
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 Note that all of the equations developed in this paper refer to antenna response in the 

dominant polarization, looking on boresight, and propagating through a lossless free space. It is 

straightforward to extend the equations to arbitrary polarization and look angle, and a lossy 

propagation constant, as shown in [1].  

 

 We begin by reviewing the relevant equations from [1]. We then extend the transmit and 

receive equations to arbitrary source and load impedances. We take note of the special cases of 

an open-circuit voltage source, a short-circuit current source, and open and short circuit loads. 

We express the results for all of these cases in terms of antenna impulse response.  
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II.  Review of the Antenna Equations 

 

 Consider an antenna that transmits from a 50 Ω source, or  receives into a 50 Ω load, as 

shown in Figure 2.1. As derived in [1, eqn. (2.1)], the antenna impulse response, hN(t), is defined 

by the following equations in transmission and reception,  
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where Vrec(t) is the received voltage into a 50-Ω load or oscilloscope, and Vsrc(t') is the source 

voltage in retarded time as measured into a 50-Ω load or oscilloscope. In a 50-Ω source, 

srcS VV
~

2
~

= . Furthermore, Einc(t) is the incident electric field, Erad(t) is the radiated electric field, 

r is the distance away from the antenna, c is the speed of light in free space, and “ o ” is the 

convolution operator. Note also that hN(t) has units of meters per second in the time domain, and 

meters in the frequency domain. 
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Figure 2.1. Antenna transmission (left) and reception (right) for a 50-Ω source and load. Note 

that srcS VV
~

2
~

= in a 50-Ω source.  
 

 

 The above equations are expressed alternatively in the frequency domain as  
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where the tilde indicates a Fourier transform.   
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 Next, we generalize the conditions in Figure 2.1 to arbitrary source and load impedances, 

as shown at the bottom of Figure 2.2. The special cases of open circuit voltage and short circuit 

currents are shown at the top and middle of the same figure.  
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Figure 2.2. Three cases of antenna transmission (left) and reception (right) under conditions of 

open circuit (top), short circuit (middle), and arbitrary source and load impedances (bottom).  
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 The equations in transmission may be expressed in one of three forms, depending on the 

source type; open-circuit voltage source, short-circuit current source, or loaded source [1,2]; as 

shown on the left in Figure 2.2. For these three cases we have 
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Here, radE
~

 is the radiated far field, and cfck /2/ πω ==  is the propagation constant. For 

reasons of simplicity, we removed the usual dependencies on angle, polarization, and 

propagation through a lossy medium; all of which can easily be restored.  

 

 Next, we consider the antenna equations in reception. We consider three cases; open 

circuit voltage, short circuit current, and voltage across a load; as shown on the right in 

Figure 2.2. For these three cases we have  
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Note that we use the convention here that positive current flows into the load.  
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 Let us now consider how one characterizes the source. In [1], the source was constrained 

to be a 50Ω resistor, and the transmit equation was cast in terms of srcV
~

. This is the voltage seen 

by a 50-Ω instrument, as shown in Figure 2.3 (left). The instrument is normally a network 

analyzer or oscilloscope. In this case  
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Figure 2.3. Configurations for measuring the source voltage with source and instrument 

impedances constrained to be 50 Ω (left), and arbitrary (right).  

 

 

 We now generalize to an arbitrary source impedance, as shown on the right of Figure 2.3. 

In this case, it is more convenient to express antenna equations in terms of SV
~
 instead of srcV

~
. 

One measures the source  voltage with an instrument with input impedance instZ
~

. Now SV
~
 is 

found from  
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We assume that `
~
instZ  and `

~
sZ are known quantities, most likely from prior input impedance 

measurements. One reads instV
~

 off the instrument, so the only unknown in the above equation is 

SV
~
. This is the voltage source that will be used to drive the antenna in the transmit equations to 

be derived later.  
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III. Reception into an Arbitrary Load Impedance  
 

 Let us now consider reception into an arbitrary load. From eqn. (2.4) we have  
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If we specialize the above equation to the case where Ω= 50
~
LZ , we have  
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Taking the ratio of the above two equations, we find the ratio of the received voltage with 

arbitrary load impedance, LZ
~
, to that with Ω= 50

~
LZ ,  
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According to eqn. (2.2), the received voltage into a 50 Ω load is  
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By combining the above two equations, we find a general receive equation in terms of antenna 

impulse response,  
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This is the general expression of receive voltage in terms of antenna impulse response, with 

arbitrary load impedance.  
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 We now consider the two special cases of received voltage into an open circuit  

( Ω∞→LZ
~

), and a short circuit ( Ω= 0
~
LZ ). For these two cases, the above equation 

simplifies to  
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To find scI
~
 from eqn. (3.5), we noted that Lrecsc ZVI

~
/

~~
= , and took the limit as 0

~
→LZ .  

 

 As a check, we observe that the above expressions for Vh
~
 and Ih

~
 satisfy IinV hZh

~~~
= , 

which is necessary to be consistent with eqn. (2.3). 
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IV. Transmission from a Source with Arbitrary Source Impedance  
 

 Next, we consider transmission from a source with arbitrary source impedance. From 

eqn. (2.3), we have 
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Let us now specialize the above equation to the specific case where Ω= 50
~
SZ  
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Taking the ratio of the above two equations, we find the ratio of the radiated field with arbitrary  

source impedance, SZ
~
, to that with Ω= 50

~
SZ ,  
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Let us now return to our expression for the field radiated from an antenna driven by a 50-Ω 

source, eqn. (2.2). We need to modify this to a more general form, expressing the source voltage 

in terms of SV
~
 instead of srcV

~
, where the relationship between them

 
was specified in Figure 2.3. 

So the field radiated from a antenna driven by a 50-Ω source, in terms of Nh
~
 and SV

~
, is  
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This is the radiated field for the case when Ω= 50
~
SZ . To find the radiated field for arbitrary 

SZ
~
, we combine the above two equations, leading to  
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This is the general equation for radiation from a source with arbitrary feed impedance expressed 

in terms of the antenna impulse response.  
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 We now consider two special cases. First, if the source is an open-circuit voltage source, 

then Ω= 0
~
SZ , and VVS

~~
= , so eqn. (4.5) reduces to  
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This may be expressed alternatively as 
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This establishes the relationship between VF
~
 and Nh

~
.  

 

 Similarly, if the source is a short-circuit current source, then Ω∞→SZ
~

, and 
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= , so eqn. (4.5) reduces to  
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This may be expressed alternatively as  
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This establishes the relationship between IF
~
 and Nh

~
.  

 

 As a check, we note that the expressions for VF
~
 and IF

~
 developed in eqns. (4.7) and 

(4.9) satisfy VinI FZF
~~~

= , which is necessary to be consistent with eqn. (2.3).  
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V.  Discussion 
 

 Antenna impulse response may be used to describe both narrowband and broadband 

antennas, however, there are a few limitations on its applicability. The antenna must have a 

clearly defined input port. Also, the antenna may not contain a nonreciprocal material, such as 

ferrite.  

 

 We have defined antenna impulse response in a manner that makes the equations simplest 

with 50-Ω loads and sources. It should be clear, however, that we could have chosen instead to 

make the equations simplest when the antenna is, for example, open-circuited, or loaded by a 

75-Ω resistor. We favored 50-Ω systems because that is the most common configuration in 

which antennas are used.  

 

 Antenna impulse response is valid only in the far field of the antenna. This may be 

described in the frequency domain as [3] 
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where D is the antenna diameter, and λ is the wavelength. Alternatively, D. V. Giri has 
formulated an analogous expression in the time domain [4] 
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where tr is the risetime of the source voltage.  

 

 To measure the complete antenna impulse response, one must use a measurement system 

with a sufficiently large bandwidth (or a sufficiently small risetime). One has sufficient 

bandwidth when increasing the system bandwidth (or reducing its risetime) no longer changes 

the measured antenna impulse response. When one increases the system bandwidth, it is also 

necessary to increase the antenna separation, consistent with eqns. (5.1) and (5.2).  
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VI.  Conclusions 
 

 In [1], we showed that antenna impulse response, )(
~

ωNh  or hN(t), fully describes antenna 

response with 50-Ω sources and loads. It describes an antenna in both transmission and 

reception, and in both the frequency and time domains. However, we had not yet addressed 

antenna response in the presence of arbitrary sources or loads.  

 

 In this paper, we have shown that the antenna impulse response is sufficient to fully 

describe antenna response with arbitrary source and load impedances. This includes the limiting 

cases of open-circuit voltage sources, short-circuit current sources, and open- and short-circuit 

loads. To fully characterize the antenna, it is also necessary to specify its input impedance.  

 

 Because only a single waveform is needed, it is not necessary to use separate waveforms 

to describe an antenna's performance in reception and transmission. Similarly, the antenna 

impulse response is independent of the waveshape parameters of the source voltage and incident 

field.  

 

 We showed in [1] that antenna impulse response is simply related to antenna gain, 

realized gain, and antenna factor. Thus, the concept of antenna impulse response extends all 

three of the standard descriptions of antenna performance into the time domain.  

 

 The concept of antenna impulse response makes it possible for vendors and customers to 

speak a common language when describing antenna performance in the time domain. This is 

analogous to the role that antenna gain has served for many years in the frequency domain.  

 

 We recommend that antenna impulse response be adopted by the antenna community as 

the standard method of describing antenna performance in the time domain. Furthermore, we 

recommend that IEEE adopt it as a standard term in a future version of [5].  
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