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Abstract 

 This note deals with the design considerations of a magnetic dipole antenna driven by 
a compact Marx source. Given the capacitive source, the antenna provides an inductive load 
to the source thus, creating a resonant circuit that radiates with a certain amount of magnetic 
moment. This LC-type of resonance is in addition to the loop resonance and occurs at a 
frequency lower than the loop resonance. Various design parameters and their effect on the 
resonant frequency and the radiation patterns are studied in this report to aid in the actual 
fabrication and testing. We have looked at dividing a single loop into N sub-loops and find 
that the loop inductance goes down by a factor of N, the resonant frequency goes up by a 
factor of N and the radiated field goes up by a factor of N2.Subdividing the loop is seen to 
have definite advantages. 
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1. Introduction 

 An example of a compact source/antenna system is the DIEHL 110 (see Figure 1) 
offered commercially by Diehl, Munitionssysteme GmbH & Co in Germany [1]. 

        

                          Figure 1. DIEHL 110 Compact source and the electric field at 1m 

We observe that the main radiation frequency is ~ 375 MHz or a wavelength λ  of 80 cm. 
Using the far field criteria of (kr~1) and  r > antenna size, it is observed that the 1m range is 
already in the far field. The measured positive peak of 125 kV/m at a range of 1m in the far 
field gives an (r Ep) of 125 kV and an (r Ep/V) = 125 kV/400 kV = 0.3125. The dimension of 
the system along the axis of the antenna, which is also parallel to the axis of the Marx cylinder, 
is 41 cm. The antenna is likely to be a half-wave electrical dipole with a total length of ~ 40 cm 
=  )2/(λ  and the resulting frequency is 375 MHz, which is what is advertised. There are two 
skinny wires (red in color) entering the antenna cylinder from the two ends.  It is likely that 
these two wires activate a switch at the center of the dipole. The skinny wires would have 
excessive inductance to result in a 375 MHz, LC type of resonance.  

 Given the above background, we now consider a given set of maximum dimensions of 
length  l = 0.6 m, height h = 0.45 m, and width w = 0.3 m and also a capacitive source. For a 
capacitive source, an inductive load offered by a loop antenna (magnetic dipole) is a natural 
choice for creating an LC resonance that occurs below the loop resonance in the present case. 
It is also desirable to maximize the magnetic dipole moment of the radiator to get the highest 
possible field. The magnetic dipole moment is simply the loop current times the area of the 
loop at frequencies where the current around the loop can be regarded as a constant.  In 
contrast, an electrical dipole driven by a capacitive source will not display the LC resonance, 
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but will exhibit only the half-wave dipole resonance. For these reasons we are considering a 
loop antenna with maximum dimensions outlined above.   

2. Low Frequency Analysis of the Loop Antenna 

2.1 Evaluation of the Loop Current 
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Figure 2. Simple equivalent circuit of the pulser source and radiating loop antenna 

 For the determination of the current flowing in the pulser circuit of Figure 2, standard 
circuit analysis techniques are used [2]. For a capacitor C having an initial voltage Vo switched 
into the circuit at time t = t1, the induced current response can be calculated by considering a 
step function excitation voltage V(t) = Vo [U(t-t1)] applied to the circuit. In the frequency 
domain this voltage source is given as V(s) = Vo/s, where s = jω and  t1 = 0 

 In the frequency domain the loop current is given by 

  
( ) 2
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/( ) /
1/( )

/

Loop o

o

s LI s V s
s LC

V L
s ω

 
=  + 

 
=  + 

 (1) 

where the resonance frequency 1/o LCω = , In this expression, L is the inductance of the loop. 

 Using the Laplace transform inversion, the transient response for the loop current in 
Figure 2 can be expressed analytically as  

  ( )1 1( ) sin ( ) ( )Loop o o
CI t V t t U t t
L

ω= − −  (2) 

From this expression, we may compute the EM field produced by the circulating current. 
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2.2 Estimation of the Loop Inductance 
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Figure 3. Equivalence of the loop antenna of width w and a wire loop of conductor 
radius a. 

 For a loop of dimensions l and h, made of a flat plate of width w, there are several 
different equations that have been developed for computing the inductance. For the case of a 
thin loop, where w << l and h, Grover [3] provides the following expression for the inductance 
L: 

2 2 1 10.4 ln 8 ln 8 2 1.75( ) sinh sinh ( )Grover
h l h lL h l h l h l h l H
w w l h

µ− −        = + + + − + − −                
  (3) 

 Similarly, Terman [4] provides an expression for the inductance, assuming that circular 
wires of radius a = w/4 are used to replace the plates. This expression is 

( ) ( ) ( )2 2 2 2 2 20.4 ln 2 ln ln 2 2 2( ) ( )Termin
lhL l h l l l h h h l h l h a l h H
a

µ  = + − + + − + + + + + − +    
   (4) 

 Bashenoff [5] provides a less approximate expression for the loop inductance as 

  0.4 ( ) ln ( )
( )Bashenoff

lhL l h H
a l h

µ
  

= +  +  
. (5) 

 Another expression for the loop inductance can be found using the method of partial 
inductance, as described by Paul [6]. This provides the following expression: 

 
2 2 2 2

2 2 2

0.4 ln 1 ln 1 ln 1 ln 1

0.4 2 ( ) 1 1 1

Paul
l l h h l l h hL l h l h
a a a a h h l l

h l a aa l h l h l h
l h l h

                       = + + + + + − + + − + +                              

                + − + + + + + − + −                    

2

1
    +      

 (µH)  (6) 

 Finally, ref.[6] provides the standard inductance of a circular loop of radius r as 
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  0.4 ln 8 2 ( )Circle
rL r H
a

π µ  = −    
. (7) 

This circular loop can be compared with the rectangular loop by making the loop areas the 
same, as 

  lhr
π

= . (8) 

Table 1 presents the inductance of the loop, which is denoted as LLoop. 

 

Table 1. Inductances LLoop of the loop antenna (in nH) using various formulas 

Grover Terman 
Partial 
Inductanc
e Method 

Circular 
Loop Bashenoff 

589 (coefficient of 4th term = 1.75) 

484 (coefficient of 4th term = 2. 0) 

539 (coefficient of 4th term = 1.87) 

544 542 531 517 

 

Baum [7] has indicated that the fourth term in Grover’s expression should have a constant 
coefficient of 2 rather than 1.75. With this revision, we find that Grover’s expression gives an 
inductance of 484 nH. These two values from Grover’s expressions of 484 nH and 589 nH 
provide an upper and lower bound in Grover’s formula. If we use an average coefficient of 
1.87 for the fourth term in Grover’s expression, we end up with an inductance of 539 nH which 
agrees well with Terman’s and Paul’s expressions.  

Note the Terman and partial inductance method provide comparable values for the inductance. 
In the calculations that follow, we use the partial inductance method results. 

The resonant frequency of the circuit, and hence the frequency of the radiated EM field, 
is 1/o LCω = . For a fixed source capacitance, the inductance of the loop antenna should be as 
small as possible in order to radiate at high frequencies. However, as the radiation from the 
antenna is proportional to the magnetic dipole moment m (t), we must keep m large. 

One way of reducing the loop antenna inductance [8] is shown in Figure 4 
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    a. Subdivision into two loops                                        a. Subdivision into four loops 

               Figure 4.     Subdivision of the single loop of Figure 3 into multiple loops 

For the original loop divided into N sub-loops, the inductance of a single sub-loop is 

                                                       Loop
sub loop

L
L

N− ≈                                                                  (9) 

Alternatively, the sub-loop inductance may be calculated from Eqs.(3 – 6) with modified loop 
dimensions. 

                             In examining the loop interconnections in Figure 4, we note that the sub-
loops are connected in parallel, as shown below. For this parallel connection, the total 
inductance presented to the capacitance source is  

  

2

sub loop
Total

Loop

L
L

N
L
N

−=

=
                   (approximately and not exactly) (10) 

Thus, by subdividing the original loop into N sub-loops, the total inductance of the ensemble 
of loops decreases by a factor N2, and since 1/o LCω = , the resonant frequency of the circuit 
will increase by a factor N. 
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Figure 5. Equivalent circuit of a multi-loop antenna driven by the capacitive pulser  
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 For the original loop divided into N-sub loops, the total transient source current is 
expressed as  

  ( )1 1( ) sin ( ) ( )s o o
Loop

CI t V N N t t U t t
L

ω= − −           (11) 

where LLoop is the original loop inductance. This source current has an amplitude N times the 
original source current for the single, and the factor of N higher resonant frequency is apparent 
in the equation. The current flowing in each sub-loop from Eq.(11) is  

  ( )1 1( ) sin ( ) ( )sub loop o o
Loop

CI t V N t t U t t
L

ω− = − − , (12) 

which is a current having the same amplitude at the single loop current, but with a higher 
oscillation frequency. 

 For the original loop of area A = h l, the magnetic dipole moment m is 

  
( )1 1

( ) ( )

sin ( ) ( )

Loop

o o
Loop

m t AI t

CV A t t U t t
L

ω

=

= − −
 (13) 

For the loop divided into N sub-loops, the dipole moment of one of the sub-loops is 

  
( )1 1

( ) ( )

sin ( ) ( )

N sub loop

o o
Loop

Am t I t
N

A CV N t t U t t
N L

ω

−=

= − −
 (14) 

And the total magnetic dipole moment is the sum of those of all of the sub-loops: 

  
( )1 1

( ) ( ) ( )

sin ( ) ( )

Total N sub loop
N

o o
Loop

m t m t AI t

CV A N t t U t t
L

ω

−= =

= − −

∑
 (15) 

 Note that this equation for the divided loop dipole moment has the same amplitude as 
that for the single loop in Eq.(13), but differs by the increased frequency of oscillation. 
Consequently, the radiation from the four loop configuration will be different than that from 
the single loop, even though the dipole moments are the same. 
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 It should also be noted that the observation that the current in each of the four sub loops 
is equal to the current in the single loop is valid only for frequencies near the loop resonances 
where the inductive reactance is about equal to the reactance of the source capacitance.  At 
much lower frequencies, the inductive reactance is about zero and the loop currents are 
determined only by the source capacitance. In this case, the total currents flowing through the 
by the sources in the single loop and four loop cases are equal (given by I = jωC V), and 
consequently, the current in one of the four sub loops is ¼ of the single loop current.  

2.3 Numerical Results 
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Figure 6. Resonant frequency of the pulser circuit for the loop antenna with overall 
dimensions l = 0.6 m, h  = 0.45 and w = 0.3 m, for different number of sub-loops, shown as 
a function of the pulser capacitance 

NOTE:   1) The above results do not account for the Marx inductance.  

    2) The resonant frequency is provided strictly by the pulser capacitance and the  
         effective loop inductance.  

    3) For the case of N=4, the inductance is about 33 nH and may be << Marx  
         inductance. The pulser inductance may be the deciding factor in the resonance 
         frequency rather than the loop inductance! 
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Figure 7. Plot of the wavelength of EM signals produced by the loop currents as a 
function of the capacitance. (The triangles indicate the limits of the low-frequency 
current approximation, where the sub-loop perimeter is equal to λ/2. Values of 
capacitance lower than those indicated on the x-axis provide resonant frequencies that 
are too high for the quasi-static current distribution to be valid.) 

 

The upper frequencies for this quasi-static analysis are as follows: 

          Table 2.Upper frequency limits of the quasi-static loop analysis. 

N =1 Loop N = 2 Loops N = 4 Loops 

71 MHz 100 MHz 143 MHz 
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 Figure 8. Plot of the normalized peak source current Is/Vo in the circuit of Figure 5, as 
a function of the source capacitance, shown for different numbers of sub-loops 
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Figure 9. Plot of the normalized peak dipole moment m/Vo of the loop antenna, shown 
as a function of the source capacitance for different numbers of sub-loops 
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3. Evaluation of the Radiated EM Field 

3.1 Evaluation of the Radiated E and H fields 
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Figure 10. Illustration of the loop antenna and the spherical coordinate system for 
computing the radiated EM field 

  2
2

1( ) sin( )
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π
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 (16a) 

  2
3 2

1( ) cos( )
2 ( ) ( )
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o r z
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 (16b) 

  2
3 2

1( ) sin( )
4 ( ) ( )

jkr
o z

j j jZ H m k e
kr kr krθ

ωµ ω θ
π

− −
= + + 

 
 (16c) 

In the far field, where the [1/(kr)2 ] and [1/(kr)3 ] terms are negligible, it is seen that the field is 
proportional to (jω )2 . This means first of all, the far field is the second time derivative of the 
magnetic dipole moment. Secondly, the far field is proportional to the (resonant frequency)2, 
meaning the subdivision of the loop (N = 4), yields approximately N2 (=16) times more field. 
This is a significant advantage gained by subdividing the loop.  

To compute the radiated field, we first take a magnetic dipole moment represented by an 
oscillating waveform having a finite pulse width. This waveform starts at t = 5 ns and lasts 
until 40 ns, where the sinusoidal waveform is truncated.  

This waveform has discontinuous derivatives at each end (unphysical). The terms in the 
radiated fields that behave as jω correspond to taking derivatives in the time domain and this 
yields impulse functions in the transient fields. 
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Figure 11. Transient behavior of the normalized dipole moment m(t)/Vo for the pulser 
firing at t = t1 = 5 ns. (Waveform is for C = 10 pf and N = 4 loops. The oscillating 
waveform is terminated at t = 40 ns.) 

 

                                    

0 20 40 60 80 100
30

20

10

0

10

20

Ephi

Time ns

r E
ph

i /
 V

o

.

 

Figure 12. Plot of the normalized radiated E-field rEφ/Vo produced by the transient 
dipole moment shown in Figure 11. (The impulses in the field at the beginning and end of 
the waveform are due to derivative discontinuities in the dipole moment.) 
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3.2 Addition of Loss to the Pulser Circuit 
 

                                                     

+

_
V(t)

C

LTotal

Is

R

 

                                  Figure 13.  The pulser circuit with resistance added 

We add loss to the circuit to damp the waveform, and add a finite rise. The loss is assumed to 
be in the pulser source, so the element R is assumed to be independent of the loop 
subdivisions. 

Step function response 
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  ( )( )1/ 2
1 1

1( ) sin ( ) ( )TotalR L t t
s o

Total Total

CI t V t t e U t t
L L C

− − 
≈ − −  

 
 (20) 

When the large loop is subdivided into N sub-loops (see Eq.(10) the sub loop current is given 
as 

  ( ) ( )( )2
1/ 2

1 1( ) sin ( ) ( )LoopN R L t t
sub loop o o

Loop

CI t V N t t e U t t
L

ω
− −

− ≈ − −  (21) 



 13 

Compare this equation with Eq.(12) 

The total magnetic dipole moment of Eq.(15) for the lossless circuit  thus becomes 

 

  ( ) ( )( )2
1/ 2

1 1( ) sin ( ) ( )LoopN R L t t
Total o o

Loop

Cm t V A N t t e U t t
L

ω
− −

= − −  (22) 

This waveform damps out exponentially at late times, and does not have a discontinuous 
derivative there. However, it still has a discontinuous derivative at t = t1. This can be 
eliminating by multiplying the transient expression in Eq.(above) by the function  

                                                ( )15

1( )
1 t tg t

e α− −
=

+
 (23) 

Here, this function is centered at t = 25 ns and with the parameter α = 0.5 x 109, it has a width 
of roughly 20 ns, as shown in Figure 14 
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Figure 14. Plot of the function g(t) designed to modify the leading edge of the transient 
waveform of Figure 11 
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                        a) Early Time                                                         b) Late Time 

Figure 15. Plots of the early time and late time behavior of the dipole moment of the loop 
antenna for C = 10 pf, R = 0.5 Ω and N = 4 loops. 
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                      a) Normalized rEφ/Vo                              b) Normalized rZcHr/Vo and  rZcHθ/Vo  

Figure 16. Plots of the radiated transient E and H-field components in the θ = 90o 
direction from the loop antenna for C = 10 pf, R = 0.5 Ω and N = 4 loops 

NOTE:  

1) These are for an assumed set of pulser capacitance, and resistance in the circuit. 

2) We are not likely to get such a high Q in practice, since the losses in the circuit 
are unknown, and the radiation resistance of the loop is not included. 
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4. Summary of Radiated Field Characteristics 
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Figure 17. Behavior of the of normalized peak radiated E- and H-field components 
shown as a function of range for from the loop antenna for C = 10 pf, R = 0.5 Ω and N = 4 
loops. The resulting frequency of oscillation of fo = 259 MHz 

NOTE: 

1) It is seen that the radial component of the magnetic field goes to zero, as a function 
of distance, very rapidly. 

2) The far field conditions of (kr ~ 1) and   r > loop size at a frequency = 259 MHz are 
satisfied for a range of ~ 1m, which is consistent with the above plots. 
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Figure 18. Plots of the peak normalized far-zone E-field rEφ /Vo as a function of pulser 
capacitance for different numbers of sub-loops 

Observe that the radiated E-field for the 4-loop case is a factor of 14 higher than the field for 
the single loop. Because the frequency of the radiated field is proportional to f2, one would 
expect that the proportionality factor would be 16.  The reason that it is slightly smaller is that 
the inductance of the smaller loop (as calculated from Eq(6) is not exactly ¼ that of the large 
single loop.  This accounts for the slightly different dipole moment curves in Figure 9. 

For the same reasons, the radiated field for the case of N= 2, is 3.57 times larger than the field 
for a single loop. It is not quite 4 times, since the frequency is not exactly 2 times, but a little 
less, more like 1.88 times.   
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5. High Frequency Models Using NEC 

 The previous discussion has involved a quasi-static model for determining the antenna 
currents and the radiated fields.  For frequencies over about 100 MHz, the electrical size of the 
loop antenna begins to become comparable to a wavelength, and the quasi-static model 
becomes inaccurate. To conduct an analysis in at frequencies over 100 MHz, we can use the 
Numerical Electromagnetics Code (NEC) [9], which provides a numerical solution to an 
integral equation for the current flowing on the antenna. 

 The NEC code solves for currents on wire structures, and there is a limitation as to the 
thickness of the wire that can be accommodated in the analysis. In the present case, the 
effective wire radius is on the order of 7.5 cm, and for wire lengths of 60 or 45 cm the 
cylindrical wire is too “fat” for the NEC analysis to be accurate. Thus, NEC cannot be used to 
analyze the fat conductor configuration. It is possible however, to accurately treat a wire with a 
radius of 1 cm or smaller, and this case is reported in this section. 

 While NEC can model the currents on the loops better, it can not handle the wide 
plates, resulting in an equivalent fat, but round conductor. It still is instructive to run the NEC 
for a thin wire situation, although we will not be using a thin wire to make the loops. Thinner 
the wire, higher the inductance and lower is the resonant frequency.  

                              

Figure 19. Illustration of the NEC model for the single loop antenna, fed by a capacitive 
voltage source by a transmission line 

Source 
and load 
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  a. Overall geometry 

 

                     

      b. Source feed details 

Figure 20. Illustration of the NEC model for the four loop antenna, fed by a single 
capacitive voltage source and four transmission lines connecting the loops in parallel 
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 The following plot is the normalized source current (the input admittance) of the simple 
loop with a single source as depicted in Figure 19, with no capacitive loading of the source. 
The source is located at the end of the transmission line feed, as shown in the figure.  Note that 
at low frequencies, the input current is inductive, and that the first resonance of the loop occurs 
at about 143 MHz, where the loop circumference is one wavelength. 
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Figure 21. Plot of the computed input admittance of the loop shown in Figure 19 (with no 
capacitive loading) 

 

 The normalized radiated E-field (rE/V) can be computed by NEC. With reference to 
Figure 10, the Eφ field component dominates, and this is plotted in Figure 22 for the case θ = 
90o and φ ≈ 0o. Note that the largest resonance occurs at f ≈  286 MHz, which is the second 
current resonance. At the frequency of the first current resonance, there is a corresponding 
peak in the radiated field, but it is relatively small. 
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Figure 22. Plot of the normalized radiated E-field magnitude |r Eφ/V| for the loop of 
Figure 19 (with no capacitive loading) 

 

 We now add a 10 pF capacitive load at the source location on one of the wires of the 
loop. Figure 23 shows the effect on the input admittance: a L-C circuit resonance has been 
introduced at low frequencies. Using the inductance of the loop as given by Eq.(6), these 
resonances are calculated to be 43.5 MHz for the 1 cm wire. These frequencies agree with the 
resonances in Figure 23. Note that at these frequencies, the loop still is electrically small. The 
resonances are not due to the resonant behavior of current on the loop structure, but rather, 
they are due to the interaction of the loop inductance and the source capacitance.  
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Figure 23. Plot of the input admittance of source of Figure 19 with 10 pF capacitive load 
at a single source 

Figure 24 presents the radiated E-field magnitude |r Ephi/V| from loop in the direction θ = 90o 
and φ = 0o. for the single excitation source with a capacitive load of 10 pF. 
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Figure 24. Plot of the normalized radiated E-field magnitude |r Eφ/V| from loop of Figure 
19 with 10 pF capacitive load at a single source. 
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 Next, we divide the loop into four separate loops, as shown in Figure 20. This is done 
by modeling the transmission lines by two parallel conductors, which connected in parallel to 
the voltage source with capacitive source impedance.   

 The resulting radiation pattern for this case is shown in Figure 25. Note that the effect 
of subdividing the single loop is to raise the L-C resonance by a factor of about 3.2. This is not 
exactly equal to the factor of 4 increase in frequency predicted by the low frequency model. 
Note also that the peak amplitude of the L-C resonance of the four-loop case is about 16 times 
larger than that for the single loop due to the f2 dependence of the radiated field. 
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Figure 25. Plots of the radiated E-field magnitude |r Eφ/V| from the loop with 1 and 4 
capacitive (10 pF) voltage sources in the direction θ = 90o and φ = 0o. 

 

 

 It is instructive to examine the behavior of the radiation pattern around the 4-loop 
antenna. With reference to the coordinate system shown in Figure 10, calculations of the 
normalized principal field component |r Eφ/V| in the z = 0 plane (for θ = 90o ) have been 
computed for azimuthal angles φ = 0o, 30o, 60o and 90o. These spectral plots are shown in 
Figure 26. Note that for frequencies lower than about 110 MHz, the radiation pattern is omni 
directional. However, above this frequency, there is a noticeable variation of the pattern with 
the angle φ. 

 

Wire radius = 0.1 cm 
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Figure 26. Behavior of the normalized radiated E-field magnitude |r Ephi/V| for an 
observation location on the z = 0 plane ( 90=θ ) for different values of the azimuth  

Wire radius = 0.1 cm 
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               a. Frequency = 100 MHz                                      b. Frequency = 300 MHz 

                                             

                                                          c. Frequency = 600 MHz 

Figure 27. Plots of the normalized radiation pattern |r Ephi/V| in the horizontal plane (θ = 
90o) for three different frequencies.  (The radial scale is x 103, so that the quantity being 
plotted in units of [meters] x [millivolts/meter] / [volts].) 
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            a. Frequency = 100 MHz                                      b. Frequency = 300 MHz 

                                               

                                                           c. Frequency = 600 MHz 

Figure 28. Plots of the normalized radiation pattern |r Ephi/V| in the vertical plane (φ = 
90o) for three different frequencies.  (The radial scale is x 103, so that the quantity being 
plotted in units of [meters] x [millivolts/meter] / [volts].) 
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Next, we consider an electrical dipole for comparison, as shown in figure 29.  
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Figure 29. Illustration of a thin rod antenna and the spherical coordinate system for 
computing the radiated field 
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Figure 30. Plot of the radiated normalized E-field |r Ephi/V| for the observation angles 
θ = 90o, φ = 90o for the rod and 4-loop antennas 

It is noted that the 4 loops (N = 4) driven in parallel by one capacitive source that maximizes 
the magnetic dipole moment is still the preferred choice for the antenna. 

  

 

Wire radius = 0.1 cm 
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Shown below are plots of the radiated E-field for the observation angles θ = 90o, φ = 90o for 
different wire radii. Note that as the wire’s thickness increases, so does the L-C resonant 
frequency. AS the wire thickness increases, the inductance decreases thus, increasing the 
resonant frequency. Thus, in the original concept of the wide plate antenna, the resonant 
frequency is maximized for the space allowed for the antenna.  
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Figure 31. Illustration of the sensitivity of the 4-loop radiated field for variations of the 
wire radius 

6. Summary Comments 

We have addressed the design considerations of a magnetic dipole or a loop antenna for a 
capacitive compact source. Baum’s suggestion of subdividing the loop into N parts has been 
shown to lead to many advantages. The subdivision into N loops (N = 4) is a good choice 
leading to:  

• Setting up a circuit or LC type of resonance between the source capacitance and the 
loop inductance; this resonance is at a lower frequency than the loop resonance  

• Approximately decreases the value of the total inductance by a factor of N2                                       

• Approximately increases the resonant frequency by a factor of N 

• The  total magnetic moment of the subdivided loop is the same as the magnetic moment 
of the single loop 
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• However, since the far field from a magnetic dipole is proportional to the square of the 
frequency, the far field increases approximately by a factor of N2 

• The resistive losses in the circuit leads to an exponential damping term  that has N2 in 
the exponent; this suggests that subdivision can not be carried too far 

• For the case of N = 4, and utilizing the prescribed maximum dimensions, we find the 
loop inductance is about 33 nH and it is likely that the Marx inductance may turn out to 
be a factor of 4 or 5 more than this value and the source capacitance and inductance 
may ultimately determine the resonant frequency.  

• Some of the calculations in this note are for assumed parameters of source capacitance 
of 10 pF, N = 4, utilize some typical dimensions and for a resistance in the circuit of 0.5 
Ohms. We are not likely to obtain the high Q values estimated in this note, because of 
radiation resistance and the losses in the circuit which are not precisely known. 

• Subdividing the original single loop into 4 loops will increase the required volume 
somewhat, since interconnections between the sub-loops become necessary. We have 
considered a loop antenna in this note, because the source is capacitive and the 
inductance of the loop antenna can be exploited for an LC resonance. If we build a 
single loop antenna with a Marx source, we have shown that subdividing the loop into 
4 loops is beneficial, without significantly increasing the needed volume. 
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